MISC

1999年7月

Calcitonin is a major regulator for the expression of renal 25-hydroxyvitamin D-3-1 alpha-hydroxylase gene in normocalcemic rats

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
  • T Shinki
  • ,
  • Y Ueno
  • ,
  • HF DeLuca
  • ,
  • T Suda

96
14
開始ページ
8253
終了ページ
8258
記述言語
英語
掲載種別
DOI
10.1073/pnas.96.14.8253
出版者・発行元
NATL ACAD SCIENCES

Regulation of vitamin D metabolism has long been examined by using vitamin D-deficient hypocalcemic animals. We previously reported that, in a rat model of chronic hyperparathyroidism, expression of 25-hydroxyvitamin D-3-1 alpha-hydroxylase (CYP27B1) mRNA was markedly increased in renal proximal convoluted tubules, It is believed that the major regulator for the expression of renal CYP27B1 is parathyroid hormone (PTH). However, in the normocalcemic state, the mechanism to regulate the renal CYP27B1 gene could be different, since plasma levels of PTH are very low. In the present study, the effect of PTH and calcitonin (CT) on the expression of renal CYP27B1 mRNA was investigated in normocalcemic sham-operated rats and normocalcemic thyroparathyroidectomized (TPTX) rats generated by either PTH or CaCl2 infusion. A single injection of CT dose-dependently decreased the expression of vitamin D receptor mRNA in the kidney of normocalcemic sham-TPTX rats. Concomitantly, CT greatly increased the expression of CYP27B1 mRNA in the kidney of normocalcemic sham-TPTX rats. CT also increased the expression of CYP27B1 mRNA in the kidney of normocalcemic TPTX rats. Conversion of serum [H-3]1 alpha,25(OH)(2)D-3 from 25-hydroxy[H-3]vitamin D-3 in vivo was also greatly increased by the injection of CT into sham-TPTX rats and normocalcemic TPTX rats, but not into hypocalcemic TPTX rats. In contrast, administration of PTH did not induce the expression of CYP27B1 mRNA in the kidney of vitamin D-replete sham-TPTX rats and hypocalcemic TPTX rats. PTH increased the expression of renal CYP27B1 mRNA only in vitamin D-deficient hypocalcemic TPTX rats. These results suggest that CT plays an important role in the maintenance of serum 1 alpha,25(OH)(2)D-3 under normocalcemic physiological conditions, at least in rats.

リンク情報
DOI
https://doi.org/10.1073/pnas.96.14.8253
CiNii Articles
http://ci.nii.ac.jp/naid/80011240076
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/10393981
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000081342100118&DestApp=WOS_CPL
ID情報
  • DOI : 10.1073/pnas.96.14.8253
  • ISSN : 0027-8424
  • CiNii Articles ID : 80011240076
  • PubMed ID : 10393981
  • Web of Science ID : WOS:000081342100118

エクスポート
BibTeX RIS