論文

査読有り
2016年8月

A High-Throughput Screen Identifies 2,9-Diazaspiro[5.5]Undecanes as Inducers of the Endoplasmic Reticulum Stress Response with Cytotoxic Activity in 3D Glioma Cell Models

PLOS ONE
  • Natalia J. Martinez
  • Ganesha Rai
  • Adam Yasgar
  • Wendy A. Lea
  • Hongmao Sun
  • Yuhong Wang
  • Diane K. Luci
  • Shyh-Ming Yang
  • Kana Nishihara
  • Shunichi Takeda
  • Mohiuddin Sagor
  • Irina Earnshaw
  • Tetsuya Okada
  • Kazutoshi Mori
  • Kelli Wilson
  • Gregory J. Riggins
  • Menghang Xia
  • Maurizio Grimaldi
  • Ajit Jadhav
  • David J. Maloney
  • Anton Simeonov
  • 全て表示

11
8
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1371/journal.pone.0161486
出版者・発行元
PUBLIC LIBRARY SCIENCE

The endoplasmic reticulum (ER) is involved in Ca2+ signaling and protein folding. ER Ca2+ depletion and accumulation of unfolded proteins activate the molecular chaperone GRP78 (glucose-regulated protein 78) which in turn triggers the ER stress response (ERSR) pathway aimed to restore ER homeostasis. Failure to adapt to stress, however, results in apoptosis. We and others have shown that malignant cells are more susceptible to ERSR-induced apoptosis than their normal counterparts, implicating the ERSR as a potential target for cancer therapeutics. Predicated on these findings, we developed an assay that uses a GRP78 biosensor to identify small molecule activators of ERSR in glioma cells. We performed a quantitative high-throughput screen (qHTS) against a collection of similar to 425,000 compounds and a comprehensive panel of orthogonal secondary assays was formulated for stringent compound validation. We identified novel activators of ERSR, including a compound with a 2,9-diazaspiro[5.5]undecane core, which depletes intracellular Ca2+ stores and induces apoptosis-mediated cell death in several cancer cell lines, including patient-derived and 3D cultures of glioma cells. This study demonstrates that our screening platform enables the identification and profiling of ERSR inducers with cytotoxic activity and advocates for characterization of these compound in in vivo models.

リンク情報
DOI
https://doi.org/10.1371/journal.pone.0161486
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000382876700021&DestApp=WOS_CPL
ID情報
  • DOI : 10.1371/journal.pone.0161486
  • ISSN : 1932-6203
  • Web of Science ID : WOS:000382876700021

エクスポート
BibTeX RIS