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Abstract: In this paper, we consider some two phase problems of compressible and incompressible
viscous fluids’ flow without surface tension under the assumption that the initial domain is a uniform
W2−1/q

q domain in RN (N ≥ 2). We prove the local in the time unique existence theorem for our
problem in the Lp in time and Lq in space framework with 2 < p < ∞ and N < q < ∞ under our
assumption. In our proof, we first transform an unknown time-dependent domain into the initial
domain by using the Lagrangian transformation. Secondly, we solve the problem by the contraction
mapping theorem with the maximal Lp-Lq regularity of the generalized Stokes operator for the
compressible and incompressible viscous fluids’ flow with the free boundary condition. The key step
of our proof is to prove the existence of anR-bounded solution operator to resolve the corresponding
linearized problem. The Weis operator-valued Fourier multiplier theorem with R-boundedness
implies the generation of a continuous analytic semigroup and the maximal Lp-Lq regularity theorem.

Keywords: Navier–Stokes equations; two phase problem; local in time unique existence theorem;
R-bounded operator

1. Introduction

It is an important mathematical problem to consider the unsteady motion of a bubble
in an incompressible viscous fluid or that of a drop in a compressible viscous one. The
problem is, in general, formulated mathematically by the Navier–Stokes equations in a time-
dependent domain separated by an interface, where one part of the domain is occupied by
a compressible viscous fluid and another part by an incompressible viscous fluid. More
precisely, we consider two fluids that fill a region Ω ⊂ RN (N ≥ 2). Let Γ ⊂ Ω be a given
surface that bounds the region Ω+ occupied by a compressible barotropic viscous fluid and
the region Ω− occupied by an incompressible viscous one. We assume that the boundary
of Ω± consists of two parts, Γ and Γ±, where ∂Ω± = Γ ∪ Γ±, Γ± ∩ Γ = ∅, Γ+ ∩ Γ− = ∅,
and Ω = Ω+ ∪ Γ ∪Ω−. Let Γt, Γt−, Ωt+, and Ωt− with time variable t > 0 be the time
evolution of Γ, Γ−, Ω+, and Ω−, respectively. We assume that the two fluids are immiscible,
so that Ωt+ ∩Ωt− = ∅ for any t ≥ 0. Moreover, we assume that no phase transitions occur,
and we do not consider the surface tension at the interface Γt and the boundary Γt−. Thus,
in this paper, we consider that the motion of the fluids is governed by the following system
of equations:

∂tρ+ + div (ρ+v+) = 0 in Ωt+,
ρ+(∂tv+ + v+ · ∇v+)−Div S+(v+) +∇p(ρ+) = 0 in Ωt+,

div v− = 0 in Ωt−,
ρ0−(∂tv− + v− · ∇v−)−Div S−(v−) +∇π− = 0, in Ωt−

(1)
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subject to the interface condition:{
(S+(v+)− p(ρ+)I)nt|Γt+0 − (S−(v−)− π−I)nt|Γt−0 = −p(ρ0+)nt|Γt−0,

v+|Γt+0 − v−|Γt−0 = 0
(2)

on Γt, boundary conditions:

v+|Γ+ = 0, (S−(v−)− π−I)nt−|Γt− = 0, (3)

kinematic conditions:

Vn = u− · nt on Γt, Vn− = u− · ut− on Γt− (4)

for any t > 0, and initial conditions:

(ρ+, v+)|t=0 = (ρ0+ + θ0+, v0+) in Ω+, v−|t=0 = v0− in Ω−. (5)

Here, v± = (v1±, . . . , vN±) are the unknown velocity fields of the fluids, ρ0± positive
numbers describing the mass densities of Ω±, ρ+ the unknown mass density of Ωt+, π−
the unknown pressure, θ0+ and v0± the prescribed initial data, p(s) the prescribed pressure,
which is a C∞ function defined on an open interval (ρ0+/2, 2ρ0+) satisfying the condition:
p′(s) ≥ 0 on (ρ0+/2, 2ρ0+), nt the unit outward normal to Γt, pointing from Ωt− to Ωt+,
nt− the unit outward normal to Γt−, Vn the evolution speed of Γt along nt, and Vn− the
evolution speed of Γt− along nt−.

Moreover, for any point x0 ∈ Γt, f |Γt±0(x0, t) is defined by:

f |Γt±0(x0, t) = lim
x→x0

x∈Ωt±

f (x, t),

and the stress tensors S± are defined by:

S+(v+) = µ+D(v+) + (ν+ − µ+)div v+I, S−(v−) = µ−D(v−)

with viscosity coefficients µ± and ν+, which are positive constants in this paper, where
D(v) denotes the deformation tensor whose (j, k) components are Djk(v) = ∂jvk + ∂kvj
with ∂j = ∂/∂xj and I is the N × N identity matrix. Finally, for an N × N matrix func-
tion K = (Kij), Div K is an N-vector whose ith components are ∑N

j=1 ∂jKij, and also,

for any vector of functions v = (v1, . . . , vN), we set div v = ∑N
j=1 ∂jvj and v · ∇v =

(∑N
j=1 vj∂jv1, . . . , ∑N

j=1 vj∂jvN). For any functions f± defined on Ω±, f denotes a function
defined by f = f± in Ω±.

Aside from the dynamical system (1) subject to (2), (3), and (5), a kinematic condition (4)
for Γt and Γt− gives:

Γt = {x = x(ξ, t) | ξ ∈ Γ}, Γt− = {x = x(ξ, t) | ξ ∈ Γ−}, (6)

where x(ξ, t) is the solution of the Cauchy problem:

dx
dt

= v(x, t) =

{
v+ in Ωt+,
v− in Ωt−,

, x|t=0 = ξ ∈ Ω. (7)

This expresses the fact that the interface Γt and the free surface Γt− consist for all t > 0
of the same fluid particles, which do not leave them and are not incident on them from
inside Ωt. It is clear that Ωt± is given by:

Ωt± = {x = x(ξ, t) | ξ ∈ Ω±}. (8)
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Problem (1) with (2)–(5) can therefore be written as an initial boundary value problem
with interface Γ in the given domain Ω if we go over the Euler coordinates x ∈ Ωt± to
Lagrange coordinates ξ ∈ Ω± with x by (7). If velocity vector fields u±(ξ, t) defined on
Ω± are known as functions of the Lagrange coordinates ξ ∈ Ω±, then this connection can
be written in the form:

x = ξ +
∫ t

0
u±(ξ, s) ds ≡ Xu±(ξ, t) (9)

and u±(ξ, t) = v(Xu±(ξ, t), t). Let A± be the Jacobi matrix of the transformation (9) with
element a±ij = δij +

∫ t
0 (∂ξ j u±,i)(ξ, s) ds with δij being the Kronecker delta symbols. There

exists a small number σ > 0 such that A± is invertible, that is det A± 6= 0, whenever:

max
i,j=1,...,N

sup
ξ∈Ω+

∣∣∣∣∫ t

0
(∂ξ j u+,i)(ξ, s)ds

∣∣∣∣ < σ (t > 0), (10)

while det A− = 1 in Ω−, because of the incompressibility. Whenever (10) is valid, we have:

∇x = A−1
± ∇ξ =

(
I + V0

(∫ t

0
∇u±(ξ, s) ds

))
∇ξ

with ∇x = T(∂x1 , . . . , ∂xN ) (T M denotes the transposed M) and ∇ξ = T(∂ξ1 , . . . , ∂ξN ),
where V0 = V0(w) is the N × N matrix of C∞ functions with respect to w = (w1, . . . , wN)
defined on |w| < σ and V0(0) = 0. Let n and n− be unit outward normals to Γ and Γ−,
respectively, and then, by (8), we have:

nt =
A−1
− n

|A−1
− n|

, nt− =
A−1
− n−

|A−1
− n−|

.

Setting ρ+(Xu+(ξ, t), t) = ρ0+ + θ0+(ξ) + θ+(ξ, t) and p− = π−(Xu−(ξ, t), t) and
using the facts that ρ+(Xu+(ξ, t), t) = J+(ξ, t)−1(ρ0+ + θ0+(ξ)) with J± = det A± and
divxv± = J −1

± divξ(J± TA−1
± v̂±) with v̂±(ξ, t) = v±(Xu±(ξ, t), t), we can write

Equations (1)–(5) with Lagrange coordinates in the form:

∂tθ+ + (ρ0+ + θ0+)div u+ = F+ in Ω+,
(ρ0+ + θ0+)∂tu+ −Div S+(u+) +∇(p′(ρ0+ + θ0+)θ+) = g+ + G+ in Ω+,

ρ0−∂tu− −Div S−(u−) +∇p− = G− in Ω−,
div u− = F− in Ω−,

(S+(u+)− p′(ρ0+ + θ0+)θ+I)n|Γ+0 − (S−(u−)− p−I)n|Γ−0 = h + H,
u+|Γ+0 − u−|Γ−0 = 0, u+|Γ+

= 0, (S−(u−)− p−I)n−|Γ− = H−

(11)

for t > 0 subject to the initial condition:

(θ+, v+)|t=0 = (0, v0+) in Ω+, u−|t=0 = v0− in Ω−. (12)

Here, g+ = −p′(ρ0+ + θ0+)∇θ0+, h = −(p(ρ0+ + θ0+)− p(ρ0+))n, and F±, G±, H and
H− are nonlinear functions with respect to θ+, u±, w± =

∫ t
0 ∇u±(ξ, s)ds of the forms:

F+ = −{θ+div u+ + (ρ0+ + θ0+ + θ+)tr (V0+∇u+)},
G+ = −θ+∂tu+ + Div (µ+VD+∇u+ + (ν+ − µ+)tr (V0+∇u+)I)

+ V0∇{µ+(D(u+) + VD+∇u+) + (ν+ − µ+)(div u+ + tr (V0+∇u+))I}

−∇(
∫ 1

0
p′′(ρ0+ + θ0+ + τθ+)(1− τ) dτ θ2

+)−V0+p′(ρ0+ + θ0+ + θ+)∇(θ0+ + θ+),

G− = −ρ0−V−1∂tu− + µ−{Div (VD−∇u−) + V−1Div (D(u−) + VD−∇u−)},
F− = (1− J−)div u− tr(V0−∇u−) = div ((1− J−)u− − TV0− J−u−), (13)

H = −µ+[VD+∇u+ + V−1(D(u+) + VD+∇u+) + (I + V−1)(D(u+) + VD+∇u+)V0+]n
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− (ν+ − µ+)[tr (V0+∇u+)]n + [
∫ 1

0
(1− τ)p′′(ρ0+ + θ0+ + τθ+) dτ θ2

+]n

+ µ−[VD−∇u− + V−1D(u−) + VD−∇u− + (I + V−1)(D(u−) + VD−∇u−)V0−]n

H− = −µ−[VD−∇u− + V−1(D(u−) + VD−∇u−) + (I + V−1)(D(u−) + VD−∇u−)V0−]n−

with V0± = V0(w±), VD± = VD(w±), V−1 = V−1(w±), and J− = det(∇Xu−). In
the formula (13), V−1 is defined by V−1 = (I + V0)

−1 − I, tr B means the trace of N ×
N matrix B, and VD(w) is a matrix of the C∞ function with respect to w defined on
|w| < σ, which satisfies VD(0) = 0 and relations: D(v) = D(v̂) + VD(

∫ t
0 ∇v̂ ds)∇v̂ with

v̂ = v(Xu(ξ, t), t).
Since the pioneering work [1] on the well-posedness of Navier–Stokes equations

around a free surface, there have been many studies on the free boundary problem. Here,
we introduce the known results concerning compressible and incompressible viscous
two-phase fluids.

Denisova [2,3] proved the local well-posedness theorem and the global well-posedness
theorem for Equations (1)–(3) and (5) in the L2 framework. The purpose of this paper is to
prove the local well-posedness for Equations (1)–(3) and (5) in the Lp in time and Lq in space
framework with 2 < p < ∞ and N < q < ∞ under the physically reasonable assumption
on the viscosity coefficients, that is µ± > 0 and ν+ > 0. The regularity of solutions in our
result is optimal in the sense of the maximal regularity, while the L2 framework used by
Denisova [2,3] loses regularity from the point of view of Sobolev’s imbedding theorem.

Moreover, we consider the problem with full generality about the domain. Namely, we
consider the problem in a uniform W2−1/q

q domain, the conditions of which are satisfied by
bounded domains, exterior domains, half-spaces, perturbed half-spaces, and layer domains
(cf. Shibata [4]).

Symbols 1. To state our theorem on the local in time unique existence of solutions
to Equations (1)–(3) and (5), we introduce some functional spaces and the definition of
the uniform W2−1/r

r domain. For the differentiations of scalar functions f and N-vector
functions g, we use the following symbols:

∇ f = (∂1 f , . . . , ∂N f ), ∇2 f = (∂i∂j f | i, j = 1, . . . , N),

∇g = (∂igj | i, j = 1, . . . , N), ∇2g = (∂i∂jgk | i, j, k = 1, . . . , N),

where ∂i = ∂/∂xi. For any domain D and 1 ≤ q ≤ ∞, Lq(D), Wm
q (D), and Bs

q,p(D) denote
the standard Lebesgue space, Sobolev space, and Besov space, while ‖ · ‖Lq(D), ‖ · ‖Wm

q (D),

and ‖ · ‖Bs
q,p(D) denote their norms. We set W0

q (D) = Lq(D) and Ws
q(D) = Bs

q,q(D). In
addition, (a, b)D denotes the inner product on D defined by (a, b)D =

∫
D a(x)b(x) dx.

Let X be any Banach space with norm ‖ · ‖X. We set Xd = { f = ( f , . . . , fd) | fi ∈ X
(i = 1, . . . , d)}, while its norm is denoted by ‖ · ‖X instead of ‖ · ‖Xd for short. Let Ŵ1

q (D)

and Ŵ1
q,0(D) be homogeneous spaces defined by Ŵ1

q (D) = {v ∈ Lq,loc(D) | ∇v ∈ Lq(D)N}
and Ŵ1

q,0(D) = {v ∈ Ŵ1
q (D) | v|∂D = 0}, respectively, where ∂D is the boundary of D.

Moreover, we set W1
q,0(D) = {v ∈ W1

q (D) | v|∂D = 0}. For 1 ≤ p ≤ ∞, Lp((a, b), X) and
Wm

p ((a, b), X) denote the usual Lebesgue space and Sobolev space of X-valued functions
defined on an interval (a, b), while ‖ · ‖Lp((a,b),X) and ‖ · ‖Wm

p ((a,b),X) denote their norms,
respectively. For any N-vector w = (w1, . . . , wN) and z = (z1, . . . , zN), we define < w, z >,
Tz[w], and Nz[w] by:

< w, z >=
N

∑
j=1

wjzj, Tz[w] = w− < w, z > z, Nz[w] =< w, z > z, (14)

respectively. Here, Tz[w] denotes the tangential part of w with respect to z. For 1 < q < ∞,
q′ denotes the dual exponent defined by q′ = q/(q− 1). We use the letter C to denote
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generic constants, and Ca,b,· denotes that the constant Ca,b,· essentially depends on the
quantities a, b, · · · . Constants C, Ca,b,··· may change from line to line.

In this paper, let Jq(Ω−) be a solenoidal space defined by setting:

Jq(D) = {u− ∈ Lq(D)N | (u−,∇ϕ)D = 0 for any ϕ ∈ Ŵ1
q′ ,0(D)}. (15)

We write div u = f = div f in D for f ∈W1
q (D), f ∈ Lq(D)N , and u ∈W1

q (D), if:

( f , ϕ)D = −(f,∇ϕ)D for any ϕ ∈W1
q′ ,0(D), div u = f in D, and u− f ∈ Jq(D). (16)

We now introduce a few definitions.

Definition 1. Let 1 < r < ∞, and let D be a domain in RN with boundary ∂D. We say
that D is a uniform W2−1/r

r domain, if there exist positive constants α, β, and K such that
for any x0 = (x01, . . . , x0N) ∈ ∂D, there exist a coordinate number j and a W2−1/r

r func-
tion h(x̌) (x̌ = (x1, . . . , x̌j, . . . , xN)) defined on B′α(x̌′0) with x̌′0 = (x01, . . . x̌0j, . . . , x0N) and
‖h‖W2−1/r

r (B′α(x̌′0))
≤ K such that:

D ∩ Bβ(x0) = {x ∈ RN | xj > h(x′) (x′ ∈ B′α(x̌′0))} ∩ Bβ(x0),

∂D ∩ Bβ(x0) = {x ∈ RN | xj = h(x′) (x′ ∈ B′α(x̌′0))} ∩ Bβ(x0).
(17)

Here, (x1, . . . , x̌j, . . . , xN) = (x1, . . . , xj−1, xj+1, . . . , xN), B′α(x̌′0) = {x̌′ ∈ RN−1 | |x̌′ −
x̌′0| < α}, and Bβ(x0) = {x ∈ RN | |x− x0| < β}.

Second, we introduce the assumption of the solvability of the weak Dirichlet problem,
which is needed to treat the divergence condition for the incompressible part.

Definition 2. Let 1 < q < ∞. We say that the weak Dirichlet problem is uniquely solvable on
Ŵ1

q,0(Ω−) with exponents q, if for any f ∈ Lq(Ω−)N , there exists a unique solution θ ∈ Ŵ1
q,0(Ω−)

of the variational problem:

(∇θ,∇ϕ)Ω− = (f,∇ϕ)Ω− for any ϕ ∈ Ŵ1
q′ ,0(Ω−). (18)

Remark 1. (1) Since ∂Ω− = Γ ∪ Γ− with Γ ∩ Γ− = ∅, Ŵ1
q,0(Ω)− = {v ∈ Ŵ1

q (Ω−) | v|Γ =

v|Γ− = 0}. (2) When q = 2, the weak Dirichlet problem is uniquely solvable on Ω− without any
restriction, but for q ∈ (1, ∞) \ {2}, we do not know the unique solvability in general. For example,
we know the unique solvability of the weak Dirichlet problem in bounded domains, exterior domains,
half-space, layer, and tube domains. (cf. Galdi [5], as well as Shibata [4,6]).

Remark 2. LetK be a linear operator defined byK(f) = θ. Then, combining the unique solvability
with Banach’s closed range theorem implies the estimate:

‖∇K(f)‖Lq(Ω−) ≤ C‖f‖Lq(Ω−). (19)

Moreover, for any f ∈ Lq(Ω−)N and g ∈ W1
q (Ω−), v = g + K(f−∇g) ∈ W1

q (Ω−) +
Ŵ1

q,0(Ω−) satisfies the variational equation: (∇v,∇ϕ)Ω− = (f,∇ϕ)Ω− for any ϕ ∈ Ŵ1
q′ ,0(Ω−),

subject to v = g on Γ and Γ−. Here, we set W1
q (Ω−) + Ŵ1

q,0(Ω−) = {p1 + p2 | p1 ∈
W1

q (Ω−), p2 ∈ Ŵ1
q,0(Ω−)}, which is the space for the pressure term p− in the incompress-

ible part.

The following theorem is our main result about local in time unique existence of
solutions to Equations (11) with (12).
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Theorem 1. Let 2 < p < ∞, N < q < ∞, 2/p + N/q < 1, and R > 0. Let ρ0± be
positive constants describing the reference mass density on Ω±, and let p(s) be a C∞ function
defined on (ρ0+/2, 2ρ0+) such that 0 ≤ p′(s) ≤ ρ1+ with some positive constant ρ1+ for any
ρ ∈ (ρ0+/2, 2ρ0+). Let Ω± be uniform W2−1/q

q domains in RN (N ≥ 2). Assume that the weak
Dirichlet problem is uniquely solvable on Ŵ1

q,0(Ω−) with exponents q and q′. Let θ0+ ∈W1
q (Ω+)

and v0± ∈ B2(1−1/p)
q,p (Ω±)N be initial data with:

‖θ0+‖W1
q (Ω) + ‖v0+‖B2(1−1/p)

q,p (Ω+)
+ ‖v0−‖B2(1−1/p)

q,p (Ω−)
≤ R,

which satisfy the compatibility condition:

Tn[S+(v0+)n]|Γ+0 − Tn[S−(v0−)n]|Γ−0 = 0, v0+|Γ+0 − v0−|Γ−0 = 0,

v0+|Γ+ = 0, Tn− [S−(v0−)]|Γ− = 0, div v0− ∈ Jq(Ω−),
(20)

and the range condition:

3
4

ρ0+ < ρ0+ + θ0+(x) <
7
4

ρ0+ (x ∈ Ω+). (21)

Then, there exists a T > 0 depending on R such that the system of Equations (11) with (12)
admits a unique solution (θ+, u±) with:

θ+ ∈W1
p((0, T), W1

q (Ω+)), u± ∈W1
p((0, T), Lq(Ω±)N) ∩ Lp((0, T), W2

q (Ω±)
N)

satisfying (10) and the estimate:

‖θ+‖W1
p((0,T),W1

q (Ω+))
+ ∑

`=+,−

(
‖u`‖Lp((0,T),W2

q (Ω`))
+ ‖∂tu`‖Lp((0,T),Lq(Ω`))

)
≤ CR

with some constant CR depending on R, ρ0±, p, and q.

Using the argument due to Ströhmer [7], we can show the injectivity of the map
x = Xu±(ξ, t), so that we have the following local in time unique existence theorem
for (1)–(5).

Theorem 2. Let N < q < ∞, 2 < p < ∞, 2/p + N/q < 1, and R > 0. Assume that Ω±
are uniform W2−1/q

q domains. Assume that the weak Dirichlet problem is uniquely solvable on

Ŵ1
q,0(Ω−) with exponents q and q′. Let θ0+ ∈ W1

q (Ω+) and v0± ∈ B2(1−1/p)
q,p (Ω±)N be initial

data that satisfy the compatibility condition (20), range condition (21), and:

‖θ0+‖W1
q (Ω+)

+ ‖v0+‖B2(1−1/p)
q,p (Ω+)

+ ‖v0−‖B2(1−1/p)
q,p (Ω−)

≤ R.

Then, there exists a T > 0 depending on R such that Equation (1) subject to the interface
condition (2), boundary condition (3), kinematic condition (4), and initial condition (5) admits a
unique solution (ρ+, v±) with:

ρ− ρ0+ ∈W1
p((0, T), Lq(Ωt+)) ∩ Lp((0, T), W1

q (Ωt+)),

v± ∈W1
p((0, T), Lq(Ωt±)

N) ∩ Lp((0, T), W2
q (Ωt±)

N).

Remark 3. Here, f ∈ Wm
p ((0, T), Wn

q (Ωt±)) denotes that for almost all t ∈ (0, T), ∂k
t f (·, t) ∈

Wn
q (Ωt±) and:

‖ f ‖Wm
p ((0,T),Wn

q (Ωt±)) :=
m

∑
k=0

(∫ T

0
‖∂k

t f (·, t)‖p
Wn

q (Ωt±)
dt
)1/p

< ∞.



Mathematics 2021, 9, 621 7 of 44

Theorem 1 is proven by using a standard fixed point argument based on the maximal
Lp-Lq regularity for solutions to the linear problem:

∂tθ+ + γ2+div u+ = f+ in Ω+,

γ0+∂tu+ −Div S+(u+) +∇(γ1+θ+) = g+ in Ω+,

ρ0−∂tu− −Div S−(u−) +∇p− = g− in Ω−,

div u− = f− = div f− in Ω−,

(S+(u+)− γ1+θ+I)n|Γt+0 − (S−(u−)− p−I)n|Γt−0 = h for t > 0,

u+|Γt+0 − u−|Γt−0 = 0 for t > 0,

u+|Γ+ = 0, (S−(u−)− p−I)n−|Γ− = h− for t > 0,

(θ+, u+)|t=0 = (θ0+, u0+) in Ω+, u−|t=0 = u0− in Ω−.

(22)

Here, γi = γi(x) (i = 0, 1, 2) are uniformly continuous functions defined on Ω+

such that:

1
2

ρ0+ ≤ γ0+(x) ≤ 2ρ0+, 0 ≤ γk+(x) ≤ ρ2+ (x ∈ Ω), ‖∇γ`+‖Lr(Ω+) ≤ ρ2+ (23)

for k = 1, 2 and ` = 0, 1, 2 with some positive constant ρ2+ and N < r < ∞. We may
consider the case where γ1+ = 0, which corresponds to the Lamé system.

Symbols 2. To state our main result for linear Equation (22), we introduce more
symbols and functional spaces used throughout this paper. Set:

Wm
p,loc((a, b), X) = { f (t) | f (t) ∈Wm

p ((c, d), X) for any c, d with a < c < d < b}

and W0
p,loc(R, X) = Lp,loc(R, X). Moreover, we set:

Wm
p,γ(R, X) = { f (t) ∈ Lp,loc(R, X) | e−γt∂

j
t f (t) ∈ Lp(R, X) (j = 0, 1, . . . , m)}

with ∂0
t f (t) = f (t) and W0

p,γ(R, X) = Lp,γ(R, X) and W0
p,γ,0(R, X) = Lp,γ,0(R, X).

Let L and L−1 denote the Laplace transform and the Laplace inverse transform
defined by:

L[ f ](λ) =
∫ ∞

−∞
e−λt f (t) dt, L−1[g](t) =

1
2π

∫ ∞

−∞
eλtg(τ) dτ

with λ = γ + iτ ∈ C, respectively. Given s ∈ R and X-valued function f (t), we set:

Λs
γ f (t) = L−1

λ [λsL[ f ](λ)](t).

We introduce a Bessel potential space of X-valued functions of order s > 0 as follows:

Hs
p,γ(R, X) = { f ∈ Lp(R, X) | e−γ′tΛs

γ′ [ f ](t) ∈ Lp(R, X) for any γ′ ≥ γ}.

We have the following theorem.

Theorem 3. Let 1 < p, q < ∞, N < r < ∞, 2/p + N/q 6= 1, and 2/p + N/q 6= 2. Assume
that r ≥ max(q, q′), that Ω± are uniformly W2−1/q

q domains, and that the weak Dirichlet problem
is uniquely solvable on Ω− with exponents q and q′. Then, there exists a positive number γ0 such
that the following three assertions are valid.

EXISTENCE For any initial data θ0+ ∈W1
q (Ω+) and u0± ∈ B2(1−1/p)

q,p (Ω±), and any right
members f+, f− = div f−, g±, h, and h− with:
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f+ ∈ Lp,γ0(R, W1
q (Ω+)), g± ∈ Lp,γ0(R, Lq(Ω±)N), h ∈ Lp,γ0(R, W1

q (Ω)N) ∩ H1/2
p,γ0

(R, Lq(Ω)N),

f− ∈ Lp,γ0(R, W1
q (Ω−)) ∩ H1/2

p,γ0,0(R, Lq(Ω−)), f− ∈W1
p(R, Lq(Ω−)), (24)

h− ∈ Lp,γ0(R, W1
q (Ω−)

N) ∩ H1/2
p,γ0

(R, Lq(Ω−)N),

satisfying the compatibility conditions:

Tn[S+(u0+)n]|Γ+0 − Tn[S−(u0−)n]|Γ−0 = Tn[h|Γ]|t=0, u0+|Γ+0 − u0−|Γ−0 = 0,

u0+|Γ+ = 0, Tn− [S−(u0−)n−]|Γ− = Tn− [h−]|t=0,

div u0− = f−|t=0 in Ω−, (u0−,∇ϕ)Ω− = (f−,∇ϕ)Ω− for any ϕ ∈ Ŵ1
q′ ,0(Ω−).

(25)

Equation (22) admits solutions θ+ and u± with:

θ+ ∈W1
p,γ0

(R, W1
q (Ω+)), u± ∈ Lp,γ0(R, W2

q (Ω±)
N) ∩W1

p,γ0
(R, Lq(Ω±)N) (26)

possessing the estimate:

‖e−γt(∂tθ+, γθ+)‖Lp(R+ ,W1
q (Ω+)) + ∑

`=+,−
‖e−γt(∂tu`, γu`, Λ1/2

γ ∇u`,∇2u`)‖Lp(R+ ,Lq(Ω`))

≤ C
(
‖θ0+‖W1

q (Ω+) + ∑
`=+,−

‖u0`‖B2(1−1/p)
q,p (Ω`)

+ ‖e−γt f+‖Lp(R+ ,W1
q (Ω+)) + ‖e

−γt(Λ1/2
γ f−,∇ f−)‖Lp(R,Lq(Ω−))

+ ‖e−γt∂tf−‖Lp(R,Lq(Ω−)) + ‖e
−γtg+‖Lp(R,Lq(Ω+)) + ‖e

−γtg−‖Lp(R,Lq(Ω−))

+ ‖e−γt(Λ1/2
γ h,∇h)‖Lp(R,Lq(Ω)) + ‖e−γt(Λ1/2

γ h−,∇h−)‖Lp(R,Lq(Ω−))

)
(27)

for any γ ≥ γ0, where C is a constant independent of γ.
UNIQUENESS Let θ+ and u± satisfy (26) and Equation (22) with θ0+ = 0, u0± = 0, f± = 0,

g± = 0, f− = 0, and h = 0, then θ+ = 0 and u± = 0.

To prove Theorem 3, Problem (22) is divided into two parts: One is the case where the
right side in (22) is considered for all t ∈ R, while the initial conditions are not taken into
account. The other case is non-homogeneous initial conditions and a zero right side in (22).
In the first case, solutions are represented by the Laplace inverse transform of solution
formulas represented by usingR-bounded solution operators for the generalized resolvent
problem corresponding to (22). Combining theR-boundedness and Weis’s operator-valued
Fourier multiplier theorem yields the maximal Lp-Lq estimate of solutions to Equation (22)
with zero initial conditions. Moreover, theR-bounded solution operators yield the genera-
tion of the continuous analytic semigroup associated with Equation (22), which, combined
with some real interpolation technique, yields the Lp-Lq maximal regularity for the initial
problem for Equation (22). Combining these two results gives Theorem 3. To prove the
generation of the continuous analytic semigroup, we have to eliminate the pressure term
p− in Equation (22), and so, using the assumption of the unique existence of the weak
Dirichlet problem, we define the reduced generalized resolvent problem (RGRP) (cf. (41)
in Section 2 below) according to Grubb and Solonnikov [8], which is the equivalent system
to the generalized resolvent problem (GRP) corresponding to (22).

The paper is organized as follows. In Section 2, first we introduce (GRP) and state
main results for (GRP). Secondly, we drive (RGRP) and discuss some equivalence between
(GRP) and (RGRP). Thirdly, we state the main results for (RGRP), which implies the results
for (GRP) according to the equivalence between (GRP) and (RGRP). In Section 3, we discuss
the model problems in RN . In Section 4, we discuss the bent half space problems for (RGRP).
In Section 5, we prove the main result for (RGRP) and also Theorem 3. In Section 6, we
prove Theorem 1 by the Banach fixed point argument based on Theorem 3.
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2. R-Bounded Solution Operators

To prove the generation of the continuous analytic semigroup and the maximal Lp-Lq
regularity for the linear problem (22), we show the existence of R-bounded solution
operators to the following generalized resolvent problem (GRP) corresponding to: (22):

λθ+ + γ2+div u+ = f+ in Ω+,

λu+ − γ−1
0+(Div S+(u+)−∇(γ1+θ+)) = g+ in Ω+,

λu− − ρ−1
0−(Div S−(u−)−∇p−) = g− in Ω−,

div u− = f− = div f− in Ω−
(S+(u+)− γ1+θ+I)n|Γ+0 − (S−(u−)− p−I)n|Γ−0 = h|Γ,

(S−(u−)− p−I)n−|Γ− = h−|Γ− ,

u+|Γ+0 − u−|Γ−0 = 0, u+|Γ+ = 0.

(28)

When λ 6= 0, setting θ+ = λ−1( f+ − γ2+div u+), we transfer the second equation and
the fifth equation in (28) to:

λu+ − γ−1
0 (Div S+(u+) + λ−1∇(γ1+γ2+div u+)) = g+ − λ−1γ−1

0+∇(γ1+ f+) in Ω+,

(S+(u+) + λ−1γ1+γ2+div u+I)n− (S−(u−)− p−I)n|Γ−0 = h + λ−1γ1+ f+n|Γ+0,

respectively. Thus, g+ − λ−1γ−1
0+∇(γ1+ f+) and h + λ−1γ1+ f+n|Γ+0, being renamed g+

and h, respectively, and setting γ1+γ2+ = γ3+, from now on, we consider the following
problem:

λu+ − γ−1
0+(Div S+(u+) + δ∇(γ3+div u+)) = g+ in Ω+,

λu− − ρ−1
0−(Div S−(u−)−∇p−) = g− in Ω−,

div u− = f− = div f− in Ω−,

(S+(u+) + δγ3+div u+I)n|Γ+0 − (S−(u−)− p−I)n|Γ−0 = h|Γ,

(S−(u−)− p−I)n−|Γ− = h−|Γ− ,

u+|Γ+0 = u−|Γ−0, u+|Γ+ = 0.

(29)

Here, δ and λ satisfy one of the following three conditions:

(C1) δ = λ−1, λ ∈ Λε,λ0 = Kε ∩ Σε,λ0 ,
(C2) δ = δ0 ∈ Σε with Re δ0 < 0, λ ∈ C with Re λ ≥ λ0 and Re λ ≥ |Im λ|| Re δ0

Im δ0
|,

(C3) δ = δ0 with Re δ0 ≥ 0, λ ∈ C with Re λ ≥ λ0,

where we set Σε = {λ ∈ C \ {0} | | arg λ| ≤ π − ε} with 0 < ε < π/2, Σε,λ0 = {λ ∈ Σε |
|λ| ≥ λ0}, and:

Kε = {λ ∈ C | (Re λ + ρ3ν−1 + ε)2 + (Im λ)2 ≥ (ρ3ν−1 + ε)2} (30)

with ρ3 = supx∈Ω γ1+(x)γ2+(x)(≤ ρ2
2). We may include the case where γ1 = 0, which

corresponds to the Lamé system. The former case (C1) is used to prove the existence
of R-bounded solution operators to (28), and the latter cases (C2) and (C3) enable the
application of a homotopic argument for proving the exponential stability of the analytic
semigroup in bounded domains. For the sake of simplicity, we introduce the set Γε,λ0
defined by:

Γε,λ0 =


Λε,λ0 when δ = λ−1,{

λ ∈ C | Re λ ≥ λ0, Re λ ≥
∣∣∣ Re δ0

Im δ0

∣∣∣|Im λ|
}

when δ = δ0 ∈ Σε with Re δ0 < 0,

{λ ∈ C | Re λ ≥ λ0} when δ = δ0 with Re δ0 ≥ 0.

(31)

Note that |δ| ≤ max(|δ0|, λ−1
0 ).
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Before stating our main results for the linear problem, we introduce a few symbols
and the definition of the R-bounded operator family and the operator-valued Fourier
multiplier theorem due to Weis [9].

Symbols 3. For any two Banach spaces X and Y, L(X, Y) denotes the set of all bounded
linear operators from X to Y, and we write L(X) = L(X, X) for short. Hol (U, X) denotes
the set of all X-valued holomorphic functions defined on a complex domain U. Let
D(R, X) and S(R, X) be the set of all X-valued C∞-functions having compact support
and the Schwartz space of rapidly decreasing X-valued functions, respectively, while
S ′(R, X) = L(S(R,C), X). Given M ∈ L1,loc(R \ {0}, X), we define the operator TM :
F−1D(R, X)→ S ′(R, Y) by:

TM ϕ = F−1[MF [ϕ]] (F [ϕ] ∈ D(R, X)). (32)

Here, Fx and F−1
x denote the Fourier transform and its inversion defined by:

Fx[u](ξ) =
∫
RN

e−ix·ξ u(x)dx, F−1
ξ [v](x) =

1
(2π)N

∫
RN

eix·ξ v(ξ)dξ,

respectively.

Definition 3. Let X and Y be Banach spaces. A family of operators T ⊂ L(X, Y) is called
R-bounded on L(X, Y), if there exist constants C > 0 and p ∈ [1, ∞) such that for any n ∈ N,
{Tj}n

j=1 ⊂ T , {xj}n
j=1 ⊂ X, and sequences {rj(u)}n

j=1 of independent, symmetric, {−1, 1}-
valued random variables on [0, 1], there holds the inequality:

∫ 1

0
‖

n

∑
j=1

rj(u)Tjxj‖
p
Y du ≤ C

∫ 1

0
‖

n

∑
j=1

rj(u)xj‖
p
X du.

The smallest such C is called theR-bound of T , which is denoted byRL(X,Y)(T ).

The following theorem was obtained by Weis [9].

Theorem 4. Let X and Y be two UMD spaces and 1 < p < ∞. Let M be a function in
C1(R \ {0},L(X, Y)) such that:

RL(X,Y)

({(
τ

d
dτ

)`M(τ) | τ ∈ R \ {0}
})
≤ κ < ∞ (` = 0, 1)

with some constant κ. Then, the operator TM defined in (32) may uniquely be extended to a bounded
linear operator from Lp(R, X) to Lp(R, Y). Moreover, denoting this extension by TM, we have:

‖TM‖L(Lp(R,X),Lp(R,Y)) ≤ Cκ

for some positive constant C depending on p, X, and Y.

Remark 4. For the definition of the UMD space, we refer to the monograph by Amann [10]. For
1 < q < ∞ and m ∈ N, Lebesgue spaces Lq(Ω) and Sobolev spaces Wm

q (Ω) are UMD spaces.

For the calculation of theR-norm, we use the following lemmas.

Lemma 1. (1) Let X and Y be Banach spaces, and let T and S beR-bounded families in L(X, Y).
Then, T + S = {T + S | T ∈ T , S ∈ S} is also anR-bounded family in L(X, Y) and:

RL(X,Y)(T + S) ≤ RL(X,Y)(T ) +RL(X,Y)(S).
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(2) Let X, Y, and Z be Banach spaces, and let T and S be R-bounded families in L(X, Y) and
L(Y, Z), respectively. Then, ST = {ST | T ∈ T , S ∈ S} is also an R-bounded family in
L(X, Z) and:

RL(X,Z)(ST ) ≤ RL(X,Y)(T )RL(Y,Z)(S).

Lemma 2. Let 1 < p, q < ∞, and let D be a domain in RN .
(1) Let m(λ) be a bounded function defined on a subset Λ ⊂ C, and let Mm(λ) be a multiplication
operator with m(λ) defined by Mm(λ) f = m(λ) f for any f ∈ Lq(D). Then,

RL(Lq(D))({Mm(λ) | λ ∈ Λ}) ≤ CN,q,D‖m‖L∞(Λ).

(2) Let n(τ) be a C1 function defined on R \ {0} that satisfies the conditions: |n(τ)| ≤ γ and
|τn′(τ)| ≤ γ with some constant γ > 0 for any τ ∈ R \ {0}. Let Tn be an operator-valued Fourier
multiplier defined by Tn f = F−1[nF [ f ]] for any f with F [φ] ∈ D(R, X). Then, Tn is extended
to a bounded linear operator from Lp(R, Lq(D)) into itself. Moreover, denoting this extension also
by Tn, we have:

‖Tn‖L(Lp(R,Lq(D))) ≤ Cp,q,Dγ.

Remark 5. For the proofs of Lemma 1 and Lemma 2, we refer to [11], p.28, 3.4. Proposition and
p.27, 3.2. Remarks (4) (cf. also Bourgain [12]), respectively.

2.1. Existence ofR-Bounded Solution Operators for Problems (28) and (29)

We state two theorems about the existence of R-bounded solution operators to
Problems (28) and (29).

Theorem 5. Let 1 < q < ∞, 0 < ε < π/2 and N < r < ∞. Assume that r ≥ max(q, q′), that
Ω± are uniform W2−1/r

r domains, and that the weak Dirichlet problem is uniquely solvable on Ω−
with exponents q and q′. Let X0

q(Ω) and X 0
q (Ω) be the spaces defined by:

X0
q(Ω) = {G0 = (g+, g−, h, h−, f−, f−) | g± ∈ Lq(Ω±)N , h ∈W1

q (Ω)N , h− ∈W1
q (Ω−)

N ,

f− ∈W1
q (Ω−), f− ∈ Lq(Ω−)N , f− = div f−},

X 0
q (Ω) = {F0 = (F1, . . . , F9) | F1 ∈ Lq(Ω+)

N , F2, F5, F9 ∈ Lq(Ω−)N ,

F3 ∈ Lq(Ω)N , F4 ∈W1
q (Ω)N , F6 ∈W1

q (Ω−)
N , F7 ∈ Lq(Ω−), F8 ∈W1

q (Ω−)}.

Then, there exist a constant λ0 > 0 and operator families A0
±(λ) and B0

−(λ) with:

A0
±(λ) ∈ Hol(Γε,λ0 ,L(X 0

q (Ω), W2
q (Ω±)

N)), B0
−(λ) ∈ Hol(Γε,λ0 ,L(X 0

q (Ω), W1
q (Ω−) + Ŵ1

q,0(Ω−)))

such that u± = A0
±(λ)F0

λG0 and p− = B0
−(λ)F0

λG0 are unique solutions to Problem (29) for
any λ ∈ Γε,λ0 and G0 = (g+, g−, h, h−, f−, f−) ∈ X0

q(Ω), and:

RL(X 0
q (Ω),W2−j

q (Ω±)N)
({(τ∂τ)

`(λj/2A0
±(λ)) | λ = γ + iτ ∈ Γε,λ0}) ≤ C,

RL(X 0
q (Ω),Lq(Ω−)N)({(τ∂τ)

`∇B0
−(λ) | λ = γ + iτ ∈ Γε,λ0}) ≤ C

for j = 0, 1, 2 and ` = 0, 1. Here, we set F0
λG0 = (g+, g−, λ1/2h, h, λ1/2h−, h−, λ1/2 f−,

f−, λf−).

Remark 6. (i) The constants depend on ε, q, r, ρ0, ρ2, µ±, ν+, and δ0, but we do not mention
this dependence.
(ii) The variables F1, F2, F3, F4, F5, F6, F7, F8, and F9 correspond to g+, g−, λ1/2h, h, λ1/2h−,
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h−, λ1/2 f−, f−, and λf−.
(iii) The norms ‖ · ‖X0

q (Ω) and ‖ · ‖X 0
q (Ω) are defined by:

‖G0‖X0
q (Ω) = ‖g+‖Lq(Ω+) + ‖(g−, λ1/2h−, λ1/2 f−, λf−)‖Lq(Ω−) + ‖(h−, f−)‖W1

q (Ω−)

+ ‖λ1/2h‖Lq(Ω),+‖h‖W1
q (Ω),

‖F0‖X 0
q (Ω) = ‖F1‖Lq(Ω+) + ‖(F2, F5, F7, F9)‖Lq(Ω−) + ‖F3‖Lq(Ω) + ‖F4‖W1

q (Ω) + ‖(F6, F8)‖W1
q (Ω−).

Since θ+ = λ−1( f+ − γ2+div u+) in (28), the following theorem follows immediately
from Theorem 5 and Lemma 1.

Theorem 6. Let 1 < q < ∞, 0 < ε < π/2, and N < r < ∞. Assume that r ≥ max(q, q′), that
Ω± are uniform W2−1/r

r domains, and that the weak Dirichlet problem is uniquely solvable on Ω−
with exponents q and q′. Let X1

q(Ω) and X 1
q (Ω) be the sets defined by:

X1
q(Ω) = {G1 = (G0, f+) | G0 ∈ X0

q(Ω), f+ ∈W1
q (Ω+)},

X 1
q (Ω) = {F1 = (F0, F10) | F0 ∈ X 0

q (Ω), F10 ∈W1
q (Ω+)}.

Then, there exist a constant λ0 > 0 and operator families A1
±(λ) and B1

±(λ) with:

A1
±(λ) ∈ Hol(Γε,λ0 ,L(X 1

q (Ω), W2
q (Ω±)

N)), B1
+(λ) ∈ Hol(Γε,λ0 ,L(X 1

q (Ω), W1
q (Ω+))),

B1
−(λ) ∈ Hol(Γε,λ0 ,L(X 1

q (Ω), W1
q (Ω−) + Ŵ1

q,0(Ω−)))

such that u± = A1
±(λ)F1

λG1, θ+ = B1
+(λ)F1

λG1, and p− = B1
−(λ)F1

λG1 are unique solutions
to Problem (28) for any λ ∈ Γε,λ0 and G1 = (g+, g−, h, h−, f−, f−, f+) ∈ X1

q(Ω), and:

RL(X 1
q (Ω),W2−j

q (Ω±)N)
({(τ∂τ)

`(λj/2A0
±(λ)) | λ = γ + iτ ∈ Γε,λ0}) ≤ C,

RL(X 1
q (Ω),W1

q (Ω+))
({(τ∂τ)

`(λkB1
+(λ)) | λ = γ + iτ ∈ Γε,λ0}) ≤ C,

RL(X 1
q (Ω),Lq(Ω−)N)({(τ∂τ)

`(∇B0
−(λ)) | λ = γ + iτ ∈ Γε,λ0}) ≤ C

for j = 0, 1, 2, k = 0, 1, and ` = 0, 1. Here, we set F1
λG1 = (F0

λG0, f+).

Remark 7. The variable F10 corresponds to f+, and we set:

‖G1‖X1
q (Ω) = ‖G

0‖X0
q (Ω+)

+ ‖ f+‖W1
q (Ω+)

, ‖F1‖X 1
q (Ω) = ‖F

0‖X 0
q (Ω) + ‖F10‖W1

q (Ω+)
.

2.2. Reduced Generalized Resolvent Problem

Since the pressure term p− has no time evolution in (22), we eliminate p− from (29)
and derive a reduced problem. Before this discussion, we consider the resolvent problem
for the Laplace operator with non-homogeneous Dirichlet condition of the form:

λ(w, ϕ)Ω− + ρ−1
0−(∇w,∇ϕ)Ω− = −(f,∇ϕ)Ω− for any ϕ ∈W1

q′ ,0(Ω−) (33)

subject to w|Γ = g1 and w|Γ− = g2. Here and in the following, we write (·, ·) = (·, ·)Ω− for
short. Note that:

(w,∇ϕ)Ω− = −(λ−1(f + ρ−1
0−∇w),∇ϕ)Ω− for any ϕ ∈W1

q′ ,0(Ω−). (34)

We can show the following theorem by using the method in Shibata [13].
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Theorem 7. Let 1 < q < ∞, N < r < ∞, and 0 < ε < π/2. Assume that r ≥ max(q, q′) and
that Ω− is a uniform W1−1/r

r domain. Set:

X2
q(Ω−) = {G2 = (f, g1, g2) | f ∈ Lq(Ω−)N , g1 ∈W1

q (Ω−), g2 ∈W1
q (Ω−)},

X 2
q (Ω−) = {F2 = (F2, F11, . . . , F14) | F2, F11, F13 ∈ Lq(Ω−)N , F12, F14 ∈W1

q (Ω−)}.

Then, there exist a λ0 > 0 and an operator family d(λ) ∈ Hol(Σε,λ0 ,L(X 2
q (Ω−), W1

q (Ω−)))
such that for any λ ∈ Σε,λ0 and G2 = (f, g1, g2) ∈ X2

q(Ω−), w = d(λ)F2
λG2 is a unique solution

to (33), and:

RL(X 2
q (Ω−),W

1−k
q (Ω−))

({(τ∂τ)
`(λk/2d(λ)) | λ = γ + iτ ∈ Σε,λ0}) ≤ C (` = 0, 1, k = 0, 1). (35)

Here, we set F2
λG2 = (f, λ1/2g1, g1, λ1/2g2, g2).

Remark 8. (i) F11, F12, F13, and F14 are the corresponding variables to λ1/2g1, g1, λ1/2g2 and
g2.
(ii) SinceR-boundedness implies the usual boundedness, by (34) and (35) we have:

‖λw‖W1
q′ ,0(Ω−)

∗ + ‖λ1/2w‖Lq(Ω−) + ‖w‖W1
q (Ω) ≤ C‖(f, λ1/2g1, g1, λ1/2g2, g2)‖Lq(Ω−) (36)

with w = d(λ)F2(f, g1, g2). Here, W1
q′ ,0(Ω−)

∗ is the dual space of W1
q′ ,0(Ω−).

We start our main discussion in this subsection. Given w+ ∈W1
q (Ω+), let Ext−[w+] de-

note an extension of w+ to Ω− such that Ext−[w+]|Γ−0 = w+|Γ+0 and ‖Ext−[w+]‖W1
q (Ω) ≤

C‖w+‖W1
q (Ω−)

. Since we can choose some uniform covering of Ω± (cf. Proposition 4 in

Section 5 below), Ext−[w+] is defined by the even extension of w+ in each local chart. For
u± ∈W2

q (Ω±)N , we define an operator K(u+, u−) by K(u+, u−) = K̃(f, g1, g2), where we
set K̃(f, g1, g2) = d(λ)(0, g1, g2) +K(f−∇d(λ)(0, g1, g2)),

f = f(u−) = Div S−(u−)−∇div u−,

g1 = g1(u±) =< S−(u−)n, n > −div u−− < (Ext−[S+(u+)] + δγ3+Ext−[div u+]I)n, n >,

g2 = g2(u−) =< S−(u−)n−, n− > −div u−,

(37)

and K is the operator defined in Remark 2. Note that K(u+, u−) ∈ W1
q (Ω−) + Ŵ1

q,0(Ω−)
and satisfies the variational equation:

(∇K(u+, u−),∇ϕ)Ω− = (ρ−1
0−(Div S−(u−)−∇div u−),∇ϕ)Ω− for any ϕ ∈ Ŵ1

q′ (Ω)− (38)

subject to:

K(u+, u−)|Γ−0 = (< S−(u−)n, n > −div u−)|Γ−0− < (S+(u+) + δγ3+div u+I)n, n > |Γ+0,

K(u+, u−)|Γ− = (< S−(u−)n−, n− > −div u−)|Γ− ,
(39)

and the estimate:

‖∇K(u+, u−)‖Lq(Ω−) ≤ C(‖∇u+‖W1
q (Ω+)

+ ‖∇u−‖W1
q (Ω−)

). (40)

The reduced generalized resolvent problem (RGRP) is the following:

λu+ − γ−1
0+(Div S+(u+) + δ∇(γ3+div u+)) = g+ in Ω+,

λu− − ρ−1
0−(Div S−(u−)−∇K(u+, u−)) = g− in Ω−,

(S+(u+) + δγ3+div u+I)n|Γ+0 − (S−(u−)− K(u+, u−)I)n|Γ−0 = h|Γ,

(S−(u−)− K(u+, u−)I)n−|Γ− = h−|Γ− ,

u+|Γ+0 = u−|Γ−0, u+|Γ+
= 0.

(41)



Mathematics 2021, 9, 621 14 of 44

Using Tz[w] defined in (14), we can write the interface condition and free boundary
condition in (41) as follows:

h|Γ = Tn[S+(u+)n]|Γ+0 − Tn[S−(u−)n]|Γ−0 − (div u−|Γ−0)n,

h−|Γ− = Tn− [S−(u−)n−]|Γ− + (div u−|Γ−)n−.
(42)

We say that (u+, u−) is a solution to (41) with (g+, g−, h, h−) if u± ∈W2
q (Ω±)N and

u± satisfies Equation (41). Furthermore, we say that (u+, u−, p−) is a solution to (29)
with (g+, g−, f− = div f−, h, h−) if u± ∈W2

q (Ω±)N , p− ∈W1
q (Ω) + Ŵ1

q,0(Ω) and u± and
p− satisfy Equation (29). In this subsection, we show the equivalence of the solutions
between (29) and (41).

Assertion 1. If (29) is solvable, then so is (41).

In fact, we define f− ∈ W1
q (Ω−) by f− = d(λ)F2

λ(g−,−h, h−) with g− ∈ Lq(Ω−)N ,
h =< h, n > and h− =< h−, n− >. Notice that f− = div f− with f− = λ−1(g− +
ρ−1

0−∇ f−). Let (u+, u−, p−) be a solution to (29) with (g+, g−, f− = div f−, h, h−). In
particular, div u− = f− = div (λ−1(g− + ρ−1

0−∇ f−)), namely div u = f− and λu −
(g− + ρ−1

0−∇ f−) ∈ Jq(Ω−). From the second equation of (29), it follows that for any
ϕ ∈ Ŵ1

q′ ,0(Ω−):

(g−,∇ϕ)Ω−

= λ(u−,∇ϕ)− (ρ−1
0−∇div u−,∇ϕ)Ω− − (ρ−1

0−(Div S−(u−)−∇div u−),∇ϕ)Ω− + (ρ−1
0−∇p−,∇ϕ)Ω−

= (g− + ρ−1
0−∇ f−,∇ϕ)Ω− − (ρ−1

0−∇ f−,∇ϕ)Ω− + (ρ−1
0−∇(p− − K(u+, u−)),∇ϕ)Ω− ,

which yields that (ρ−1
0−∇(p− − K(u+, u−)),∇ϕ)Ω− = 0 for any ϕ ∈ Ŵ1

q′ ,0(Ω−). Moreover,

p− − K(u+, u−) =< h, n > +div u− =< h, n > + f− = 0 on Γ,

p− − K(u+, u−) = − < h−, n− > +div u− = − < h−, n− > + f− = 0 on Γ−.

Thus, the uniqueness yields that p− = K(u+, u−), and so, (u+, u−) is a solution to (41)
with (g+, g−, h, h−).

Assertion 2. If (41) is solvable, then so is (29).

In fact, given g− ∈ Lq(Ω−)N , h ∈ W1
q (Ω), and h− ∈ W1

q (Ω−)N , we define p̂1 by
p̂1 = p̂2 +K(g− −∇ p̂2) with p̂2 = d(λ)F2

λ(0, h,−h−). Next, given f− = div f−, we define
p̂3 by:

p̂3 = d(λ)F2
λ(0, f−, f−) +K(−F−∇d(λ)F2

λ(0, f−, f−))

with F = λf− − ρ−1
0−∇ f−. Let (u+, u−) be a solution to equations:

λu+ − γ−1
0+(Div S+(u+) + δ∇(γ3+div u+)) = g+ in Ω+,

λu− − ρ−1
0−(Div S−(u−)−∇K(u+, u−)) = g− − ρ−1

0−∇( p̂1 + p̂3) in Ω−,

(S+(u+) + δγ3+div u+I)n|Γ+0 − (S−(u−)− K(u+, u−)I)n|Γ−0 = (Tn[h]− f−n)|Γ
(S−(u−)− K(u+, u−)I)n−|Γ− = (Tn− [h−] + f−n−)|Γ− ,

u+|Γ+0 = u−|Γ−0, u+|Γ+ = 0.

(43)

Setting p− = K(u+, u−) + p̂1 + p̂3, we see that (u+, u−, p−) is a solution to (29) with
(g+, g−, f− = div f−, h, h−). In fact, our task is to prove that div u− = f− = div f−. Notice
that ρ−1

0−(∇ p̂1,∇ϕ)Ω− = (g−,∇ϕ)Ω− and ρ−1
0−(∇ p̂3,∇ϕ)Ω− = −(λf− − ρ−1

0−∇ f−,∇ϕ)Ω−
for any ϕ ∈ Ŵ1

q′ ,0(Ω−). Thus, by (38):

(λf− − ρ−1
0−∇ f−,∇ϕ)Ω− = (g− − ρ−1

0−∇( p̂1 + p̂3),∇ϕ)Ω− = λ(u−,∇ϕ)Ω− − ρ−1
0−(∇div u−,∇ϕ)Ω−
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for any ϕ ∈ Ŵ1
q′ ,0(Ω−), which yields that:

λ(u− f−,∇ϕ)Ω− − ρ−1
0−(∇(div u− − f−),∇ϕ)Ω− = 0 for any ϕ ∈ Ŵ1

q′ ,0(Ω−). (44)

Taking ϕ ∈ W1
q′ ,0(Ω−) ⊂ Ŵ1

q′ ,0(Ω−) in (44), using the divergence theorem of Gauss, and
noticing that div f− = f− give that:

λ(div u− − f−, ϕ)Ω− + ρ−1
0−(∇(div u− − f−),∇ϕ)Ω− = 0 for any ϕ ∈W1

q′ ,0(Ω−).

Moreover, from the third equation in (42) and (39), it follows that:

f−|Γ =< Tn[h], n > −{< (S+(u+) + δγ3+div u+I)n|Γ+0, n > − < S−(u−)n|Γ−0n, n >}
− K(u+, u−)|Γ

= div u−|Γ,

f−|Γ− = − < Tn− [h−], n− > + < (S−(u−)− K(u+, u−)I)n−|Γ− , n− >= div u−|Γ− .

Thus, the uniqueness yields that div u− = f− in Ω−. Inserting this fact into (44) and using the fact
that λ 6= 0, we have u− f− ∈ Jq(Ω), which shows that div u = f− = div f−.

Noting that p̂1 = h =< h, n > and p̂3 = f− on Γ and that p̂1 = h− =< h, n− > and p̂3 = − f−
on Γ−, we have:

(S+(u+) + δγ3+div u+I)n|Γ+0 − (S−(u−)− (K(u+, u−) + p̂1 + p̂3)I)n|Γ−0

= Tn[h]− f−n+ < h, n > n + f−n = h on Γ,

(S−(u−)− (K(u+, u−) + p̂1 + p̂3)I)n− = Tn− [h−] + f−n−+ < h−, n− > n− − f−n− = h− on Γ−.

Thus, (u+, u−, p−) is a solution of Equation (29) with (g+, g−, f− = div f−, h, h−).

2.3. Existence ofR-Bounded Solution Operators for Problem (41)
The following theorem is concerned with the existence of R-bounded solution operators to

Problem (41).

Theorem 8. Let 1 < q < ∞, 0 < ε < π/2 and N < r < ∞. Assume that r ≥ max(q, q′), that Ω± are
uniform W2−1/r

r domains, and the weak Dirichlet problem is uniquely solvable in Ω− with exponents q and
q′. Let Xq(Ω) and Xq(Ω) be the sets defined by:

Xq(Ω) = {G = (g+, g−, h, h−) | g± ∈ Lq(Ω±)N , h ∈W1
q (Ω)N , h− ∈W1

q (Ω−)
N},

Xq(Ω) = {F = (F1, . . . , F6) | F1 ∈ Lq(Ω+)
N , F2, F5 ∈ Lq(Ω−)N , F3 ∈ Lq(Ω)N ,

F4 ∈W1
q (Ω)N , F6 ∈W1

q (Ω−)
N}.

Then, there exist a constant λ0 > 0 and operator families S±(λ) ∈ Hol(Γε,λ0 ,L(Xq(Ω),
W2

q (Ω± )N)) such that for any λ ∈ Γε,λ0 and G = (g+, g−, h, h−) ∈ Xq(Ω), u± = S±(λ)FλG is
a unique solution to (41) and:

RL(Xq(Ω),W2−jq(Ω±)Ñ)({(τ∂τ)
`(λj/2S±(λ)) | λ ∈ Γε,λ0}) ≤ C,

for ` = 0, 1 and j = 0, 1, 2, where we set FλG = (g+, g−, λ1/2h,∇h, λ1/2h−,∇h−) and Gλu =
(λu, γu, λ1/2∇u,∇2u).

Remark 9. For any subdomain G ⊂ Ω, we set:

‖G‖Xq(G) = ‖g+‖Lq(Ω+∩G) + ‖g−‖Lq(Ω−∩G) + ‖h‖W1
q (G) + ‖h−‖W1

q (Ω−∩G),

‖F‖Xq(G) = ‖F1‖Lq(Ω+∩G) + ‖F3‖Lq(G) + ‖F4‖W1
q (G) + ‖(F2, F5)‖Lq(Ω−∩G) + ‖F6‖W1

q (Ω−∩G).

Obviously, according to Assertion 2 in Section 2.2, by Theorem 8, Lemma 1, and Lemma 2 we
have Theorem 6. Thus, we shall prove Theorem 8 only.
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2.4. The Uniqueness of Solutions to Problem (41)
Assuming the existence of solutions to Problem (41) with exponent q′, we prove the uniqueness

of solutions to (41). Namely, we prove the following lemma.

Lemma 3. Let 1 < q < ∞ and N < r < ∞. Assume that r ≥ max(q, q′), that Ω± are uniform W2−1/r
r

domains, and that the weak Dirichlet problem is uniquely solvable on Ω− with exponents q and q′. If there
exists a λ0 > 0 such that Problem (41) is solvable with exponent q′ for any λ ∈ Γε,λ0 , then the uniqueness for
(41) with exponent q is valid for any λ ∈ Γε,λ0 .

Remark 10. (i) The reason why we assume that r ≥ max(q, q′) is that we use the existence of solutions to
the dual problem to prove the uniqueness.
(ii) The uniqueness means that if (u+, u−) is a solution to (41) with (0, 0, 0, 0), then u± = 0.

Before proving Lemma 3, first we prove that if (u+, u−) is a solution to (41) with (g+, g−, 0, 0)
and if g− ∈ Jq(Ω−), then u− ∈ Jq(Ω−), as well. In fact, for any ϕ ∈ Ŵ1

q′ ,0(Ω−), we have:

0 = (g−,∇ϕ)Ω− = (λu− − ρ−1
0−(Div S−(u−)−∇K(u+, u−)),∇ϕ)Ω−

= λ(u−,∇ϕ)Ω− − ρ−1
0−(∇div u−,∇ϕ)Ω− .

(45)

Choosing ψ ∈W1
q′ ,0(Ω−) ⊂ Ŵ1

q′ ,0(Ω−), we have:

λ(div u−, ψ)Ω− + ρ−1
0−(∇div u−,∇ψ)Ω− = 0 for any ψ ∈W1

q′ ,0(Ω−). (46)

In addition, we have:

0 =< (S+(u+) + δγ3+div u+)n|Γ+0, n > − < (S−(u−)− K(u+, u−))n|Γ−0, n >= div u− on Γ,

0 =< (S−(u−)− K(u+, u−)I)n−, n− >= div u− on Γ−.

Thus, the uniqueness guaranteed by Theorem 7 implies that div u− = 0, which
inserted into (45) yields that u− ∈ Jq(Ω−).

Secondly, for any u± ∈ W2
q (Ω±)N and v± ∈ W2

q′(Ω±)
N with u− ∈ Jq(Ω−) and

v− ∈ Jq′(Ω−):

(−(Div S+(u+) + δ∇(γ3+div u+)), v+)Ω+
+ (−(Div S−(u−)−∇K(u+, u−)), v−)Ω−

− {(u+,−(Div S+(v+) + δ∇(γ3+div v+))Ω+
+ (u−,−(Div S−(v−)−∇K(v+, v−))Ω−}

= −A + B

(47)

with:

A = ((S+(u+) + δγ3+div u+)n|Γ+0 − ((S−(u−)− K(u+, u−)I)n|Γ−0, v−)Γ

+ ((S−(u−)− K(u+, u−)I)n−, v−)Γ− ,

B = (u+, (S+(v+) + δγ3+div v+)n|Γ+0 − (u−, (S−(v−)− K(v+, v−)I)n|Γ−0)Γ

+ (u−, (S−(v−)− K(v+, v−)I)n−)Γ−

provided that w+|Γ+0 = w−|Γ−0 with w = u and v, where for G = Γ and Γ−, we set
(a, b)G =

∫
G a(x)b(x) dσ, dσ being the surface element on G. In fact, setting K(u+, u−) =

p1 + p2 ∈W1
q (Ω−) + Ŵ1

q,0(Ω−), by the divergence theorem of Gauss, we have:

(−(Div S+(u+) + δ∇(γ3+div u+)), v+)Ω+ + (−(Div S−(u−)−∇K(u+, u−)), v−)Ω−

= A + (∇p2, v−)Ω− + C

with:

C = ∑
`=+,−

µ`

2
(D(u`), D(v`))Ω`

− (δγ3+div u+, div v+)Ω+
+ (ν+ − µ+)(div u+, div v+)Ω+

,



Mathematics 2021, 9, 621 17 of 44

because K(u+, u−)|Γ−0 = p1|Γ−0 as follows from p2|Γ−0 = 0. Analogously, we have:

(u+,−(Div S+(v+) + δ∇(γ3+div v+)))Ω+
+ (u−,−(Div S−(v−)−∇K(v+, v−)))Ω−

= B + (u−,∇p∗2)Ω− + C

with K(v+, v−) = p∗1 + p∗2 ∈W1
q′ (Ω−) + Ŵ1

q′ ,0(Ω−). Since u− ∈ Jq(Ω−) and v− ∈ Jq′ (Ω−), we have
(∇p2, v−)Ω− = (u−,∇p∗2)Ω− = 0, so that we have (47).

Proof of Lemma 3. Let (u+, u−) satisfy (41) with (0, 0, 0, 0), that is let (u+, u−) satisfy the homoge-
neous equation. In particular, u− ∈ Jq(Ω−). Let f+ and f− be any vectors of functions in C∞

0 (Ω±)N .
We define ψ by ψ = K(f−) ∈ Ŵ1

q′ ,0(Ω−), and then, f− −∇ψ ∈ Jq′ (Ω−). Let (v+, v−) be a solution
to (41) with (f+, f− −∇ψ, 0, 0). Since f− −∇ψ ∈ Jq′ (Ω−), v− ∈ Jq′ (Ω−), so that by (47) and the fact
that (u−,∇ψ)Ω− = 0, we have:

0 = (γ0+u+, f+)Ω+
+ (ρ0−u−, f−)Ω− .

Since f± are chosen arbitrarily, we have u± = 0, which completes the proof of Lemma 3.

3. Model Problems
In this section, we consider a model problem for the incompressible-compressible viscous fluid

in RN . In what follows, we set:

RN
± = {x = (x1, . . . , xN) ∈ RN | ±xN > 0}, RN

0 = {x = (x1, . . . , xN) ∈ RN | xN = 0},

and n0 = (0, . . . , 0, 1). Before stating the main results of this section, we notice that the following two
variational problems are uniquely solvable:

ρ−1
0−(∇v,∇ϕ)RN

−
= (f,∇ϕ)RN

−
for any ϕ ∈ Ŵ1

q′ ,0(R
N
−), (48)

λ(w,∇ϕ) + ρ−1
0−(∇w,∇ϕ)RN

−
= (g,∇ϕ)RN

−
for any ϕ ∈W1

q′ ,0(R
N
−) (49)

subject to w|RN
0
= g. More precisely, let 1 < q < ∞. As is well known, for any f ∈ Lq(RN

−)
N , Prob-

lem (48) admits a unique solution v ∈ Ŵ1
q,0(RN

−) possessing the estimate: ‖∇v‖Lq(RN
−)
≤ C‖f‖Lq(RN

−)
.

We define an operator P acting on f by setting v = Pf.
Moreover, for any g ∈ Lq(RN

−)
N , g ∈ H1

q (RN
−), and λ ∈ Σε, Problem (49) admits a unique

solution w ∈ W1
q (RN

−) possessing the estimate: |λ|1/2‖w‖Lq(RN
−)

+ ‖∇w‖Lq(RN
−)
≤ C‖g‖Lq(RN

−)
,

where C is independent of λ. This assertion is also known (cf. [13]). In particular, we have
w = −div λ−1(g− ρ−1

0−∇w).
In this section, assuming that γ0+ and γ3+ are positive constants such that:

ρ0+/2 ≤ γ0+ ≤ 2ρ0+, 0 ≤ γ3+ ≤ (ρ2+)
2,

we consider the following interface problem in RN :

λu+ − γ−1
0+Div T+(u+) = g+ in RN

+ ,

λu− − ρ−1
0−Div T−(u−, K0

I (u+, u−)) = g− in RN
− ,

T+(u+)n0|xN=0+ − T−(u−, K0
I (u+, u−))n0|xN=0− = h|xN=0, u+|xN=0+ = u−|xN=0−.

(50)

Here, g± ∈ Lq(RN
±) and h ∈W1

q (RN) are prescribed functions, and for notational simplicity,
we set:

T+(u+) = S+(u+) + δγ3+div u+I, T−(u−, p) = S−(u−)− pI. (51)

Moreover, v = K0
I (u+, u−) is a unique solution to the variational problem:

(∇v,∇ϕ)RN
−
= (Div S−(u−)−∇div u−,∇ϕ)RN

−
for any ϕ ∈ Ŵ1

q′ ,0(R
N
−) (52)
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subject to v = g1 on RN
0 = {x = (x1, . . . , xN) ∈ RN | xN = 0} with:

g1 =< S−(u−)n0, n0 > |xN=0− − div u−|xN=0−− < T+(u+)n0, n0 > |xN=0+.

We prove the following theorem.

Theorem 9. Let 1 < q < ∞, 0 < ε < π/2, λ0 > 0. Let X3
q(RN) and X 3

q (RN) be the sets
defined by:

X3
q(RN) = {G3 = (g+, g−, h) | g± ∈ Lq(RN

±)
N , h ∈W1

q (RN)},

X 3
q (RN) = {F3 = (F1, F2, F3, F4) | F1 ∈ Lq(RN

+)
N , F2 ∈ Lq(RN

−)
N , F3 ∈ Lq(RN)N , F4 ∈ Lq(RN)N2}.

Then, there exist operator families E0
±(λ) ∈ Hol(Γε,λ0 ,L(X 3

q (RN), W2
q (RN

±)
N)) such that

for any λ ∈ Γε,λ0 and G3 = (g+, g−, h) ∈ X3
q(RN), u± = E±(λ)F3

λG3 is a unique solution
to (50), and:

RL(X 3
q (RN),W2−j

q (RN
±)

N)
({(τ∂τ)

`(λj/2E±(λ)) | λ ∈ Γε,λ0}) ≤ rb

for ` = 0, 1 and j = 0, 1, 2 with some constant rb depending on ε, q, λ0, δ0, µ±, ν+, ρ0±, ρ2+, and
N. Here, we set F3

λG3 = (g+, g−, λ1/2h,∇h).

Remark 11. We set:

‖G3‖Xq(RN) = ‖g+‖Lq(RN
+) + ‖g−‖Lq(RN

−)
+ ‖h‖W1

q (RN),

‖F3‖Xq(RN) = ‖F1‖Lq(RN
+) + ‖F2‖Lq(RN

−)
+ ‖(F3, F4)‖Lq(RN).

(53)

According to Assertion 1 in Section 2.2, we consider the following system of equations:

λv+ − γ−1
0+Div T+(v+) = g+ in RN

+ ,

λv− − ρ−1
0−Div T−(v−, q−) = g− in RN

− ,

div v− = f− = div f− in RN
− ,

T+(v+)n0|xN=0+ − T−(v−, q−)n0|xN=0− = h,

v+|xN=0+ = v−|xN=0−.

(54)

Then, Theorem 9 follows from the following theorem, because (49) is uniquely solvable.

Theorem 10. Let 1 < q < ∞, 0 < ε < π/2, λ0 > 0. Let Y0
q (RN) and Y0

q (RN) be the sets
defined by:

Y0
q (RN) = {G0 = (g+, g−, h, f−, f−) | g± ∈ Lq(RN

±)
N , h ∈W1

q (RN), f− ∈W1
q (RN

−),

f− ∈ Lq(RN
−)

N , f− = div f−},
Y0

q (RN) = {F 0 = (F1, F2, F3, F4, F7, F8, F9) | F1 ∈ Lq(RN
+)

N , F2, F9 ∈ Lq(RN
−)

N ,

F3 ∈ Lq(RN)N , F4 ∈W1
q (RN), F7 ∈ Lq(RN

−), F9 ∈W1
q (RN

−)}.

Then, there exist operator families A1
±(λ) and B1

−(λ) with:

A1
±(λ) ∈ Hol(Γε,λ0 ,L(Y0

q (RN), W2
q (RN

±)
N)), B1

−(λ) ∈ Hol(Γε,λ0 ,L(Y0
q (RN), W1

q (RN
±) + Ŵ1

q,0(RN
−)))
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such that for any λ ∈ Γε,λ0 and G0 = (g+, g−, h, f−, f−) ∈ Y0
q (RN), v± = A1

±(λ)F 0
λG

0 and
p− = B0(λ)F 0

λG
0 are unique solutions to (54), and:

RL(Y0
q (RN),W2−j

q (RN
±)

N)
({(τ∂τ)

`(λj/2A1
±(λ)) | λ ∈ Γε,λ0}) ≤ rb,

RL(Y0
q (RN),Lq(RN

−)
N)({(τ∂τ)

`(∇B1
−(λ)) | λ ∈ Γε,λ0}) ≤ rb

for ` = 0, 1 and j = 0, 1, 2 with some constant rb depending on δ, ρ±, ε, λ0, and q. Here, we set
F 0

λG
0 = (g+, g−, λ1/2h, h, λ1/2 f−, f−, λf−).

Remark 12. We set:

‖G0‖Xq(RN) = ‖g+‖Lq(RN
+) + ‖g−‖Lq(RN

−)
+ ‖h‖W1

q (RN) + ‖ f−‖W1
q (RN

−)
+ ‖f−‖Lq(RN

−)
;

‖F 0‖Xq(RN) = ‖F1‖Lq(RN
+) + ‖(F2, F9)‖Lq(RN

−)
+ ‖F3‖Lq(RN) + ‖F4‖W1

q (RN)

+ ‖F7‖Lq(R−) + ‖F8‖W1
q (RN

−)

(55)

To prove Theorem 10, we first reduce the problem to the case where f− = div f− = 0
and g± = 0. Concerning the incompressible part, we consider the following equations:

λw− − ρ−1
0−Div (S−(w−)− p−I) = g− in RN

− ,

div w− = f− = div f− in RN
− ,

p−|RN
0
= 0, wj|RN

0
= 0, DNwN |RN

0
= f−,

(56)

where w− = T(w1, . . . , wN). We start with proving that for any w− ∈ W2
q (RN

−)
N and

ϕ ∈ Ŵ1
q′ ,0(R

N
−):

(∆w−,∇ϕ)RN
−
= (∇div w−,∇ϕ)RN

−
. (57)

Since C∞
0 (RN

−) is not dense in Ŵ1
q′ ,0(R

N
−) in general (cf. Shibata [6]), we give a proof

below. To prove (57), we use an inequality:

‖x−1
N ϕ‖Lq(RN

−)
≤ C‖∇ϕ‖Lq(RN

−)
(58)

for any ϕ ∈ Ŵ1
q,0(RN

−) and 1 < q < ∞. In fact, representing ϕ(x′, xN) = −
∫ 0
−xN

(DN ϕ)

(x′, s) ds with x′ = (x1, . . . , xN−1) and using the Hardy inequality, we have:

‖x−1
N ϕ‖q

Lq(RN
−)
≤
∫
RN−1

∫ ∞

0

(
x−1

N

∫ xN

0
|ϕ(x′,−s)| ds

)q
dxNdx′

≤ Cq

∫
RN−1

∫ ∞

0
|(DN ϕ)(x′,−s)|q dsdx′,

which yields (58). To prove (57), we take ψ(xN) ∈ C∞(R), which equals one for |xN | < 1
and zero for |xN | > 2, and set ψR(xN) = ψ(xN/R). For any v ∈ Lq(RN

−)
N and ϕ ∈

Ŵ1
q′ ,0(R

N
−),

(v,∇ϕ)RN
−
= lim

R→∞
(v,∇(ψR ϕ))RN

−
. (59)

In fact, by (58):

|(v, (DN ϕR)ϕ)RN
−
| ≤ C‖v‖Lq(RN−1×{−2R≤xN≤−R})‖∇ϕ‖Lq′ (RN

−)
→ 0
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as R → ∞, which yields (59). We now prove (57). Notice that ψR ϕ ∈ W1
q′ ,0(R

N
−). Since

C∞
0 (RN

−) is dense in W1
q′ ,0(R

N
−), we take a sequence {ωj}∞

j=1 of C∞
0 (RN

−) such that ‖ωj −
ψR ϕ‖W1

q (RN
−)
→ 0 as j→ ∞. Then, by (59),

(∆w−,∇ϕ)RN
−
= lim

R→∞
( lim

j→∞
(∆w−,∇ωj)RN

−
)

= lim
R→∞

( lim
j→∞

(∇div w−,∇ωj)RN
−
) = lim

R→∞
(∇div w−,∇(ψR ϕ))RN

−
= (∇div w−,∇ϕ)RN

−
,

which shows (57).
We now consider equations:

λw− − ρ−1
0−Div (S−(w−)− p−I) = g−, div w− = f− = div f− in RN

− ,

wj|RN
0
= 0, DNwN |RN

0
= f−

(60)

for j = 1, . . . , N − 1, where w− = T(w1, . . . , wN). Noticing that Div S−(w−) = ∆w− +
∇div w− and using (57), for any ϕ ∈ Ŵ1

q′ ,0(R
N
−), we have:

(g−,∇ϕ)RN
−
= λ(w−,∇ϕ)RN

−
− 2ρ−1

0−(∇div w−,∇ϕ)RN
−
+ ρ−1

0−(∇p−,∇ϕ)RN
−

= λ(f−,∇ϕ)RN
−
− 2ρ−1

0−(∇ f−,∇ϕ)RN
−
+ ρ−1

0−(∇p−,∇ϕ))RN
−

.

Thus, we have p− = ρ0−P(g− − λf− + 2ρ−1
0−∇ f−), and so, the first equation in (60) is

reduced to equations:

λw− − ρ−1
0−∆w− = g− −∇P(g− − λf− + 2ρ−1

0−∇ f−) + ρ−1
0−∇ f− in RN

− ,

div w− = f− = div f− in RN
− ,

wj|RN
0
= 0, DNwN |RN

0
= f−

(61)

for j = 1, . . . , N − 1. The first equations and third equations in (61) become the follow-
ing equations:

λwj − ρ−1
0−∆wj = g̃j in RN

− , wj|RN
0
= 0, (62)

λwN − ρ−1
0−∆wN = g̃N in RN

− , DNwN |RN
0
= f−, (63)

where g̃j denotes the jth component of N-vector, g̃ := g− −∇P(g− − λf− + 2ρ−1
0−∇ f−) +

ρ−1
0−∇ f−. We use the following theorem, which was proven in [13].

Proposition 1. Let 1 < q < ∞, 0 < ε < π/2 and λ0 > 0. Then, the following two assertions
hold: (1) There exists an operator family Sd(λ) ∈ Hol (Σε,λ0 ,L(Lq(RN

−), W2
q (RN

−))) such that
for any λ ∈ Σε,λ0 and g̃j ∈ Lq(RN

−), wj = Sd(λ)g̃j (j = 1, . . . , N − 1) are unique solutions of
Equation (62), and:

RL(Lq(RN
−),W

2−j
q (RN

−))
({(τ∂τ)

`(λj/2Sd(λ)) | λ ∈ Σε,λ0}) ≤ rb

for ` = 0, 1, and j = 0, 1, 2 with some constant rb depending on λ0.

(2) Let

Y1
q (RN

−) = {(g−, f−) | g ∈ Lq(RN
−)

N , f− ∈W1
q (RN

−)},

Y1
q (RN

−) = {(F2, F7, F8) | F2 ∈ Lq(RN
−)

N , F7 ∈ Lq(RN
−), F8 ∈W1

q (RN
−)}.
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Then, there exists an operator family Sn(λ) ∈ Hol (Σε,λ0 ,L(Y1
q (RN

−), W2
q (RN

−))) such that
for any λ ∈ Σε,λ0 and (g̃N , f−) ∈ Y1

q (RN
−), wN = Sn(λ)(g̃N , λ1/2 f−, f−) is a unique solution

of Equation (63), and:

RL(Y1
q (RN

−),W
2−j
q (RN

−))
({(τ∂τ)

`(λj/2Sn(λ)) | λ ∈ Σε,λ0}) ≤ rb

for ` = 0, 1, and j = 0, 1, 2 with some constant rb depending on λ0.

Finally, we prove that div w− = f− = div f− with w− = T(w1, . . . , wN). In fact, for
any ϕ ∈ Ŵ1

q′ ,0(R
N
−), by (57), (62), and (63) we have:

(g− −∇P(g− − λf− + 2ρ−1
0−∇ f−) + ρ−1

0−∇ f−,∇ϕ)RN
−
= (λw− − ρ−1

0−∆w−,∇ϕ)RN
−

= λ(w−,∇ϕ)RN
−
− ρ−1

0−(∇div w−,∇ϕ)RN
−

,

which yields that:

λ(w− − f−,∇ϕ)RN
−
− ρ−1

0−(∇(div w− − f−),∇ϕ)RN
−
= 0 (64)

for any ϕ ∈ Ŵ1
q′ ,0(R

N
−). By the divergence theorem of Gauss and the assumption that

f− = div f−, we have:

λ(div w− − f−, ϕ)RN
−
+ ρ−1

0−(∇(div w− − f−),∇ϕ)RN
−
= 0

for any ϕ ∈W1
q′ ,0(R

N
−). Since div w−|xN=0 = DNwN |xN=0 = f−|xN=0, therefore the unique-

ness yields that div w− = f−. Thus, by (64), we have w− − f− ∈ Jq(RN
−), which shows

that w− and p satisfy (56).
Summing up, we proved the following proposition.

Proposition 2. Let 1 < q < ∞, 0 < ε < π/2, and λ0 > 0. Let:

Y2
q (RN

−) = {(g−, f−, f−) | g, f− ∈ Lq(RN
−)

N , f− ∈W1
q (RN

−), f− = div f−},

Y1
q (RN

−) = {(F2, F7, F8, F9) | F2, F9 ∈ Lq(RN
−)

N , F7 ∈ Lq(RN
−), F8 ∈W1

q (RN
−)}.

Then, there exists an operator family T 1
−(λ) ∈ Hol (Σε,λ0 ,L(Y2

q (RN
−), W2

q (RN
−)

N)) such
that for any λ ∈ Σε,λ0 and (g̃N , f−, f−) ∈ Y2

q (RN
−), w− = T 1

−(λ)(g−, λ1/2 f−, f−, λf−) is a
unique solution of Equation (56), and:

RL(Y2
q (RN

−),W
2−j
q (RN

−)
N)
({(τ∂τ)

`(λj/2T 1
−(λ)) | λ ∈ Σε,λ0}) ≤ rb

for ` = 0, 1, and j = 0, 1, 2 with some constant rb depending on λ0.

Concerning the compressible part, we consider the equations:

λw+ − γ−1
0+Div T+(w+) = g+ in RN

+ , γ−1
0+T+(w+)n0|RN

0
= 0. (65)

We know the following theorem, which was proven by Götz and Shibata [14].

Proposition 3. Let 1 < q < ∞, 0 < ε < π/2, δ0 > 0, and λ0 > 0. Then, there exists
an operator family T 1

+(λ) ∈ Hol (Γε,λ0 ,L(Lq(RN
+)

N , W2
q (RN

+)
N)) such that for any g+ and

λ ∈ Γε,λ0 , w+ = T 1
+(λ)g+ is a unique solution to Problem (65), and:

RLq(RN
+)N ,W2−j

q (RN
+)N)

({(τ∂τ)
`(λj/2T 1

+(λ)) | λ ∈ Γε,λ0}) ≤ rb
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for ` = 0, 1, j = 0, 1, 2 with some constant rb depending on ε, λ0, ρ+0, δ0, q, and N.

We now set v± = w± + u± and q− = p− + θ in Equation (54), and then, the equations
for u± and θ are the following:

λu+ − γ−1
0+Div T+(u+) = 0 in RN

+ ,

λu− − ρ−1
0−Div T−(u−, θ) = 0, div u− = 0 in RN

− ,

T+(u+)n0|xN=0+ − T−(u−, θ)n0|xN=0− = h,

u+|xN=0+ − u−|xN=0− = k.

(66)

Concerning Equation (66), we know the following theorem, which was proven by
Kubo, Shibata, and Soga [15].

Theorem 11. Let 1 < q < ∞, 0 < ε < π/2, and λ0 > 0. Let:

Y3
q (RN) = {(h, k) | h ∈W1

q (RN), k ∈W2
q (RN)},

Y3
q (RN) = {(F3, F4, F10, F11, F12) | F3, F10 ∈ Lq(RN)N , F4, F11 ∈W1

q (RN)N , F12 ∈W2
q (RN)}.

Then, there exist operator families T 2
±(λ) and Q−(λ) with:

T 2
±(λ) ∈ Hol(Γε,λ0 ,L(Y3

q (RN), W2
q (RN

±)
N)), Q0

−(λ) ∈ Hol(Γε,λ0 ,L(Y2
q (RN), W1

q (RN
−) + Ŵ1

q,0(RN
−))),

such that for any λ ∈ Γε,λ0 and G3 = (h, k) ∈ Y3
q (RN), u± = T 2

±(λ)F3
λG3 and θ =

Q−(λ)F3
λG3 are unique solutions to (66), where F3

λG3 = (λ1/2h, h, λk, λ1/2k, k),

RL(Y3
q (RN),W2−j

q (RN
±)

N)
({(τ∂τ)

`(λj/2T 2
±(λ)) | λ ∈ Γε,λ0}) ≤ rb,

RL(Y3
q (RN),Lq(RN

−)
N)({(τ∂τ)

`(∇Q−(λ)) | λ ∈ Γε,λ0}) ≤ rb

for ` = 0, 1 and j = 0, 1, 2 with some constant rb depending on ε, λ0, ρ±0, δ0, q, and N.

Remark 13. F3, F4, F10, F11, and F12 are the corresponding variables to λ1/2h, h, λk, λ1/2k and
k. We set:

‖(F3, F4, F10, F11, F12)‖Y3
q (RN) = ‖(F3, F10)‖Lq(RN) + ‖(F4, F11)‖W1

q (RN) + ‖F12‖W2
q (RN).

Combining Proposition 2 and Proposition 3 with Lemma 1 and Lemma 2, we have
Theorem 10. This completes the proof of Theorem 9.

4. Several Problems in Bent Spaces

Let Φ : RN → RN be a bijection of the C1 class, and let Φ−1 be its inverse map.
Writing ∇Φ = A + B(x) and ∇Φ−1 = A− + B−(x), we assume that A and A−1 are
orthonormal matrices with constant coefficients and B(x) and B−1(x) are matrices of
functions in W1

r,loc(R
N) with N < r < ∞ such that:

‖(B, B−1)‖L∞(RN) ≤ M1, ‖∇(B, B−1)‖Lr(RN) ≤ M2. (67)

We will choose M1 small enough eventually, and so we may assume that 0 < M1 <
1 ≤ M2. We set D± = Φ(RN

±) and S = Φ(RN
0 ), and we denote the unit outward normal

to S pointing from D− to D+ by n+. Since S is represented by Φ−1,N(y) = 0 with Φ−1 =
(Φ−1,1, . . . , Φ−1,N), we have:

n+ =
∇Φ−1,N

|∇Φ−1,N |
=

(AN1 + BN1, . . . ,ANN + BNN)

(∑N
i=1(ANi + BNi)2)1/2

, (68)
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where we set A−1 = (Aij) and B−1 = (Bij). Notice that n+ is defined on the whole RN .
By (67) with small M1, {

N

∑
i=1

(ANi + BNi)
2

}−1/2

= 1 + b0 (69)

with b0 ∈ W1
r,loc(R

N) possessing the estimate: ‖b0‖L∞(RN) ≤ CN M1 and ‖∇b0‖Lr(RN) ≤
CM2. Let γ0+(x) and γ3+(x) be real-valued functions defined on RN satisfying the follow-
ing conditions:

ρ0+/2 ≤ γ0+ ≤ 2ρ0+, 0 ≤ γ3+ ≤ (ρ2+)
2 (x ∈ D+),

‖γ`+ − γ̂`+‖L∞(D+) ≤ M1, ‖∇γ`+‖Lr(D+) ≤ CM2

(70)

for ` = 0 and 3, where γ̂`+ (` = 0, 3) are some constants with ρ0+/2 < γ̂0+ < 2ρ0+ and
0 ≤ γ̂3+ ≤ (ρ2+)

2.
First, we consider the following problem:

λu+ − γ−1
0+Div T+(u+) = g+ in D+,

λu− − ρ−1
0−Div T−(u−, KI(u+, u−)) = g− in D−,

T+(u+)n+|S+0 − T−(u−, KI(u+, u−))n+|S−0 = h|S, u+|S+0 = u−|S−0.

(71)

Moreover, v = KI(u+, u−) is a solution to the weak Dirichlet problem:

(∇v,∇ϕ)D− = (Div S−(u−)−∇div u−,∇ϕ)D− for any ϕ ∈ Ŵ1
q′ ,0(D−) (72)

subject to v =< S−(u−)n+, n+ > |S−0 − div u−|S−0− < (S+(u+) + δγ3+div u+I)n+, n+

> |S+0. We have the following theorem.

Theorem 12. Let 1 < q < ∞, 0 < ε < π/2, and r ≥ max(q, q′). Let X3
q(D) and X 3

q (D) be
sets defined by replacing RN and RN

± by D and D±, respectively, in Theorem 9. Then, there exist
constants M1 ∈ (0, 1), λ0 = λM2 ≥ 1 and operator families E1

±(λ) ∈ Hol(Γε,λ0 ,L(X 3
q (D),

W2
q (D± )N)) such that for any λ ∈ Γε,λ0 and G3 = (g+, g−, h) ∈ X3

q(D), u± = E1
±(λ)F3

λG3
is a unique solution to (71), and:

RL(X 3
q (D),W2−j

q (D±)N)
({(τ∂τ)

`(λj/2E1
±(λ)) | λ ∈ Γε,λ0}) ≤ CM2 (` = 0, 1, j = 0, 1, 2).

Remark 14. Here and in the following, M1 depends on ε, q, µ±, ν+, ρ0±, ρ2+, but is independent
of M2. In addition, constants denoted by λM2 and CM2 depend on M2, ε, q, µ±, ν+, ρ0±, ρ2+, and
N, but we mention only dependence on M2.

Proof. The idea of the proof here follows Shibata [16] and von Below, Enomoto, and
Shibata [17]. Using the change of variable: x = Φ−1(y) with y ∈ D and x ∈ RN and
the change of unknown functions: v± = A−1u± ◦Φ, writing γ−1

0+ = γ̂−1
0+ + (γ−1

0+ − γ̂−1
0+)

and γ3+ = γ̂3+ + (γ3+ − γ̂3+), and setting p = KI(u+, u−), we see that Problem (71) is
transferred to the following equivalent problem:

λv+ − γ̂−1
0+[Div S+(v+) + δγ̂3+∇div v+]−F 1

+(v+) = G+ in RN
+ ,

λv− − ρ−1
0−[Div S−(v−)−∇p]−F 1

−(v−) + P1∇p = G− in RN
−

(73)

subject to the interface condition: v+|xN=0+ = v−|xN=0− and:

{(S+(v+) + δγ̂3+div v+I)n0 +F2
+(v+)}|xN=0+ − {(S−(v−)− pI)n0 +F2

−(v−)}|xN=0− = H.

p satisfies the following variational equation:

(∇p,∇ϕ) + (P2∇p,∇ϕ) = (Div S−(v−)−∇div v− +F3
−(v−),∇ϕ) for any ϕ ∈ Ŵ1

q′ ,0(R
N
−) (74)
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subject to:

p|xN=0− = {< S−(v−)n0, n0 > −div v− +F 4
−(v−)}|xN=0−

− {< (S+(v+) + δγ̂3+div v+I)n0, n0 > +F 3
+(v+)}|xN=0+.

Here, we write (·, ·) = (·, ·)RN
−

for short, and G± = A−1g± ◦Φ, H = A−1h ◦Φ, and

F i
±(v±) are the vector of functions of the forms:

F 1
±(v±) = R1

±∇2v± + S±∇v±, F i
+(v+) = Ri

+∇v+, F j
−(v−) = R

j
−∇v− (75)

for i = 2, 3 and j = 2, 3, 4. In view of (67)–(70), we can assume that Ri
±, S±, and P i

possesses the following estimate:

‖(Ri
+,Rj

−,P k)‖L∞(RN) ≤ CM1, ‖(∇Ri
+,∇Rj

−,∇P k,S±)‖Lr(RN) ≤ CM2 (76)

for i = 1, 2, 3, j = 1, 2, 3, 4, and k = 1, 2. Following Shibata ([16] Section 4), we treat
the RN

− side as follows: Let v = K0
I (v+, v−) be a function defined in (52), which satisfies

the estimate:

‖∇K0
I (v+, v−)‖Lq(RN

−)
≤ C(‖∇v+‖W1

q (RN
+) + ‖∇v−‖W1

q (RN
−)
). (77)

Setting p = K0
I (v+, v−) + p1, we see that p1 satisfies the variational equation:

(∇p1,∇ϕ) + (P2∇p1,∇ϕ) = (F3
−(v−)−P2∇K0

I (v+, v−),∇ϕ) for any ϕ ∈W1
q′ ,0(R

N
−) (78)

subject to:
p1|xN=0− = F 4

−(v−)|xN=0− −F 3
+(v+)|xN=0+. (79)

Since ‖P2‖L∞(RN) is small enough, we can show the following lemma by the small
perturbation from the weak Dirichlet problem in RN

− .

Lemma 4. Let 1 < q < ∞. Then, there exist a constant M1 ∈ (0, 1) and an operator Ψ with:

Ψ ∈ L(Lq(RN
−)

2N , W1
q (RN

−) + Ŵ1
q,0(RN

−))

such that for any f ∈ Lq(RN
−)

N and g ∈ Ŵ1
q,0(RN

−), θ = Ψ(f,∇g) is a unique solution to the
variational problem:

(∇θ,∇ϕ) + (P2∇θ,∇ϕ) = (f,∇ϕ) for any ϕ ∈ Ŵ1
q′ ,0(R

N
−) (80)

subject to θ|xN=0− = g|xN=0.

By Lemma 4, p1 = p1(v+, v−) = Ψ(f,∇g) with f = F 3
−(v−)−P2∇K0

I (v+, v−) and
g = F 4

−(v−)−F 3
+(v+). Inserting p = K0

I (v+, v−) + p1(v+, v−) into (73), we have:

λv+ − γ̂−1
0+[Div S+(v+)− δγ−1

3+∇div v+]−F 1
+(v+) = G+ in RN

+ ,

λv− − ρ−1
0−[Div S−(v−)−∇K0

I (v+, v−)]−F 1
−(v−)

+ρ−1
0−[P

1∇K0
I (v+, v−) + (I + P1)∇p1(v+, v−)] = G− in RN

−

(81)

subject to the interface conditions v+|xN=0+ = v−|xN=0− and:

{(S+(v+) + δγ̂3+div v+I)n0 +F 2
+(v+) +F 3

+(v+)n0}|xN=0+

− {(S−(v−)− (K0
I (v+, v−) +F 4

−(v−)I)n0 +F 2
−(v−)}|xN=0− = H.

Here, we used (78).
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To solve (81) for any right members G3 = (g+, g−, h) ∈ X3
q(RN), we set v± =

E±(λ)F3
λG3 in (81), where E±(λ) are operators given in Theorem 9, and then, we have:

λv+ − γ̂−1
0+[Div S+(v+)− δγ−1

3+∇div v+]−F 1
+(v+) = G+ − F1

+(λ)G
3 in RN

+ ,

λv− − ρ−1
0−[Div S−(v−)−∇K0

I (v+, v−)]−F 1
−(v−)

+ρ−1
0−[P

1∇K0
I (v+, v−) + (I + P1)∇p1(v+, v−)] = G− − F1

−(λ)G
3 in RN

−

(82)

subject to the interface conditions v+|xN=0+ = v−|xN=0− and:

{(S+(v+) + δγ̂3+div v+I)n0 +F 2
+(v+) +F 3

+(v+)n0}|xN=0+

− {(S−(v−)− (K0
I (v+, v−) +F 4

−(v−)I)n0 +F 2
−(v−)}|xN=0− = H− F2(λ)G3.

Here, we set:

F1
+(λ)G

3 = F1
+(E+(λ)F3

λG3),

F1
−(λ)G

3 = F1
−(E−(λ)F3

λG3)

− ρ−1
0−[P

1∇K0
I (E+(λ)F3

λG3, E−(λ)F3
λG3) + (I + P1)∇p1(E+(λ)F3

λG3, E−(λ)F3
λG3)],

F2(λ)G3 = −Ext−[F2
+(E+(λ)F3

λG3) +F3
+(E+(λ)F3

λG3)n0]

+ Ext+[F4
−(E−(λ)F3

λG3)In0 −F2
−(E−(λ)F3

λG3)],

and Ext±[ f∓] denote the even extension of functions f∓ defined on RN
∓ to RN . Note that:

‖∇`Ext±[ f∓]‖Lq(RN) ≤ 2‖ f∓‖Lq(RN
∓)

(` = 0, 1) (83)

with ∇0 f∓ = f∓. Let us define the corresponding R- bounded operators R1
±(λ) and

R2(λ) by:

R1
+(λ)F

3 = F 1
+(E+(λ)F3),

R1
−(λ)F

3 = F 1
−(E−(λ)F3)− ρ−1

0−[P
1∇K0

I (E+(λ)F3, E−(λ)F3) + (I + P1)∇p1(E+(λ)F3, E−(λ)F3)],

R2(λ)F3 = −Ext−[F 2
+(E+(λ)F3) +F 3

+(E+(λ)F3)n0]− Ext+[F 4
−(E−(λ)F3)n0 −F 2

−(E−(λ)F3)].

Set R(λ)G3 = (F1
+(λ)G

3, F1
−(λ)G

3, F2(λ)G3) and R(λ)F3 = (R1
+(λ)F

3,R1
−(λ)F

3,
R2(λ) F3). Obviously,

R(λ)G3 = R(λ)F3
λG3. (84)

To obtain:

RL(X 3
q (RN))({(τ∂τ)

`R(λ) | λ ∈ Γε,λ0}) ≤ C(σ + M1 + Cσ,M2 λ−1/2
0 ) (` = 0, 1), (85)

we use the following lemma (cf. Shibata ([4] Lemma 2.4)).

Lemma 5. Let D = RN or RN
± . Let 1 < q ≤ r < ∞ and N < r < ∞. Then, there exists a

constant CN,q,r such that for any σ > 0, a ∈ Lr(D) and b ∈W1
q (D), it holds that:

‖ab‖Lq(D) ≤ σ‖∇b‖Lq(D) + CN,q,rσ−
N

r−N ‖a‖
r

r−N
Lr(D)
‖b‖Lq(D).
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To prove (85), for example, we treat Ext−[F 2
+(E+(λ)F3)]. Recalling (75) and

using (83), (76), Lemma 5, Lemma 2, Theorem 9, and (55), we have:

∫ 1

0
‖

n

∑
k=1

rk(u)Ext−[F2
+(E+(λk)F

3)]‖q
Lq(RN)

du =
∫ 1

0

∥∥∥∥∥∇Ext−
[

n

∑
k=1

rk(u)F2
+(E+(λk)F

3)

]∥∥∥∥∥
q

Lq(RN)

du

≤ 2q
∫ 1

0

∥∥∥∥∥F2
+

(
n

∑
k=1

rk(u)E+(λk)F
3

)∥∥∥∥∥
q

Lq(RN
+)

du

≤ Cq

∫ 1

0

{
σ‖

n

∑
k=1

rk(u)∇2E+(λk)F
3‖Lq(RN

+)
+ Cσ,M2‖

n

∑
k=1

rk(u)∇E+(λk)F
3‖Lq(RN

+)

}q

du

≤ Cqσq
∫ 1

0
‖

n

∑
k=1

rk(u)∇2E+(λk)F
3‖q

Lq(RN
+)

du

+ Cq(Cσ,M2 λ−1/2
0 )q

∫ 1

0
‖

n

∑
k=1

rk(u)λ
1/2
k ∇E+(λk)F

3‖q
Lq(RN

+)
du

≤ Cq(σ + Cσ,M2 λ−1/2
0 )q

∫ 1

0
‖

n

∑
k=1

rk(u)F
3‖X 3

q (RN) du.

Analogously, we can estimate the R-bound of any other terms, and therefore, we
have (85).

Recalling (55) and F3
λG3 = (g+, g−, λ1/2h,∇h), we see that ‖F3

λG3‖X 3
q (RN) gives

equivalent norms of X3
q(RN). By (84) and (85), we have:

‖R(λ)G3‖X 3
q (RN) ≤ C(σ + M1 + Cσ,M2 λ−1/2

0 )‖F3
λG3‖X 3

q (RN)

for any G3 = (g+, g−, h) ∈ X3
q(RN). Thus, choosing σ and M1 so small and λ0 so large

that C(σ + M1 + Cσ,M2 λ−1/2) ≤ 1/2, we have:

‖R(λ)‖L(Xq(RN)) ≤ 1/2 for any λ ∈ Γε,λ0 ,

and therefore, (I −R(λ))−1 exists in L(X3
q(RN)). If we set v± = E±(λ)F3

λ(I −R(λ))−1G3,
with G = (G+, G−, H), then in view of (82), v± solve (81). Moreover, using (84), we
have F3

λ(I − R(λ))−1 = (I − F3
λR(λ))

−1F3
λ, and so, defining operators Ẽ±(λ) by Ẽ±(λ) =

E±(λ)(I − F3
λR(λ))

−1 and using (85) and Theorem 9, we see that v± = Ẽ±(λ)F3
λG3 with

G3 = (G+, G−, H) is a unique solution to (81), and:

RL(X 3
q (RN),Lq(RN

±)
Ñ)({(τ∂τ)

`GλẼ±(λ) | λ ∈ Γε,λ0}) ≤ C (` = 0, 1).

Since u± = (A−1)−1[v± ◦Φ−1] is a unique solution to (71), we have Theorem 12 by
the pullback.

Next, for the compressible part, we consider the following two problems.

λv+ − γ−1
0+(Div S+(v+) + δ∇(γ3+div v+)) = g+ in D+, v+|S = 0; (86)

λv+ − γ−1
0+(Div S+(v+) + δ∇(γ3+div v+)) = g+ in RN . (87)

Since we know the existence of R-bounded solution operators in RN
+ and RN (cf.

Enomoto and Shibata [18]), in a similar fashion to the proof of Theorem 9, we can prove
the following theorem (cf. von Below, Enomoto and Shibata [17]).

Theorem 13. Let 1 < q < ∞, 0 < ε < π/2, and r ≥ max(q, q′). Then, there exist constants
M1 ∈ (0, 1) and λ0 = λM2 ≥ 1 such that the following two assertions hold:
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(1) There exists an operator family ED+(λ) ∈ Hol(Γε,λ0 ,L(Lq(D+)N , W2
q (D+)N)) such that for

any λ ∈ Γε,λ0 and g+ ∈ Lq(D+)N , v+ = ED+(λ)g+ is a unique solution to (86), and:

RL(Lq(D+)N ,W2−j
q (D+)N)

({(τ∂τ)
`(λj/2ED+(λ)) | λ ∈ Γε,λ0}) ≤ C (` = 0, 1, j = 0, 1, 2).

(2) There exists an operator family E0+(λ) ∈ Hol(Γε,λ0 ,L(Lq(RN)N , W2
q (RN)N)) such that for

any λ ∈ Γε,λ0 and g+ ∈ Lq(RN)N , v+ = E0+(λ)g+ is a unique solution to (87), and:

RL(Lq(RN)N ,W2−j
q (RN)N)

({(τ∂τ)
`E0+(λ) | λ ∈ Γε,λ0}) ≤ C (` = 0, 1, j = 0, 1, 2).

Finally, for the incompressible part, we consider the following two problems:

λv− − ρ−1
0−(Div S−(v−)−∇KF(v−)) = g− in D−, (S−(v−)− KF(v−)I)n+|S = h−|S, (88)

λv− − ρ−1
0−(Div S−(v−)−∇K0(v−)) = g−, in RN , (89)

where KF(v−) and K0(v−) are unique solutions to the following variational problems:

(∇KF(v−),∇ϕ)D− = (S−(v−)−∇div v−,∇ϕ)D− for any ϕ ∈ Ŵ1
q′ ,0(D−)

subject to KF(v−) =< S−(v−)n+, n+ > −div v− on S, and:

(∇K0(v−),∇ϕ)RN = (S−(v−)−∇div v−,∇ϕ)RN for any ϕ ∈ Ŵ1
q′ ,0(R

N),

respectively. Since we know the existence ofR-bounded solution operators in RN
+ and RN

(cf. Shibata and Shimizu [19]), in a similar fashion to the proof of Theorem 9, we can prove
the following theorem (cf. Shibata [16]).

Theorem 14. Let 1 < q < ∞ and 0 < ε < π/2. Then, there exist constants M1 ∈ (0, 1) and
λ0 = λM2 ≥ 1 such that the following two assertions hold.
(1) Let X5

q(D−) and X 5
q (D−) be sets defined by:

X5
q(D−) = {(g−, h−) | g− ∈ Lq(D−)N , h− ∈W1

q (D−)N},

X 5
q (D−) = {F5 = (F2, F5, F6) | F2, F5 ∈ Lq(D−)N , F6 ∈ Lq(D−)N2}.

Then, there exists an operator family ED−(λ) ∈ Hol(Γε,λ0 ,L(X5
q(D−), W2

q (D−)N)) such
that for any λ ∈ Γε,λ0 and G5 = (g−, h−) ∈ X5

q(D−), v− = ED−(λ)F5
λG5 is a unique solution

to (88), and:

RL(X 5
q (D−)N ,W2−j

q (D−)N)
({(τ∂τ)

`(λj/2ED−(λ)) | λ ∈ Γε,λ0}) ≤ C (` = 0, 1, j = 0, 1, 2).

Here, F5G5 = (g−, λ1/2h−,∇h−).

(2) There exists an operator family E0−(λ) ∈ Hol(Γε,λ0 ,L(Lq(RN)N , W2
q (RN)N)) such that for

any λ ∈ Γε,λ0 and g− ∈ Lq(RN)N , v− = E0−(λ)g− is a unique solution to (89), and:

RL(Lq(RN)N ,W2−j
q (RN)N)

({(τ∂τ)
`E0−(λ) | λ ∈ Γε,λ0}) ≤ C (` = 0, 1, j = 0, 1, 2).

5. A Proof of Theorem 8
5.1. Some Preparations for the Proof of Theorem 8

We first give several properties of the uniform W2−1/r
r domain in the following

proposition.
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Proposition 4. Let N < r < ∞, and let Ω± be uniform W2−1/r
r domains in RN . Let M1 be the

number given in (67). Then, there exist constants M2 > 0, 0 < di < 1 (i = 1, . . . , 5), at most
countably many N-vectors of functions Φi

j ∈W2
r (RN)N (i = 1, . . . , 5, j ∈ N), and points x1

j ∈ Γ,
x2

j ∈ Γ+, x3
j ∈ Γ−, x4

j ∈ Ω+ and x5
j ∈ Ω− such that the following assertions hold:

(i) The maps: RN 3 x 7→ Φi
j(x) ∈ RN (i = 1, 2, 3, j ∈ N) are bijective such that

∇Φi
j = Ai

j + Bi
j, ∇(Φi

j)
−1 = Ai

j,−1 + Bi
j,−1, where Ai

j and Ai
j,−1 are N × N constant

orthonormal matrices, and Bi
j and Bi

j,−1 are N×N matrices of W1
r (RN) functions that satisfy

the conditions: ‖(Bi
j, Bi

j,−1)‖L∞(RN) ≤ M1 and ‖∇(Bi
j, Bi

j,−1)‖Lr(RN) ≤ M2.

(ii) Ω =
{⋃

i=1,2,3
⋃∞

j=1(Φ
i
j(Hi) ∩ Bdi (xi

j))
}
∪
{⋃

i=4,5
⋃∞

j=1 Bdi (xi
j)
}

with H1 = RN ,

H2 = RN
+ and H3 = RN

− , Φ1
j (R

N) ∩ Bd1(x1
j ) = Ω ∩ Bd1(x1

j ), Φ2
j (R

N
+) ∩ Bd2(x2

j ) =

Ω+ ∩ Bd2(x2
j ), Φ3

j (R
N
−) ∩ Bd3(x3

j ) = Ω− ∩ Bd3(x3
j ), Bd4(x4

j ) ⊂ Ω+, Bd5(x5
j ) ⊂ Ω−,

and Φi
j(R

N
0 )∩ Bdi (xi

j) = Γi ∩ Bdi (xi
j) (i = 1, 2, 3). Here and in the following, we set Γ1 = Γ,

Γ2 = Γ+, and Γ3 = Γ− for notational convenience.
(iii) There exist C∞ functions ζ i

j and ζ̃ i
j (i = 1, . . . , 5, j ∈ N) such that ‖(ζ i

j, ζ̃ i
j)‖W2

∞(RN) ≤ c0,

0 ≤ ζ i
j, ζ̃ i

j ≤ 1, supp ζ i
j, supp ζ̃ i

j ⊂ Bdi (xi
j), ζ̃ i

j = 1 on supp ζ i
j, ∑i=1,...,5 ∑∞

j=1 ζ i
j = 1

on Ω, ∑∞
j=1 ζ i

j = 1 on Γi (i = 1, 2, 3).

(iv) There exists a natural number L ≥ 2 such that any L + 1 distinct sets of {Bdi (xi
j) | i =

1, . . . , 5, j ∈ N} have an empty intersection.

Proof. For a detailed proof, we refer to Enomoto and Shibata ([18] Appendix).

In the following, choosing M2 larger if necessary, we may assume that
‖∇γk+‖Lr(Bdi (xi

j)∩Ω+)
≤ M2 (k = 0, 3, i = 1, 3, 5, j ∈ N), which is a weaker assump-

tion than the last condition in (23). Since functions in W1
r are Hölder continuous of or-

der α with 0 < α < 1− N/r, as follows from Sobolev’s imbedding theorem, we have
|γk+(x)− γk+(xi

j)| ≤ C‖γk+‖W1
r (Bdi (xi

j))
|x− xi

j|α for any x ∈ Bdi (xi
j) (k = 0, 3) with some

constant C independent of j, and so choosing di > 0 smaller and more points xi
j suitably,

we may assume that |γk+(x)− γk+(xi
j)| ≤ M1 for x ∈ Bdi (xi

j) (k = 0, 3, i = 1, 3, 5, j ∈ N).
Here and in the following, constants denoted by C are independent of j ∈ N. In addition, in
view of (68), we may assume that each unit outward normal ni

j to Φi
j(R

N
0 ) (i = 1, 3, 4, j ∈ N)

is defined on RN and satisfies the conditions: ‖ni
j‖L∞(RN) = 1 and ‖∇ni

j‖Lr(RN) ≤ CM2.

Note that n = n1
j on Bd1(x1

j ) ∩ Γ and n− = n4
j on Bd4(x4

j ) ∩ Γ−.
Summing up, from now on, we may assume that:

‖γk+ − γk+(xi
j)‖L∞(Ω∩Bdi (xi

j))
≤ CM1, ‖∇γk+‖Lr(Bdi (xi

j))
≤ M2 (k = 0, 3),

‖∇n‖Lr(Bd1 (x1
j )∩Ω) ≤ M2, ‖∇n−‖Lr(Bd4 (x4

j )∩Ω) ≤ M2,
(90)

and that both n and n− are defined on RN with ‖n‖L∞(Ω) = 1 and ‖n−‖L∞(Ω−) = 1,
respectively.

Next, we prepare two lemmas used to construct a parametrix.

Lemma 6. Let X be a Banach space and X∗ its dual space, while ‖ · ‖X, ‖ · ‖X∗ and < ·, · > are
the norm of X, the norm of X∗, and the duality of X and X∗, respectively. Let n ∈ N, and for
i = 1, . . . , n, let ai ∈ C, let { f (i)j }

∞
j=1 be sequences in X∗. Let {g(i)j }

∞
j=1 and {hj}∞

j=1 be sequences
of positive numbers. Assume that there exist maps Nj : X → [0, ∞) such that:

| < f (i)j , ϕ > | ≤ M3gi
jNj(ϕ) (i = 1, . . . , n), | <

n

∑
i=1

ai f (i)j , ϕ > | ≤ M3hjNj(ϕ)



Mathematics 2021, 9, 621 29 of 44

for any ϕ ∈ Lq′(D) with some constant M3 independent of j ∈ N. If:

∞

∑
j=1

(g(i)j )q < ∞,
∞

∑
j=1

(hj)
q < ∞,

∞

∑
j=1
Nj(ϕ)q′ ≤ Mq′

4 ‖ϕ‖q′
X ,

then the infinite sum f (i) = ∑∞
j=1 f (i)j exists in the strong topology of X∗ and:

‖ f (i)‖X∗ ≤ M3M4

(
∞

∑
j=1

(g(i)j )q

)1/q

, ‖
n

∑
i=1

ai f (i)‖X∗ ≤ M3M4

(
∞

∑
j=1

(hj)
q

)1/q

.

Lemma 7. Let D be a domain in RN , and assume that there exists at most countably many covering
{Bj}∞

j=1 such that D ⊂ ⋃∞
j=1 Bj and {Bj}∞

j=1 has a finite intersection property of order L, that is
any L + 1 distinct sets of {Bj}∞

j=1 have an empty intersection. Let 1 < q < ∞. Then, the following
assertions hold.

(i) There exists a constant Cq,L such that:

( ∞

∑
j=1
‖ f ‖q

Lq(D∩Bj)

)1/q
≤ Cq,L‖ f ‖Lq(D) for any f ∈ Lq(D).

(ii) Let m ∈ N0. Let { f j}∞
j=1 be a sequence in Wm

q (D), and let {g(`)j }
∞
j=1 (` = 0, 1, . . . , m) be

sequences of positive numbers. Assume that:

∞

∑
j=1

(g(`)j )q < ∞, |(∇` f j, ϕ)D| ≤ M3g`j ‖ϕ‖Lq′ (D∩Bj) for any ϕ ∈ Lq′ (D) and ` = 0, 1, . . . , m

with some constant M3 independent of j ∈ N. Then, f = ∑∞
j=1 f j exists in the strong topology

of Wm
q (D) and:

‖∇` f ‖Lq(D) ≤ Cq,L M3(
∞

∑
j=1

(g(`)j )q)1/q.

Remark 15. To prove Lemma 6, we consider the difference of finite sum ∑N
j=1 f (i)j and use the

Hölder inequality for the sequence. The assertion (i) of Lemma 7 follows immediately from the
property of the Lebesgue measure and suitable decomposition of covering sets {Bj}∞

j=1, and the
assertion (ii) of Lemma 7 follows from Lemma 6 and Lemma 7 (i).

5.2. Local Solutions

In the following, we write Bdi (xi
j) = Bi

j (i = 1, . . . , 5),H1
j = Φ1

j (R
N),H1

±j = Φ1
j (R

N
±),

H2
j = Φ2

j (R
N
+), H3

j = Φ3
j (R

N
−), H4 = H5 = RN , Γ1

j = Φ1
j (R

N
0 ), Γ2

j = Φ2
j (R

N
0 ), and

Γ3
j = Φ3

j (R
N
0 ) for short. n1

j denote the unit outward normals to Γ1
j pointing from H1

−j to

H1
+j, and n3

j denote the unit outward normals to Γ3
j for j ∈ N. In view of (90), we define

the functions γi
jk by:

γi
jk(x) = (γk+(x)− γk+(xi

j))ζ̃
i
j(x) + γi

k+(xi
j)

for k = 0, 3, i = 1, 2, 4, and j ∈ N. Noting that 0 ≤ ζ̃ i
j ≤ 1 and ‖∇ζ i

j‖L∞(RN) ≤ c0, by (90)
and (23):

ρ0+/2 ≤ γi
j0(x) ≤ 2ρ0+, 0 ≤ γi

j3(x) ≤ (ρ2+)
2 (x ∈ {H1

+j,H2
j ,H4

j }),

‖γi
jk(·)− γi

jk(xi
j)‖L∞(Hi

j)
≤ CM1, ‖∇γi

jk‖Lr(Hi
j)
≤ M2

(91)
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for k = 0, 3, i = 1, 2, 4, and j ∈ N. In addition, we have:

γi
jk(x) = γk+(x) (x ∈ supp ζ i

j, k = 0, 3, i = 1, 2, 4, j ∈ N), (92)

because ζ̃ i
j = 1 on supp ζ i

j. For G = (g+, g−, h, h−) ∈ Xq(Ω), we consider the equations:

λv1
+j − (γ1

j0)
−1[Div S+(v1

+j) + δ∇(γ1
3jdiv v1

+j)] = ζ̃1
j g+ inH1

+j,

λv1
−j − ρ−1

0−[Div S−(v1
−j)−∇K1

−j(v
1
+j, v1

−j)] = ζ̃1
j g− inH1

−j,

(S+(v1
+j) + δγ1

j3div v1
+jI)n

1
j |Γ1

j +0 − (S−(v1
−j)− K1

−j(v
1
+j, v1

−j)I)n
1
j |Γ1

j−0 = ζ̃1
j h|Γ1

j
,

v1
+j|Γ1

j +0 = v1
−j|Γ1

j−0.

(93)

Here, v = K1
−j(v

1
+j, v1

−j) is a unique solution to the variational problem:

(∇v,∇ϕ)H1
−j

= ρ−1
0−(Div S−(v1

−j)−∇div v1
−j,∇ϕ)H1

−j
for any ϕ ∈ Ŵ1

q′ ,0(H
1
−j) (94)

subject to v|Γ1
j
= (< S−(v1

−j)n
1
j , n1

j > −div v1
−j)|Γ1

j−0− < (S+(v1
+j) − δγ1

j3div v1
+jI)n

1
j ,

n1
j > |Γ1

j +0. Here and in the following, Xq(Ω) and Xq(Ω) denote the spaces defined in

Theorem 8 in Section 2.3.
Moreover, we consider the following four problems:

λv2
j − (γ1

j0)
−1[Div S+(v2

j ) + δ∇(γ1
3jdiv v2

j )] = ζ̃2
j g+ inH2

j , v2
j |Γ2

j
= 0,

λv4
j − (γ1

j0)
−1[Div S+(v4

j ) + δ∇(γ1
3jdiv v4

j )] = ζ̃4
j g+ inH4

j ,

λv3
j − ρ−1

0−[Div S−(v3
j )−∇K3

j (v
3
j )] = ζ̃3

j g− inH3
j , (S−(v3

j )− K3
j (v

3
j ))n

3
j |Γ3

j
= ζ̃3

j h−,

λv5
j − ρ−1

0−[Div S−(v5
j )−∇K5

j (v
5
j )] = ζ̃5

j g− inH5
j .

(95)

Here, K3
j (v

3
j ) and K5

j (v
5
j ) are unique solutions to the variational problem:

(∇K3
j (v

3
j ),∇ϕ)H3

j
= ρ−1

0−(Div S−(v3
j )−∇div v3

j ,∇ϕ)H4
j

for any ϕ ∈W1
q′ ,0(H

4
j ) (96)

subject to K4
j (v

4
j )|Γ4

j
= (< S−(v4

−)n
4
j , n4

j > −v4
j )|Γ4 , and the variational problem:

(∇K5
j (v

5
j ),∇ϕ)H5

j
= ρ−1

0−(Div S−(v5
j )−∇div v5

j ,∇ϕ)H5
j

for any ϕ ∈W1
q′ ,0(H

5
j ). (97)

Here and in the following, λ0 and general constants denoted by C are independent of
i = 1, . . . , 5 and j ∈ N. By Theorem 12 in Section 4, there exist operator families T 1

±j(λ) ∈
Hol(Γε,λ0 ,L(X 3

q (H1
±j), W2

q (H1
±j)

N)) such that for any λ ∈ Γε,λ0 , v1
±j = T 1

±j(λ)F1
λG1

j are
unique solutions to the problem in (93), and:

RL(X 3
q (H1

±j),W
2−m
q (H1

±j)
N)({(τ∂τ)

`(λm/2T 1
±j(λ)) | λ ∈ Γε,λ0}) ≤ C (98)

for ` = 0, 1 and m = 0, 1, 2. Moreover, by Theorem 13 and Theorem 14 in Section 4,
there exist operator families T k

j (λ) ∈ Hol(Γε,λ0 ,L(X 3
q (Hk

j ), W2−m
q (Hk

j ))) such that for any

λ ∈ Γε,λ0 vk
j = T k

j (λ)Fk
λGk

j are unique solutions of the problems in (95) (k = 2, 3, 4, 5), and:

RL(X 3
q (Hk

j ),W
2−m
q (Hk

j )
N)({(τ∂τ)

`(λm/2T k
j (λ)) | λ ∈ Γε,λ0}) ≤ C (99)

for ` = 0, 1 and m = 0, 1, 2. Here and in the following, we set X 3
q (H2

j ) = X3
q(H2

j ) =

Lq(H2
j )

N ,X 3
q (H3

j ) = X
5
q (H3

j ), X3
q(H3

j ) = X5
q(H3

j ) (cf. X5
q andX 5

q were given in Theorem 14),

X 4
q (H4

j ) = X4
q(H4

j ) = Lq(H4
j )

N , H5
q(H5

j ) = X5
q(H5

j ) = Lq(H5
j )

N . Moreover, we set
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F1
λG1

j = ζ̃1
j (g+, g−, λ1/2h, h)), F2

λG2
j = ζ̃2

j g+, F3
λG

3
j = ζ̃3

j (g−, λ1/2h−, h−), F4
λG4

j = ζ̃4
j g+,

and F5
λG

5
j = ζ̃5

j g−. SinceR-boundedness implies the usual boundedness, by (98) and (99),

∑
±
(|λ|‖v1

±j‖Lq(H1
±j)

+ |λ|1/2‖v1
±j‖W1

q (H1
±j)

+ ‖v1
±j‖W2

q (H1
±j)

)

≤ C(∑
±
‖ζ̃1

j g±‖Lq(H1
j )
+ |λ|1/2‖ζ̃1

j h‖Lq(RN) + ‖ζ̃1
j h‖W1

q (RN)),

|λ|‖vm
j ‖Lq(Hm

j )
+ |λ|1/2‖vm

j ‖W1
q (Hm

j )
+ ‖vm

j ‖W2
q (Hm

j )
≤ C‖ζ̃m

j g+‖Lq(Hm
j )

(m = 2, 4, 5),

|λ|‖v3
j ‖Lq(H3

j )
+ |λ|1/2‖v3

j ‖W1
q (H3

j )
+ ‖v3

j ‖W2
q (H3

j )

≤ C(‖ζ̃3
j g+‖Lq(H3

j )
+ |λ|1/2‖ζ̃3

j h−‖Lq(H3
j )
+ ‖ζ̃3

j h−‖W1
q (H3

j )
).

(100)

for any λ ∈ Γε,λ0 , because |λ| ≥ λ0 ≥ 1.

5.3. Construction of Parametrices

For G = (g+, g−, h, h−) ∈ Xq(Ω), we define parametrices U±(λ) by:

U+(λ)G =
∞

∑
j=1

ζ1
j v1

+j + ∑
i=2,4

∞

∑
j=1

ζ i
jv

i
j, U−(λ)G =

∞

∑
j=1

ζ1
j v1
−j + ∑

i=3,5

∞

∑
j=1

ζ i
jv

i
j (101)

Set Gλv = (λv, λ1/2∇̄v, ∇̄2v), where ∇̄v = (∇v, v) and ∇̄2v = (∇2v,∇v, v), and
Bi

j = Bdi (xi
j) for notational simplicity. By (100),

|(Gλ(ζ
1
j v1
±j), ϕ±)Ω± | ≤ C(‖g±‖Lq(Ω±∩B1

j )
+ |λ|1/2‖h‖Lq(Ω∩B1

j )
+ ‖h‖W1

q (Ω∩B1
j )
)‖ϕ‖Lq′ (Ω±∩Bi

j)
,

|(Gλ(ζ
i
jv

i
j), ϕ+)Ω+

| ≤ C‖g+‖Lq(Ω+∩Bi
j)
‖ϕ‖Lq′ (Ω+∩Bi

j)
(i = 2, 4),

|(Gλ(ζ
3
j v3

j ), ϕ−)Ω− | ≤ C(‖g−‖Lq(Ω−∩B3
j )
+ |λ|1/2‖h−‖Lq(Ω−∩B3

j )
+ ‖h−‖W1

q (Ω−∩B3
j )
)‖ϕ‖Lq′ (Ω−∩B3

j )

|(Gλ(ζ
5
j v5

j ), ϕ−)Ω− | ≤ C‖g−‖Lq(Ω−∩B5
j )
‖ϕ‖Lq′ (Ω−∩B5

j )
,

for any ϕ ∈ Lq′(Ω±)N , and so, by Lemma 6 and Lemma 7, the infinite sums in (101)
exist in the strong topology of W2

q (Ω±)N and U±(λ) ∈ Hol(Γε,λ0 ,L(Xq(Ω), W2
q (Ω±)N)).

By (37), (42), (92), (93), (95)–(97), and (101), setting w± = U±(λ)G, we have:

λw+ − γ−1
0+(Div S+(w+) + δ∇(γ3+div w+)) = g+ − R1

+(λ)G in Ω+,

λw− − ρ−1
0−(Div S−(w−)−∇K(w+, w−)) = g− − (R1

−(λ)G− L(λ)G) in Ω+,

(S+(w+) + δγ3+div w+I)n|Γ+0 − (S−(w−)− K(w+, w−)I)n|Γ−0 = h− R2(λ)G,

w+|Γ+0 = w−|Γ−0, (S−(w−)− K(w+, w−)I)n−|Γ− = h− − R3(λ)G,

(102)

where we set:
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R1
+(λ)G =

∞

∑
j=1

γ−1
0+[Div S+(ζ

1
j v1

+j)− ζ1
j Div S+(v1

+j) + δ{∇(γ3+div (ζ1
j v1

+j))− ζ1
j∇(γ3+div v1

+j)}]

+ ∑
i=2,4

∞

∑
j=1

γ−1
0+[Div S+(ζ

i
jv

i
j)− ζ i

jDiv S+(vi
j) + δ{∇(γ3+div (ζ i

jv
i
j))− ζ i

j∇(γ3+div vi
j)}]

R1
−(λ)G =

∞

∑
j=1

ρ−1
0−[Div S−(ζ1

j v1
−j)− ζ1

j Div S−(v1
−j)] + ∑

i=3,5

∞

∑
j=1

ρ−1
0−[Div S−(ζ i

jv
i
j)− ζ i

jDiv S−(v1
j )]

L(λ)G = ∇K(U+(λ)G, U−(λ)G)−
∞

∑
j=1
{ζ1

j∇K1
j (v

1
+j, v1

−j)− ζ3
j∇K3

j (v
3
j ) + ζ5

j∇K5
j (v

5
j )} (103)

R2(λ)G = −
∞

∑
j=1
{Tn1

j
[Ext−[S+(ζ

1
j v1

+j)− ζ1
j S+(v1

+j)]n
1
j ]− Tn1

j
[Ext+[S−(ζ1

j v1
−j)− ζ1

j S−(v1
−j)]n

1
j ]}

−
∞

∑
j=1
{div (ζ1

j v1
−j)− ζ1

j div v1
−j},

R3(λ)G = −
∞

∑
j=1
Tn3

j
[(S−(ζ3

j v3
j )− ζ3

j S−(v3
j ))n

3
j ] +

∞

∑
j=1
{div (ζ3

j v3
j )− ζ3

j div v3
j }.

Finally, we construct R-bounded solution operators that represent U±(λ)G. For
F = (F1, . . . , F6) ∈ Xq(Ω), we set:

U 1
±j(λ)F = T 1

±j(λ)ζ̃
1
j (F1, F2, F3, F4), U i

j (λ)F = T i
j (λ)ζ̃

i
jF1 (i = 2, 4),

U 3
j (λ)F = T 3

j (λ)ζ̃
3
j (F2, F5, F6), U 5

j (λ)F = T 5
j (λ)ζ̃

5
j F2.

(104)

Obviously,

vi
j = U i

j (λ)FλG (G = (g+, g−, h, h−) ∈ Xq(Ω)), (105)

where FλG = (g+, g−, λ1/2h, h, λ1/2h−, h−). By (98), we have:

∫ 1

0
‖

n

∑
k=1

rk(u)GλkU
i
j (λk)Fk‖

q
Lq(Ω)

du ≤ C
∫ 1

0
‖

n

∑
k=1

rk(u)Fk‖
q
Xq(Ω∩Bi

j)
du (106)

for any n ∈ N, {λk}n
k=1 ⊂ Γε,λ0 and {Fk}n

k=1 ⊂ Xq(Ω), where {rk(u)}n
k=1 are the same

as in Definition 3. By (98), Lemma 6, and Lemma 7, U 1
±(λ)F = ∑∞

j=1 ζ i
jU 1
±j(λ)F exists in

the strong topology of W2
q (Ω±)N . U i(λ)F = ∑∞

j=1 ζ i
jU i

j (λ)F exist in the strong topology of

W2
q (Ω±)N with Ωi = Ω+ for i = 2, 4 and Ωi = Ω− for i = 3, 5, and:

‖
n

∑
k=1

akGλkU
1
±(λk)Fk‖

q
Lq(Ω±)

≤ Cq′ ,L

∞

∑
j=1
‖

n

∑
k=1

akFk‖
q
Xq(Ω)

,

‖
n

∑
k=1

akGλkU
i(λk)Fk‖

q
Lq(Ωi)

≤ Cq′ ,L

∞

∑
j=1
‖

n

∑
k=1

akFk‖
q
Xq(Ω)

(i = 2, . . . , 5)

for any complex numbers ak, λk ∈ Γε,λ0 , and Fk ∈ Xq(Ω) (k = 1, . . . , n, n ∈ N). Setting
U+(λ)F = U 1

+(λ)F + ∑i=3,5 U i(λ)F and U−(λ)F = U 1
−(λ)F + ∑i=2,4 U i(λ)F, by the facts

that vi
j = U i

j (λ)FλG and (106), we have:

U±(λ) ∈ Hol(Γε,λ0 ,L(Xq(Ω), W2
q (Ω±)

N)), U±(λ)FλG = U±(λ)G (G ∈ Xq(Ω)),

RL(Xq(Ω),W2−j
q (Ω±)N)

({(τ∂τ)
`(λj/2U±(λ)) | λ ∈ Γε,λ0}) ≤ C (` = 0, 1, j = 0, 1, 2). (107)
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5.4. Estimates of the Remainder Terms

We introduce the operators that represent R1
+(λ), R1

−(λ), R2(λ), and R3(λ)
as follows:

R1
+(λ)F =

∞

∑
j=1

γ−1
0+[Div S+(ζ

1
j U 1

+j(λ)F)− ζ1
j Div S+(U 1

+j(λ)F)

+ δ{∇(γ3+div (ζ1
j U 1

+j(λ)F))− ζ1
j∇(γ3+div (U 1

+j(λ)F))}]

+ ∑
i=2,4

∞

∑
j=1

γ−1
0+[Div S+(ζ

i
jU i

j (λ)F)− ζ i
jDiv S+(U i

j (λ)F)

+ δ{∇(γ3+div (ζ i
jU i

j (λ)F))− ζ i
j∇(γ3+div (U i

j (λ)F)}];

R1
−(λ)F =

∞

∑
j=1

ρ−1
0−[Div S−(ζ1

j U 1
−j(λ)F)− ζ1

j Div S−(U 1
−j(λ)F)]

+ ∑
i=3,5

∞

∑
j=1

ρ−1
0−[Div S−(ζ i

jU i
j (λ)F)− ζ i

jDiv S−(U i
j (λ)F)] + L(λ)F;

L(λ)F = ∇K(U+(λ)F,U−(λ)F)−
∞

∑
j=1

ζ1
j∇K1

j (U 1
+j(λ)F,U 1

−j(λ)F)

−
∞

∑
j=1

ζ3
j∇K3

j (U
3
j (λ)F)−

∞

∑
j=1

ζ5
j∇K5

j (U
5
j (λ)F);

R2(λ)F = −
∞

∑
j=1

[Tn1
j
[Ext−[S+(ζ

1
j U 1

+j(λ)F)− ζ1
j S+(U 1

+j(λ)F)]n
1
j

− Tn1
j
[Ext+[S−(ζ1

j U 1
−j(λ)F)− ζ1

j S−(U 1
−j(λ)F)]n

1
j ]− {div (ζ1

j U 1
−j(λ)F)− ζ1

j div (U 1
−j(λ)F)}],

R3(λ)F = −
∞

∑
j=1

[Tn3
j
[(S−(ζ3

j U
3
j (λ)F)− ζ3

j S−(U 3
j (λ)F))n

3
j ] + div (ζ3

j U
3
j (λ)F)− ζ3

j divU 3
j (λ)F] (108)

for any F ∈ Xq(Ω). Setting:

R(λ)F = (R1
+(λ)F,R1

−(λ)F + L(λ)F,R2(λ)F,R3(λ)F),

R(λ)G = (R1
+(λ)G, R1

−(λ)G + L(λ)G, R2(λ)G, R3(λ)G),

we have:

FλR(λ)FλG = FλR(λ)G, (109)

RL(Xq(Ω))({(τ∂τ)
`FλR(λ) | λ ∈ Γε,λ0}) ≤ Cσ + Cσλ−1/2

0 (` = 0, 1) (110)

for any σ > 0 with some constant Cσ depending on σ. If we prove (110), then, choosing
σ > 0 so small and λ0 ≥ 1 so large that Cσ + Cσλ−1/2

0 ≤ 1/2, we see that I − FλR(λ)
exists in Hol(Γε,λ0 ,L(Xq(Ω))). Thus, in view of (107), (109), (110), and (102), we see easily
that S±(λ) = U±(λ)(I − FλR(λ))−1 has a requiredR-bounded solution operator to (41),
which completes the proof of Theorem 8.

Thus, we prove (110) in the following. By direct use of Lemma 6, Lemma 7, Lemma 1,
Lemma 2, Remark 9, (98), and (104), we can estimateR1

±(λ),R2(λ), andR3(λ), except for
L(λ). In fact, for example,

|(Div S±(ζ1
j U 1
±j(λ)F)− ζ1

j Div S±(U 1
±j(λ)F), ϕ)Ω± | ≤ C‖U 1

±j(λ)F‖W1
q (H1

±j)
‖ϕ‖Lq′ (Ω±∩B1

j )

for any ϕ ∈ Lq′(Ω±), and so, there exists an operator familyR11
± (λ) ∈ Hol(Γε,λ0 ,L(Xq(Ω),

Lq(Ω±))) such thatR11
± (λ)F = ∑∞

j=1{Div S±(ζ1
j U 1
±j(λ)F)− ζ1

±Div S±(U i
±j(λ)F)} exists in
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the strong topology of Lq(Ω±) and ‖R11
± (λ)F‖

q
Lq(Ω±)

≤ C ∑∞
j=1 ‖U 1

±j(λ)F‖
q
W1

q (H1
±j)

. By (98)

and the monotone convergence theorem, for any n ∈ N, {λk}n
k=1 ⊂ Γε,λ0 , and

{Fk}n
k=1 ⊂ Xq(Ω):∫ 1

0
‖

n

∑
k=1

rk(u)R11
± (λk)Fk‖

q
Lq(Ω±)

du ≤ C
∞

∑
j=1

∫ 1

0
‖

n

∑
k=1

rk(u)U 1
±j(λk)Fk‖

q
W1

q (H1
±j)

du

≤ C
∞

∑
j=1

{
λ
− q

2
0

∫ 1

0
‖

n

∑
k=1

rk(u)λ
1
2
k∇U

1
±j(λk)Fk‖

q
Lq(H1

±j)
du + λ

−q
0

∫ 1

0
‖

n

∑
k=1

rk(u)λkU 1
±j(λk)Fk‖

q
Lq(H1

±j)
du

}

≤ Cλ
− q

2
0

∞

∑
j=1

∫ 1

0
‖

n

∑
k=1

rk(u)Fk‖
q
Xq(Ω∩Bi

j)
du ≤ Cλ

− q
2

0

∫ 1

0
‖

n

∑
k=1

rk(u)Fk‖
q
Xq(Ω)

du,

from which it follows that RL(Xq(Ω))({R11
± (λ) | λ ∈ Γε,λ0}) ≤ Cλ−1/2

0 . The other terms
except for L(λ) can be estimated in the same manner. Namely, we have:

RL(Xq(Ω),Lq(Ω±)N)({(τ∂τ)
`R1
±(λ) | λ ∈ Γε,λ0}) ≤ Cλ−1/2

0 ,

RL(Xq(Ω),Lq(Ω)N)({(τ∂τ)
`(λ1/2R2(λ)) | λ ∈ Γε,λ0}) ≤ Cλ−1/2

0 ,

RL(Xq(Ω),W1
q (Ω))({(τ∂τ)

`R2(λ) | λ ∈ Γε,λ0}) ≤ Cλ−1/2
0 ,

RL(Xq(Ω),Lq(Ω−)N)({(τ∂τ)
`(λ1/2R3(λ)) | λ ∈ Γε,λ0}) ≤ Cλ−1/2

0 ,

RL(Xq(Ω),W1
q (Ω−))

({(τ∂τ)
`R3(λ) | λ ∈ Γε,λ0}) ≤ Cλ−1/2

0 .

Next, we estimate L(λ). We use the following two lemmas due to Shibata [4].

Lemma 8. Let 1 < q < ∞. Then, there exists a constant c independent of j ∈ N such that:

‖ψ‖W1
q (Ω−∩Bi

j)
≤ c‖∇ψ‖Lq(Ω−∩Bi

j)
for any ψ ∈ Ŵ1

q,0(Ω−), (i = 1, 3),

‖ψ− cj(ψ)‖W1
q (Ω−∩B5

j )
≤ c‖∇ψ‖Lq(Ω−∩B5

j )
for any ψ ∈ Ŵ1

q,0(Ω−),

where cj(ψ) are suitable constants depending on ψ.

Lemma 9. Let 1 < q < ∞. Then, there exists a constant c independent of j ∈ N such that:

‖K1
j (u+, u−)‖Lq(H1

−j)
≤ c ∑

±
(‖∇u±‖Lq(H1

±j∩B1
j )
+ ‖∇u±‖1−1/q

Lq(H1
±j)
‖∇2u±‖1/q

Lq(H1
±j)

);

‖Ki
j(v)‖Lq(Hi

j∩Bi
j)
≤ c(‖∇v‖Lq(Hi

j)
+ δi‖∇v‖1−1/q

Lq(Hi
j)
‖∇2v‖1/q

Lq(Hi
j)
)

for any u± ∈W2
q (H1

±j) and v ∈W2
q (Hi

j) (i = 3, 5), where δi are symbols defined by δ3 = 1 and
δ5 = 0.

Lemma 10. Let 1 < q < ∞. Then,

‖v‖Lq(Γi
j)
≤ Cq(‖v‖Lq(Ω−) + ‖∇v‖1/q

Lq(Ω−)
‖v‖1−1/q

Lq(Ω−)
)

for i = 1, 3 and j ∈ N, where Cq is a constant independent of j ∈ N.
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To estimate L(λ), we write L(λ)F = ∇L1(λ)F + L2(λ)F with:

L1(λ)F = K(U+(λ)F,U−(λ)F)−
∞

∑
j=1

ζ1
j K1

j (U 1
+j(λ)F,U 1

−j(λ)F)

−
∞

∑
j=1

ζ3
j K3

q(U 3
j (λ)F)−

∞

∑
j=1

ζ5
j K5

j (U
5
j (λ)F),

L2(λ)F =
∞

∑
j=1

(∇ζ1
j )K

1
j (U 1

+j(λ)F,U 1
−j(λ)F) +

∞

∑
j=1

(∇ζ3
j )K

3
j (U

3
j (λ)F) +

∞

∑
j=1

(∇ζ5
j )K

5
j (U

5
j (λ)F).

By (98), (99), Lemma 9, Lemma 6, and Lemma 7, we have:

RL(Xq(Ω),Lq(Ω−)N))({(τ∂τ)
`L2(λ) | λ ∈ Γε,λ0}) ≤ Cσ + Cσλ−1/2

0 .

Denoting the duality of Ŵ−1
q′ ,0(Ω−)

∗ and Ŵ1
q′ ,0(Ω−) by < ·, · > and using (38) and (94),

we define an operator L(λ) acting on F ∈ Xq(Ω) by the following formulas: For any
ϕ ∈ Ŵ1

q′ ,0(Ω−):

(∇L1(λ)F,∇ϕ)Ω− =< L(λ)F, ϕ > (111)

with:

< L(λ)F, ϕ > =
∞

∑
j=1

ρ−1
0−(Div S−(ζ1

j U 1
−j(λ)F)− ζ1

j Div S−(U 1
−j(λ)F),∇ϕ)H1

−j

−
∞

∑
j=1

ρ−1
0−(∇div (ζ1

j U 1
−j(λ)F)− ζ1

j∇divU 1
−j(λ)F,∇ϕ)H1

−j

+
∞

∑
j=1

ρ−1
0−(K

1
j (U 1

+j(λ)F,U 1
−j(λ)F)n

1
j , (∇ζ1

j )ϕ)Γ1
j

− 2
∞

∑
j=1

ρ−1
0−(K

1
j (U 1

+j(λ)F,U 1
−j(λ)F)(∇ζ1

j ),∇ϕ)H1
−j

−
∞

∑
j=1

ρ−1
0−(K

1
j (U 1

+j(λ)F,U 1
−j(λ)F)(∆ζ1

j ), ϕ)H1
−j

+
∞

∑
j=1

ρ−1
0−(Div S−(ζ3

j U
3
j (λ)F)− ζ3

j Div S−(U 3
j (λ)F),∇ϕ)H3

j

−
∞

∑
j=1

ρ−1
0−(∇div (ζ3

j U
3
j (λ)F)− ζ3

j∇divU 3
j (λ)F,∇ϕ)H3

j

+
∞

∑
j=1

ρ−1
0−(K

3
j (U

3
j (λ)F)n

3
j , (∇ζ3

j )ϕ)Γ3
j
− 2

∞

∑
j=1

ρ−1
0−(K

3
j (U

3
j (λ)F)(∇ζ3

j ),∇ϕ)H3
j

−
∞

∑
j=1

ρ−1
0−(K

3
j (U

3
j (λ)F)(∆ζ3

j ), ϕ)H3
j

+
∞

∑
j=1

ρ−1
0−(Div S−(ζ5

j U
5
j (λ)F)− ζ5

j Div S−(U 5
j (λ)F),∇ϕ)H5

j

−
∞

∑
j=1

ρ−1
0−(∇div (ζ3

j U
3
j (λ)F)− ζ5

j∇divU 5
j (λ)F,∇ϕ)H5

j

− 2
∞

∑
j=1

ρ−1
0−(K

5
j (U

5
j (λ)F)(∇ζ3

j ),∇ϕ)H3
j
−

∞

∑
j=1

ρ−1
0−(K

5
j (U

5
j (λ)F)(∆ζ5

j ), ϕ− cj(ϕ)H5
j
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By (98), (99), Lemma 8, Lemma 9, and Lemma 10, we have:

‖L(λ)F‖Ŵ1
q′ ,0(Ω−)

∗ ≤ Cσ(∑
±

∞

∑
j=1
‖U 1
±j(λ)F‖

q
W2

q (Ω±∩B1
j )
+

∞

∑
j=1
‖U 3

j (λ)F‖
q
W2

q (Ω−∩B3
j )
)

+ Cσ(∑
±

∞

∑
j=1
‖U 1
±j(λ)F‖

q
W1

q (Ω±∩B1
j )
+

∞

∑
j=1
‖U 3

j (λ)F‖
q
W1

q (Ω−∩B3
j )
),

which, combined with (98) and (99), yields that:

RL(Xq(Ω),Ŵ1
q′ ,0(Ω−)

∗)({(τ∂τ)
`L(λ) | λ ∈ Γε,λ0}) ≤ Cσ + Cσλ−1/2

0 .

Identifying Ŵ1
q,0(Ω−) = {∇ϕ | ϕ ∈ Ŵ1

q′ ,0(Ω−)} ⊂ Lq′(Ω−)N , by the Hahn–Banach

theorem, there exists an operator family M(λ) ∈ Hol (Γε,λ0 ,L(Xq(Ω−), Lq(Ω−)N)) such
that (M(λ)F,∇ϕ)Ω− =< L(λ)F, ϕ > and:

RL(Xq(Ω),Lq(Ω−)N)({(τ∂τ)
`M(λ) | λ ∈ Γε,λ0}) ≤ Cσ + Cσλ−1/2

0 .

Moreover, by (39), (94), and (96), there exists an operator family m(λ) ∈ Hol (Γε,λ0 ,L
(Xq(Ω), W1

q (Ω−))) such that m(λ)F = L1(λ)F on Γ and Γ−, and:

RL(Xq(Ω),W1
q (Ω−))

({(τ∂τ)
`m(λ) | λ ∈ Γε,λ0}) ≤ Cσ + Cσλ−1/2

0 .

Since the weak Dirichlet problem is assumed to be uniquely solvable, we have
L1(λ)F = m(λ)F +K(M(λ)F−∇m(λ)F), which yields that:

RL(Xq(Ω),Lq(Ω)N)({(τ∂τ)
`(∇L1(λ)) | λ ∈ Γε,λ0}) ≤ Cσ + Cσλ−1/2

0 .

Therefore, we have (110), and so, the proof of Theorem 8 is complete.

5.5. A Proof of Theorem 3

Instead of Problem (22), we consider:

γ0+∂tu+ −Div (S+(u+)− δ∇(γ3+u+) = g+ in Ω+ × (0, ∞),

ρ0−∂tu− −Div S−(u−) +∇p− = g− in Ω− × (0, ∞),

div u− = f− = div f− in Ω− × (0, ∞),

(S+(u+) + δγ3+div u+I)n|Γt+0 − (S−(u−)− p−I)n|Γt−0 = h for t > 0,

u+|Γt+0 − u−|Γt−0 = 0 for t > 0,

u+|Γ+ = 0, (S−(u−)− p−I)n−|Γ− = h− for t > 0,

u+|t=0 = u0+ in Ω+, u−|t=0 = u0− in Ω−.

(112)

We first consider the generation of the C0 analytic semigroup associated with the
following equations:

∂tp+ + γ2+div w+ = 0 in Ω+ × (0, ∞),

γ0+∂tw+ −Div (S+(w+) +∇(γ1+p+) = 0 in Ω+ × (0, ∞),

ρ0−∂tw− −Div S−(w−) +∇K(w+, w−) = 0 in Ω− × (0, ∞),

(S+(w+)− γ1+p+I)n|Γt+0 − (S−(w−)− K(w+, w−)I)n|Γt−0 = 0 for t > 0,

w+|Γt+0 −w−|Γt−0 = 0 for t > 0,

w+|Γ+ = 0, (S−(w−)− K(w+, w−)I)n−|Γ− = 0 for t > 0,

(p+, w+)|t=0 = (p0,+, w0+) in Ω+, w−|t=0 = w0− in Ω−.

(113)
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In view of Theorem 8, let u± = S±(λ)(g+, g−, 0, 0, 0, 0), and set θ+ = λ−1( f+ −
γ2+div u+), then u± and θ+ are unique solutions of Equation (28) with p− = K(u+, u−)
and f− = f− = h = h− = 0 and possess the estimates:

|λ|‖θ+‖W1
q (Ω+)

+ ∑
±
(|λ|‖u±‖Lq(Ω±) + ‖u±‖W2

q (Ω±)
) ≤ C(‖ f+‖W1

q (Ω+)
+ ‖g+‖Lq(Ω+) + ‖g−‖Lq(Ω−)) (114)

for any λ ∈ Γε,λ0 . Here, using the same argument as in Assertion 2 in Sect.2, we see that
u− ∈ Jq(Ω−), and so, div u− = 0 in (28). Set:

Xq(Ω) = {(θ+, u+, u−) | θ+ ∈W1
q (Ω+), u+ ∈ Lq(Ω+), u− ∈ Jq(Ω−)},

Yq(Ω) = {(θ+, u+, u−) ∈ Xq(Ω) | (S+(u+)− γ1+θ+I)n|Γ+0 − (S−(u−)− K(u+, u−)I)n|Γ−0 = 0,

(S−(u−)− K(u+, u−)I)n−|Γ− = 0, u+|Γ+0 = u−|Γ−0, u+|Γ+ = 0}.

Then, Problem (113) generates a C0 analytic semigroup on Xq(Ω). Let Dq(Ω) =
(Xq, Yq )1−1/p,p, where (·, ·)1−1/p,p denotes a real interpolation functor. By a standard real
interpolation method (trace method), we see that Problem (113) admits unique solutions
p+ and w± with:

p+ ∈W1
p((0, ∞), W1

q (Ω+)), w± ∈W1
p((0, ∞), Lq(Ω±)N) ∩ Lp((0, ∞), W2

q (Ω±)
N), (115)

possessing the estimate:

‖e−γtp+‖Lp((0,∞),W1
q (Ω)) + ∑

±
‖e−γtw±‖Lp((0,∞),Lq(Ω±)) + ‖e

−γt∇K(w+, w−)‖Lp((0,∞),Lq(Ω−))

≤ C(‖p0+‖Lp(R,W1
q (Ω+))

+ ∑
±
‖w0±‖B2(1−1/p)

q,p (Ω±)
)

(116)

for any γ > λ0. Moreover, w− ∈ Jq(Ω−) for any t ∈ (0, ∞). The uniqueness follows from
Duhamel’s principle.

We now consider equations:

∂tq+ + γ2+div v+ = f+ in Ω+ ×R,

γ0+∂tv+ −Div S+(v+) +∇(γ1+q+) = g+ in Ω+ ×R,

ρ0−∂tv− −Div S−(v−) +∇q− = g− in Ω− ×R,

div v− = f− = div f− in Ω− ×R,

(S+(v+)− γ1+q+I)n|Γt+0 − (S−(v−)− q−I)n|Γt−0 = h|Γ for t ∈ R,

v+|Γt+0 − v−|Γt−0 = 0 for t ∈ R,

v+|Γ+ = 0, (S−(v−)− q−I)n−|Γ− = h− for t ∈ R.

(117)

Applying the Laplace transform to (117) and setting v̂± = L[v±](λ) and q̂± = L[q±](λ),
we have:

λq̂+ + γ2+div v̂+ = f̂+ in Ω+,

λv̂+ − γ−1
0+(Div S+(v̂+)−∇(γ1+q̂+)) = ĝ+ in Ω+,

λv̂− − ρ−1
0−(Div S−(v̂−)−∇q̂−) = ĝ− in Ω−,

div v̂− = f̂− = div f̂− in Ω−,

(S+(v̂+)− γ1+q̂+I)n|Γ+0 − (S−(v̂−)− q̂−I)n|Γ−0 = ĥ|Γ,

v̂+|Γ+0 − v̂−|Γ−0 = 0,

v̂+|Γ+ = 0, (S−(v̂−)− q̂−I)n−|Γ− = ĥ−|Γ− .

(118)

Applying Theorem 5 yields that v̂± = A0
±(λ)F0

λG0, q̂+ = λ−1( f̂+ − γ2+div v̂+), and
q̂− = B0

−(λ)F0
λG0 satisfy Equation (118), and so, v± = L−1[v̂±] and q± = L−1[q̂±] satisfy

Equation (118). Moreover, applying Theorem 4 yields that:
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‖e−γtq+‖W1
p(R,W1

q (Ω+))
+ ∑
±
(‖e−γt∂tv±‖Lp(R,Lq(Ω±)) + ‖e

−γtv±‖Lp(R,W2
q (Ω±))

) + ‖∇q−‖Lp(R,Lq(Ω−))

≤ C{∑
±
‖e−γtg±‖Lp(R,Lq(Ω±)) + ‖e

−γtΛ1/2
γ ( f−, h−)‖Lp(R,Lq(Ω−)) + ‖e

−γt( f−, h−)‖Lp(R,W1
q (Ω−))

+ ‖e−γtΛ1/2
γ h‖Lp(R,Lq(Ω)) + ‖e−γth‖Lp(R,W1

q (Ω))} for any γ > λ0. (119)

Here, we may assume that λ0 ≥ 1.
To prove Theorem 3, setting θ+ = q+ + p+, u± = v± + w± and p− = q− + θ− in (22),

we see that p+, w±, and θ− = K(u+, u−) satisfy Equation (113) with p0+ = θ0+ − q+|t=0
and w0± = u0± − v±|t=0. By compatibility conditions (25) and the assumption that 2/p +
N/q 6= 1, 2, we see that (θ0+ − q+|t=0, u0+ − v+|t=0, u0− − v−|t=0) ∈ (Xq, Yq)1−1/p,p, and
so, Problem (113) admits unique solutions p+ and w± satisfying (115) and (116). By the
real interpolation theorem, we have:

‖p+|t=0‖W1
q (Ω+)

≤ Cγ‖e−γtp+‖W1
p((0,∞),W1

q (Ω+))
,

‖v±|t=0‖B2(1−1/p)
q,p (Ω±)

≤ C(‖e−γt∂tv±‖Lp((0,∞),Lq(Ω±)) + ‖e
−γtv±‖Lp((0,∞),W2

q (Ω±))
),

which, combined with (119), yields the existence part of Theorem 3, because w− ∈ Jq(Ω−)
for any t > 0. The uniqueness follows from Duhamel’s principle or the existence theorem
of dual problems (cf. ([20] Section 3.5.10)). This completes the proof of Theorem 3.

6. A Proof of Theorem 1

In what follows, we assume that 2 < p < ∞, N < q < ∞, 2/p + N/q < 1, that Ω± are
uniform W2−1/q

q domains in RN (N ≥ 2), and that the weak Dirichlet problem is uniquely
solvable in Ω−. By Sobolev’s imbedding theorem, we have:

W1
q (Ω±) ⊂ L∞(Ω±), ‖

m

∏
j=1

f j‖W1
q (Ω±)

≤ C
m

∏
j=1
‖ f j‖W1

q (Ω±)
. (120)

Let θ0+ ∈ W1
q (Ω+) and u0± ∈ B2(1−1/p)

q,p (Ω±) be initial data satisfying the compat-
ibility condition (20), range condition (21), and ‖θ0+‖W1

q (Ω) + ‖v0+‖B2(1−1/p)
q,p (Ω+)

+ ‖v0−

‖
B2(1−1/p)

q,p (Ω+)
≤ R1.

To prove Theorem 1, we follow the argument due to Shibata and Shimizu ([21]
Section 2). Let Π+ and Z± be solutions to linear problem:

∂tΠ+ + (ρ0+ + θ0+)div Z+ = 0 in Ω+,

(ρ0+ + θ0+)∂tZ+ −Div S+(Z+) +∇(p′(ρ0+ + θ0+)Π+) = g+ in Ω+,

ρ0−∂tZ− −Div S−(Z−) +∇p− = 0 in Ω−,

div Z− = 0 in Ω−,

(S+(Z+)− (p′(ρ0+ + θ0+)Π+I)n|Γ+0 − (S−(Z−)− p−I)n|Γ−0 = h,

Z+|Γ+0 − Z−|Γ−0 = 0, Z+|Γ+ = 0, (S−(Z−)− p−I)n−|Γ− = 0

(121)

for any t > 0 subject to the initial condition: (Π+, Z+)|t=0 = (0, v0+) in Ω+ and Z−|t=0 =
v0− in Ω− with some pressure term p−, where g+ = −p′(ρ0+ + θ0+)∇θ0 and h =
−(p(ρ0++ θ0+)− p(ρ0+))n. Since v0± satisfy the compatibility condition (20), by Theorem 3,
we know the unique existence of Π+ and Z± with:

Π+ ∈W1
p,γ0

(R+, W1
q (Ω+)), Z± ∈W1

p,γ0
(R+, Lq(Ω±)) ∩ Lp,γ0(R+, W2

q (Ω±)) (122)

with large γ0 depending on R1 possessing the estimate:
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‖e−γtΠ+‖W1
p(R+ ,W1

q (Ω+))
+ ∑

`=+,−
{‖e−γtZ`‖W1

p(R+ ,Lq(Ω`))
+ ‖e−γtZ`‖Lp(R+ ,W2

q (Ω`))
}

≤ CR1 ∑
`=+,−

‖v0`‖B2(1−1/p)
q,p (Ω`)

≤ CR1 R1 (123)

for any γ ≥ γ0. In the following, γ is fixed such as γ ≥ γ0. Let Π0
+ be the zero extension of

Π+ to t < 0 and Z̃e
± be the even extension of Z± to t < 0, that is:

Π0
+(x, t) =

{
Π+(x, t) (t ≥ 0),
0 (t < 0),

Z̃e
±(x, t) =

{
Z±(x, t) (t ≥ 0),
Z±(x,−t) (t < 0).

Let ψ(t) be a function in C∞(R) such that ψ(t) = 1 for t > −1/2 and ψ(t) = 0 for
t < −1, and set Ze

± = ψZ̃e
±. By (123):

‖e−γtΠ0
+‖W1

p (R,W1
q (Ω+)) + ∑

`=+,−
{‖e−γtZe

`‖W1
p (R,Lq(Ω`))

+ ‖e−γtZe
`‖Lp(R,W2

q (Ω`))} ≤ CR1 R1. (124)

We look for a solution to (11) of the form: θ+ = Π0
+ + ρ+ and u± = Ze

± + v±, so that ρ+
and v± enjoy the equations:

∂tρ+ + (ρ0+ + θ0+)div v+ = F+(Π0
+ + ρ+, Ze

+ + v+) in Ω+,

(ρ0+ + θ0+)∂tv+ −Div S+(v+) +∇(p′(ρ0+ + θ0+)ρ+) = G+(Π0
+ + ρ+, Ze

+ + v+) in Ω+,

ρ0−∂tv− −Div S−(v−) +∇p− = G−(Ze
− + v−) in Ω−,

div v− = F−(Ze
− + v−) = div F−(Ze + v−) in Ω−,

(S+(v+)− (p′(ρ0+ + θ0+)ρ+I)n|Γ+0 − (S−(v−)− p−I)n|Γ−0 = H(Π0
+ + ρ+, Ze

± + v±)|Γ,

v+|Γ+0 = v−|Γ−0, v+|Γ+ = 0, (S−(v−)− p−I)n−|Γ− = H−(Ze
− + v−)|Γ− (125)

for 0 < t < T subject to the initial condition: (ρ+, v+)|t=0 = (0, 0) in Ω+ and v−|t=0 = 0
in Ω− with some pressure term p−. We solve (125) by the contraction mapping principle.
For this purpose, we introduce an underlying space IR,T defined by:

IR,T = {(ρ+, v+, v−) | (ρ+, v+)|t=0 = (0, 0) in Ω+, v−|t=0 = 0 in Ω−,

ρ+ ∈W1
q ((0, T), W1

q (Ω+)), v± ∈W1
p((0, T), Lq(Ω±)N) ∩ Lp((0, T), W2

q (Ω±)
N),

‖ρ+‖W1
p((0,T),W1

q (Ω+))
+ ∑

`=+,−
(‖v`‖W1

q ((0,T),Lq(Ω`))
+ ‖v`‖Lp((0,T),W2

q (Ω`))
) ≤ R}. (126)

We choose T > 0 so small eventually that we may assume that 0 < T < 1. We choose
R > 0 large enough that CR1 R1 ≤ R in (124) in such a way that:

‖e−γtΠ0
+‖W1

p (R,W1
q (Ω+)) + ∑

`=+,−
{‖e−γtZe

`‖W1
p (R,Lq(Ω`))

+ ‖e−γtZe
`‖Lp(R,W2

q (Ω`))} ≤ R. (127)

In the following, C denotes a generic constant depending on R1, but we do not mention
this dependence. For any function f defined on (0, T) with f (x, 0) = 0, f 0 denotes the
zero extension of f to t < 0, and we define E[ f ](x, t) by E[ f ](x, t) = f 0(x, t) for t ≤ T and
E[ f ](x, t) = f 0(x, 2T− t) for t > T. Note that E[ f ] = 0 for t 6∈ [0, 2T] and that ∂tE[ f ] = ∂t f
for 0 < t < T, ∂tE[ f ](·, t) = −(∂t f )(·, 2T− t) for T < t < 2T, and ∂tE[ f ] = 0 for t 6∈ [0, 2T].
For (κ+, w+, w−) ∈ IR,T , we set:

F1[κ+] = Π0
+ + E[κ+], F2±[w±] = Ze

± + E[w±], F3±[w±] = E
[∫ t

0
∇F2±[w±](·, s) ds

]
.

Note that:
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F1[κ+] = Π0
+ + κ+, F2±[w±] = Ze

± + w±, F3±[w±] =
∫ t

0
∇(Ze

± + w±) ds when t ∈ (0, T). (128)

Employing the same argument due to Shibata and Shimizu ([21] Section 2) and
using (126) and (127), we have:

‖F1[κ+]‖L∞(R,W1
q (Ω+))

≤ CRT1/p′ , ‖F3±[w±]‖L∞(R,W1
q (Ω±))

≤ CRT1/p′ , (129)

where we used the fact that F1[κ+](·, t) =
∫ t

0 (∂sF1[κ])(·, s) ds. In addition, by (126) and (127):

∑
`=+,−

{‖e−γtF2`[w`]‖W1
p(R,Lq(Ω`)

+ ‖e−γtF2`[w`]‖Lp(R,W2
q (Ω`))

}+ ‖e−γtF1[κ+]‖W1
p(R,W1

q (Ω+))
≤ CR. (130)

Moreover, we have:

‖e−γtΛ1/2
γ F2±[w±]‖Lp(R,W1

q (Ω±))
≤ CR, ‖e−γtF2±[w±]‖L∞(R,W1

q (Ω±))
≤ CR, (131)

‖∂tF3±[w±]‖L∞(R,Lq(Ω±)) ≤ CR, ‖∂tF3±[w±]‖Lp(R,W1
q (Ω±))

≤ CR. (132)

In fact, as was seen in Shibata and Shimizu [22], Lp,γ(R, W2
q (Ω±)) ∩W1

p,γ(R, Lq(Ω±))

is continuously imbedded into H1/2
p,γ (R, W1

q (Ω±)), and so, we have the first estimate in (131)
by (130). Replacing the Fourier multiplier theorem of the Mihlin type [23] by that of
Bourgain [12] (cf. Lemma 2) in the paper due to Calderón [24] about the Bessel potential
space (cf. Amann [25]), we see that H1/2

p,γ (R, Lq(Ω±)) is continuously imbedded into the
space {v | e−γtv ∈ L∞(R, Lq(Ω±))} if p > 2. Thus, we have:

‖e−γtF2±[w±]‖L∞(R,W1
q (Ω±))

≤ C‖e−γtΛ1/2
γ F2±[w±]‖Lp(R,W1

q (Ω±))
,

and therefore, the second estimate in (131) follows from the first one. Since ∂tF3±[w±] =
∇F2±[w±] for 0 ≤ t ≤ T, ∂tF3±[w±] = −∇F2±[w±](·, 2T − t) for T ≤ t ≤ 2T, and
∂tF3±[w±] = 0 for t 6∈ [0, 2T], (132) follows from (131) and (130).

We choose T ∈ (0, 1) so small that:

CRT1/p′ < ρ0/4, CRT1/p′ < σ/2, (133)

and therefore, we can define p(ρ0+ + θ0+ + τF1[κ+]) (0 ≤ τ ≤ 1) and V`(F3±[w±])
(` = 0, D,−1). Since V`(0) = 0 (` = 0, D,−1), by (129) and (132):

‖V`(F3±[w±])‖L∞(R,W1
q (Ω±))

≤ CRT1/p′ , ‖∂tV`(F3±[w±])‖L∞(R,W1
q (Ω±))

≤ CR,

‖∂tV`(F3±[w±])‖L∞(R,Lq(Ω±)) ≤ CR, ‖∂tV`(F3±[w±])‖Lp(R,W1
q (Ω±))

≤ CR
(134)

for ` = 0, D,−1.
We define f+(κ+, w+), g+(κ+, w+), g−(w−), f−(w−) = div f̃−(w−), h(κ+, w±), and

h−(w−) by:

f+(κ+, w+) = −{F1[κ+]div F2+[w+] + (ρ0+ + θ0+ + F1[κ+])tr(V0(F3+[w+])∇F2+[w+])},
g+(κ+, g+) = −F1[κ+]∂tF2+[w+] + Div {µ+VD(F3+[w+])∇F2+[w+]

+ (ν+ − µ+)tr(V0(F3+[w+])∇F2+[w+])I}
+ V0(F3+[w+])∇{µ+(D(F2+[w+]) + VD(F3+[w+])∇F2+[w+])

+ (ν+ − µ+)(div F2+[w+] + tr(V0(F3+[w+])∇F2+[w+])I}

−∇
(∫ 1

0
p′′(ρ0+ + θ0+ + τF1[κ+])(1− τ) dτ (F1[κ+])

2
)

−V0(F3+[w+])p′(ρ0+ + θ0+ + F1[κ+])∇(θ0+ + F1[κ+]),
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g−(w−) = −ρ0−V−1(F3−[w−])∂tF2−[w−] + µ−[Div (VD(F3−[w−])∇F2−[w−])

+ V−1(F3−[w−])Div {D(F2−[w−]) + VD(F3−[w−])∇F2−[w−]}],
f−(w−) = −tr(V0(F3−[w−])∇F2−[w−]),

f̃−(w−) = TV0(F3−[w−])F2−[w−],

h(κ+, w±) = h1(w±) + h2(κ+),

h−(w−) = −µ−Ext+
[
VD(F3−[w−])∇F2−[w2−]

+ V−1(F3−[w−])(D(F2−[w2−]) + VD(F3−[w−])∇F2−[w−])

+ (I + V−(F3−[w−]))(D(F2−[w2−]) + VD(F3−[w−])∇F2−[w−])V0(F3−[w−])
]
n−,

where we set:

h1(w±)

= −µ+Ext−[VD(F3+[w+])∇F2+[w+]]− (ν+ − µ+)Ext−[tr(V0[F3+[w+])∇F2+[w+])]n

− µ+Ext+[V−1(F3−[w−])]Ext−
[
D(F3+[w+]) + VD(F3+[w+])∇F2+[w+]

]
n

− µ+(I + Ext+[V−1(F3−[w−])])Ext−
[
D(F2+[w+]) + VD(F3+[w+])∇F2+[w+])V0(F3+[w+])

]
n

+ µ−Ext+
[
VD(F3−[w−])∇F2−[w−] + V−1(F3−[w−])(D(F2−[w−]) + VD(F3−[w−])∇F2−[w−])

+ (I + V−1(F3−[w−]))(D(F2−[w−]) + VD(F3−[w−])∇F2−[w−])V0(F3−[w−])
]
n

and:

h2(κ+) = Ext−
[∫ 1

0
(1− τ)p′′(ρ0+ + θ0+ + τF1[κ+]) dτ (F1[κ+])

2
]
n.

By (128), we have:

f+(κ+, w+) = F+(Π0
+ + κ+, Ze

+ + w+), g+(κ+, w+) = G+(Π0
+ + κ+, Ze

+ + w+),

g−(w−) = G−(Ze
− + w−), f−(w−) = F−(Ze

− + w−),

h(κ+, w±)|Γ = H(Π0
+ + κ+, Ze

± + w±), h−(w−)|Γ− = H−(Ze
− + w−)

(135)

for 0 < t < T. By (120), (129), (130), and (134), we have:

‖e−γt f+(κ+, w+)‖Lp(R,W1
q (Ω+))

+ ‖e−γtg+(κ+, w+)‖Lp(R,Lq(Ω+)) + ‖e
−γtg−(w−)‖Lp(R,Lq(Ω−))

+ ‖e−γt∇ f−(w−)‖Lp(R,Lq(Ω−)) + ‖e
−γt∇h(κ+, w±)‖Lp(R,Lq(Ω)) + ‖e−γt∇h−(w−)‖Lp(R,Lq(Ω−))

≤ CRT1/p′ (136)

with some constant CR depending on R. Since ∂tF3−[w−] = 0 for t 6∈ [0, T], we have:

‖e−γt∂t f̃−(w−)‖Lp(R,Lq(Ω−)) ≤ ‖V0(F3−[w−])‖L∞(R,W1
q (Ω−))‖e

−γtF2−[w−]‖W1
p (R,Lq(Ω−))

+ T1/p‖∂tV0(F3−[w−])‖L∞(R,Lq(Ω−))‖e
−γtF2−[w−]‖L∞(R,W1

q (Ω−)),

and so, by (134), (131), and (130), we have:

‖e−γt∂t f̃−(w−)‖Lp(R,Lq(Ω−)) ≤ CRT1/p. (137)

To estimate ‖e−γtΛ1/2
γ f−(w−)‖Lp(R,Lq(Ω−)), we use the following lemma due to Shi-

bata and Shimizu ([21] Lemma 2.6).
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Lemma 11. Let 2 < p < ∞, N < q < ∞, and 0 < T ≤ 1. Let f ∈ L∞(R, W1
q (Ω−)) ∩

W1
∞(R, Lq(Ω−)) and g ∈ H1/2

p,γ (R, Lq(Ω−)) ∩ Lp,γ(R, W1
q (Ω−)). If ∂t f ∈ Lp(R, W1

q (Ω−))
and f (·, t) = 0 for t 6∈ [0, 2T], then we have:

‖e−γtΛ1/2
γ ( f g)‖Lp(R,Lq(Ω−))

≤ C{‖ f ‖L∞(R,W1
q (Ω−))

+ T(q−N)/(pq)‖∂t f ‖1−N/(2q)
L∞(R,Lq(Ω−))

‖∂t f ‖N/(2q)
Lp(R,W1

q (Ω−))
}

× (‖e−γtΛ1/2
γ g‖Lp(R,Lq(Ω−)) + ‖e

−γtg‖Lp(R,W1
q (Ω−))

).

Applying Lemma 11 to f−(w−), we have:

‖e−γtΛ1/2
γ f−(w−)‖Lp(R,Lq(Ω−))

≤ C
{
‖V0(F3−[w−])‖L∞(R,W1

q (Ω−))

+T(q−N)/(pq)‖∂tV0(F3−[w−])‖
1−N/(2q)
L∞(R,Lq(Ω−))

‖∂tV0(F3−[w−])‖
N/(2q)
Lp(R,W1

q (Ω−))

}
× (‖e−γtΛ1/2

γ ∇F2−[w−]‖Lp(R,Lq(Ω−)) + ‖e
−γt∇F2−[w−]‖Lp(R,W1

q (Ω−))
),

and so, by (130) and (134):

‖e−γtΛ1/2
γ f−(w−)‖Lp(R,Lq(Ω−)) ≤ CR(T1/p′ + T(q−N)/(pq)). (138)

Analogously, we have:

‖e−γtΛ1/2
γ h1(w±)‖Lp(R,Lq(Ω±)) + ‖e

−γtΛ1/2
γ h−(w−)‖Lp(R,Lq(Ω−)) ≤ CR(T1/p′ + T(q−N)/(pq)). (139)

Since ‖e−γtΛ1/2
γ h2(κ+)‖Lp(R,Lq(Ω)) ≤ C‖e−γt∂th2(κ+)‖Lp(R,Lq(Ω)), by (120), (129),

and (130), we have:
‖e−γtΛ1/2

γ h2(κ+)‖Lp(R,Lq(Ω)) ≤ CRT1/p′ . (140)

Let ρ+ and v± be solutions to equations:

∂tρ+ + (ρ0+ + θ0+)div v+ = f+(κ+, w+) in Ω+,

(ρ0+ + θ0+)∂tv+ −Div S+(v+) +∇(p′(ρ0+ + θ0+)ρ+) = g+(κ+, w+) in Ω+,

ρ0−∂tv− −Div S−(v−) +∇p− = g−(w−) in Ω−,

div v− = f−(w−) = div f̃−(w−) in Ω−,

(S+(v+)− (p′(ρ0+ + θ0+)ρ+I)n|Γ+0 − (S−(v−)− p−I)n|Γ−0 = h(κ+, w±)|Γ,

v+|Γ+0 = v−|Γ−0, v+|Γ+ = 0, (S−(v−)− p−I)n−|Γ− = h−(w−)|Γ− (141)

for 0 < t < T subject to the initial condition: (ρ+, v+)|t=0 = (0, 0) in Ω+ and v−|t=0 = 0
in Ω− with some pressure term p−. By Theorem 3 and the estimates (136), (137), (139),
and (140), we have:

ρ+ ∈W1
p,γ,0(R, W1

q (Ω+)), v± ∈W1
p,γ,0(R, Lq(Ω±)) ∩ Lp,γ,0(R, W2

q (Ω±)). (142)

‖e−γtρ‖W1
q (R,W1

q (Ω+))
+ ∑

`=+,−
‖e−γt(∂tv`, Λ1/2

γ ∇v`,∇2v`)‖Lp(|BR,Lq(Ω`))
≤ CRTω (143)

with some constant CR depending on R and ω = min(1/p′, (q− N)/(pq)). By (135), ρ+
and v± satisfy equations:

∂tρ+ + (ρ0+ + θ0+)div v+ = F+(Π0
+ + κ+, Ze

+ + w+) in Ω+,

(ρ0+ + θ0+)∂tv+ −Div S+(v+) +∇(p′(ρ0+ + θ0+)ρ+) = G+(Π0
+ + κ+, Ze

+ + w+) in Ω+,

ρ0−∂tv− −Div S−(v−) +∇p− = G−(Ze
− + w−) in Ω−,
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div v− = F−(Ze
− + w−) in Ω−,

(S+(v+)− (p′(ρ0+ + θ0+)ρ+I)n|Γ+0 − (S−(v−)− p−I)n|Γ−0 = H(Π0
+ + κ+, Ze

± + w±),

v+|Γ+0 = v−|Γ−0, v+|Γ+ = 0, (S−(v−)− p−I)n−|Γ− = H−(Ze
− + w−)

for 0 < t < T subject to the initial condition: (ρ+, v+)|t=0 = (0, 0) in Ω+ and v−|t=0 = 0
in Ω− with some pressure term p−.

Let Φ be a map defined by Φ(κ+, w±) =, the restriction of (ρ+, v±) to the time interval
(0, T). Since:

‖ρ+‖W1
p((0,T),W1

q (Ω+))
+ ∑

`=+,−
{‖v`‖W1

q ((0,T),Lq(Ω`))
+ ‖v`‖Lp((0,T),W2

q (Ω`))
} ≤ CγeγTCRTω

as follows from (143), choosing T > 0 so small that CγeγTCRTω ≤ R, we see that Φ is the
map from IR,T into itself. Choosing T > 0 smaller if necessary, we can show that Φ is a
contraction map on IR,T , and so by the Banach fixed point theorem Φ has a unique fixed
point (ρ+, v+) that solves Equation (125) uniquely. This completes the proof of Theorem 1.
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