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Abstract. This paper is devoted to proving the existence of time-periodic solutions of one-phase or two-
phase problems for the Navier–Stokes equations with small periodic external forces when the reference
domain is close to a ball. Since our problems are formulated in time-dependent unknown domains, the
problems are reduced to quasilinear systems of parabolic equations with non-homogeneous boundary con-
ditions or transmission conditions in fixed domains by using the so-called Hanzawa transform. We separate
solutions into the stationary part and the oscillatory part. The linearized equations for the stationary part
have eigen-value 0, which is avoided by changing the equations with the help of the necessary condi-
tions for the existence of solutions to the original problems. To treat the oscillatory part, we establish the
maximal L p–Lq regularity theorem of the periodic solutions for the system of parabolic equations with
non-homogeneous boundary conditions or transmission conditions, which is obtained by the systematic
use ofR-solvers developed in Shibata (Diff Int Eqns 27(3–4):313–368, 2014; On theR-bounded solution
operators in the study of free boundary problem for the Navier–Stokes equations. In: Shibata Y, Suzuki Y
(eds) Springer proceedings in mathematics & statistics, vol. 183, Mathematical Fluid Dynamics, Present
and Future, Tokyo, Japan, November 2014, pp 203–285, 2016; Comm Pure Appl Anal 17(4): 1681–1721.
https://doi.org/10.3934/cpaa.2018081, 2018;R boundedness, maximal regularity and free boundary prob-
lems for the Navier Stokes equations, Preprint 1905.12900v1 [math.AP] 30 May 2019) to the resolvent
problem for the linearized equations and the transference theorem obtained in Eiter et al. (R-solvers and
their application to periodic L p estimates, Preprint in 2019) for the L p boundedness of operator-valued
Fourier multipliers. These approaches are the novelty of this paper.

1. Introduction

This paper is concerned with time-periodic solutions of one-phase and two-phase
problems for the Navier–Stokes equations. The periodic solutions for the Navier–
Stokes equations have been studied inmany articles [3–8,10–14,20,23] and references
therein. One well-known approach to prove the existence of periodic solutions is the
utilization of the Poincaré operator, which maps an initial value into the solution of the
PDE at time T , where T is the period of the data. A fixed point of the Poincaré operator
yields an initial value that induces a T -time-periodic solution. Such a utilization of
the Poincaré operator is naturally carried out under the global well-posedness of the
corresponding initial-boundary value problem for the bounded data on the right hand
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side of the equations. In the bounded domain case, this is deeply related with the
situation where 0 does not belong to the spectrum of the system of the linearized
equations. However, in many interesting problems in mathematical physics, we meet
the situation that 0 is in the spectrum.One-phase or two-phase problems for theNavier–
Stokes equations are typical examples. As explained in Sects. 1 and 2, the one-phase
and two-phase problems we treat in this paper are formulated by the Navier–Stokes
equations with free boundary condition or transmission condition on the interface in
a time-dependent domain �t , which is also unknown. Usually, �t is transformed to
a fixed domain � by introducing an unknown function representing the boundary or
the interface of �t . Thus, the problem treated here becomes a quasilinear system of
equations with nonlinear boundary or transmission conditions. The first of our key
approaches is to separate solutions into stationary part and oscillatory part. Then,
the zero eigen-value of the linearized equations appears only in the equations for
the stationary problem. We change the linearized equations by using some necessary
conditions for the unique existence of solutions to avoid eigen-value 0 for the linearized
problem. This technique is possible under the separation of the stationary part and the
oscillatory part, which does not appear when working with the Poincaré operator. The
second is to introduce a systematic approach to the maximal L p–Lq regularity for the
oscillatory part based solely on theR-solver for the resolvent problem of the linearized
equations developed in [15–19] and a transference theorem for the L p boundedness of
the operator-valued Fourier multiplier due to Eiter, Kyed and Shibata in [2]. The L p–
Lq maximal regularity for the oscillatory part of solutions is necessary because our
problem is a quasilinear system with non-homogeneous boundary conditions. Since
the maximal regularity for the oscillatory part of the periodic solutions does not seem
to be well-studied, our systematic approach gives a quite important contribution to the
study of systems of parabolic equations with non-homogeneous boundary conditions,
which is the novelty of this paper.

1.1. One-phase problem

Let �t be a time-dependent domain in the N -dimensional Euclidean space R
N

(N ≥ 2). Let �t be the boundary of �t and nt the unit outer normal to �t . We assume
that �t is occupied by some incompressible viscous fluid of unit mass density whose
viscosity coefficient is a positive constant μ. Let u = �(u1(x, t), . . . , uN (x, t)),
x = (x1, . . . , xN ) ∈ �t , and p = p(x, t) be the velocity field and the pressure field
in �t , respectively, where �M denotes the transposed of M . We consider the Navier–
Stokes equations in �t with free boundary condition as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu + u · ∇u − Div (μD(u) − pI) = f in �t ,

div u = 0 in �t ,

(μD(u) − pI)nt = σH(�t )nt on �t ,

V�t = u · nt on �t

(1.1)
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for t ∈ R. Here, f = f(x, t) is a prescribed time-periodic external forcewith period 2π ;
H(�t ) denotes the (N − 1)-fold mean curvature of �t which is given by H(�t )nt =
��t x for x ∈ �t , where ��t is the Laplace–Beltrami operator on �t ; V�t is the
evolution speed of�t along nt ; σ is a positive constant representing the surface tension
coefficient; D(u) is the doubled deformation tensor given by D(u) = ∇u + �∇u; and
I is the (N × N )-identity matrix. Moreover, for any (N × N )-matrix of functions
K whose (i, j)th component is Ki j , Div K is an N -vector whose i th component is
∑n

j=1 ∂ j Ki j and for any N -vector of functions v = �(v1, . . . , vN ), v · ∇v is an

N -vector of functions whose i th component is
∑N

j=1 v j∂ jvi , where ∂ j = ∂/∂x j .
Our problem is to find �t , �t , u and p satisfying the periodic condition:

�t = �t+2π , �t = �t+2π , u(x, t) = u(x, t + 2π), p(x, t) = p(x, t + 2π)

(1.2)
for any t ∈ R.
To state the main result, we introduce assumptions and some functional spaces. Let

pi = ei = T (0, . . . , 0,
i−th
1 , 0, . . . , 0) for i = 1, . . . , N and p� (� = N + 1, . . . , M)

be one of xie j − x jei (1 ≤ i < j ≤ N ). Notice that p� forms a basis of the rigid space
{v | D(v) = 0} and the number M is its dimension. We will construct �t satisfying
the following two conditions:

det
(∫ 2π

0
(p�, pm)�t dt

)

�,m=1,...,M
�= 0, (1.3)

∫ 2π

0

(∫

�t

x dx
)
dt = 0, (1.4)

|�t | = |BR | for any t ∈ (0, 2π). (1.5)

Here and in the following, (M�,m)�,m=1,...,N denotes an (N×N )-matrixwhose (�,m)th
component is M�,m ; for any domain G and (N − 1)-dimensional hypersurface S, we
let

( f, g)G =
∫

G
f (x) · g(x) dx, ( f, g)S =

∫

S
f (x) · g(x) dσ,

where g(x) denotes the complex conjugate of g(x), and dσ the surface element of S.
|G| denotes the Lebesgue measure of a Lebesgue measurable set G of RN ; and BR is
the ball with radius R centered at the origin. For 1 < p < ∞ and any Banach space
X with norm ‖ · ‖X , let
L p,per((0, 2π), X) = { f : R → X | ‖ f (·)‖X ∈ L1,loc(R),

f (t + 2π) = f (t) for any t ∈ R,

‖ f ‖L p((0,2π),X) =
(∫ 2π

0
‖ f (t)‖p

X dt
)1/p

< ∞},
H1

p,per(0, 2π), X) = { f : R → X | ‖ f (t)‖X ∈ L1,loc(R) and ‖ ḟ (t)‖X ∈ L1,loc(R),
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f (t) = f (t + 2π), ḟ (t) = ḟ (t + 2π) for any t ∈ R,

‖ f ‖H1
p((0,2π),X) =

(∫ 2π

0
(‖ f (t)‖p

X + ‖ ḟ (t)‖p
X ) dt

)1/p
< ∞},

where ḟ denotes the derivative of f with respect to t . Let

‖ f ‖L p((0,2π),X) =
(∫ 2π

0
‖ f (t)‖p

X dt
)1/p

,

‖ f ‖H1
p((0,2π),X) = ‖ f ‖L p((0,2π),X) + ‖ ḟ ‖L p((0,2π),X).

For any domain G in R
N and 1 ≤ q ≤ ∞, Lq(G), Hm

q (G), and Bs
q,p(G) denote the

standard Lebesgue, Sobolev, and Besov spaces on G, and ‖ · ‖Lq (G), ‖ · ‖Hm
q (G), and

‖ · ‖Bs
q,p(G) denote their respective norms. For any integer d, Xd denotes the d-fold

product of the space X , that is Xd = {g = �(g1, . . . , gd) | g j ∈ X ( j = 1, . . . , d)},
while the norm of Xd is denoted by ‖ · ‖X instead of ‖ · ‖Xd for simplicity.
The following theorem is our main result concerning time-periodic solutions of the

one-phase problem for the Navier–Stokes equations.

Theorem 1. Let 1 < p, q < ∞ and 2/p + N/q < 1. Let D ⊂ BR be a domain.
Then, there exists a positive constant ε and an injective map x = 
(y, t) : BR → R

N

for each t ∈ (0, 2π) with


 ∈ L p,per((0, 2π), H3
q (BR)N ) ∩ H1

p,per((0, 2π), H2
q (BR))

for which the following assertion holds: If f ∈ L p,per((0, 2π), Lq(D)N ) satisfies the
support condition: supp f(·, t) ⊂ D for any t ∈ (0, 2π), the orthogonal condition

∫ 2π

0
(f(·, t), p�)D dt = 0 for � = 1, . . . , M, (1.6)

and the smallness condition: ‖f‖L p((0,2π),Lq (D)N ) ≤ ε, then there exist v(y, t), q(y, t),
and ρ(y, t) with

v ∈ L p,per((0, 2π), H2
q (BR)N ) ∩ H1

p,per((0, 2π), Lq(BR)N ),

q ∈ L p,per((0, 2π), H1
q (BR)),

ρ ∈ L p,per((0, 2π),W 3−1/q
q (BR)N ) ∩ H1

p,per((0, 2π),W 2−1/q
q (SR)),

(1.7)

such that

�t = {x = 
(y, t) | y ∈ BR}, u(x, t) = v(
−1(x, t), t),

p(x, t) = q(
−1(x, t), t),

where 
−1(x, t) is the inverse map of the correspondence: x = 
(y, t) for any
t ∈ (0, 2π), are solutions of equations (1.2) satisfying the periodicity condition (1.2),
and �t is given by

�t = {x = y + R−1ρ(y, t)y + ξ(t) | y ∈ SR},
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where ξ(t) is the barycenter point of �t defined by setting

ξ(t) = 1

|�t |
∫

�t

x dx .

Moreover, v and ρ satisfy the estimate:

‖v‖L p((0,2π),H2
q (BR)) + ‖∂tv‖L p((0,2π),Lq (BR))

+ ‖ρ‖
L p((0,2π),W 3−1/q

q (SR))
+ ‖∂tρ‖

L p((0,2π),W 2−1/q
q (SR))

+ ‖∂tρ‖
L∞((0,2π),W 1−1/q

q (SR))
≤ Cε

(1.8)

for some constant C independent of ε.

Remark 2. In the construction of the map
, we see that
(y, t) = y+ R−1ρ(y, t)+
ξ(t) for y ∈ SR .

1.2. Two-phase problem

Let �+t be a time-dependent domain in the N -dimensional Euclidean space RN .
Let �t be the boundary of �t and nt its unit outer normal. Let � be a bounded domain
in R

N and S the boundary of �. We assume that �+t ⊂ � and �t ∩ S = ∅. Let
�−t = �\(�+t ∪ �t ) and set �t = �+t ∪ �−t . We assume that �±t be occupied by
some incompressible viscous fluids of unit mass densities whose viscosity coefficients
are positive constants μ±. Let u = �(u1, . . . , uN ) and p be the velocity field and the
pressure field on�t , respectively. We consider the following Navier–Stokes equations
with transmission condition on �t and no-slip condition on S:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu± + u · ∇u± − Div (μD(u±) − p±I) = f in �±t ,

div u± = 0 in �±t ,

[[μD(u) − pI]]nt = σH(�t )nt , [[u]] = 0 on �t ,

V�t = u+ · nt on �t ,

u− = 0 on S

(1.9)

for t ∈ R, where f = f(x, t) is a prescribed time-periodic external force with period
2π ; μ is the viscosity coefficient given by

μ =
{

μ+ in �+t ,

μ− in �−t ;
and [[ f ]] denotes the jump of f± defined on �± along nt defined by setting

[[ f ]](x0) = lim
x→x0
x∈�+t

f+(x) − lim
x→x0
x∈�−t

f−(x) for x0 ∈ �t .

Thepurpose of this paper is also tofind�±t ,�t ,u± andp± which satisfy the periodicity
condition:

�±t = �±t+2π , �t = �t+2π , u±(x, t) = u±(x, t+2π), p±(x, t) = p±(x, t+2π).

(1.10)
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To state amain result, we introduce the assumptions about�t as follows.We assume
that � ⊃ BR for some R > 0, and that

∫ 2π

0

(∫

�+t

x dx
)
dt = 0, (1.11)

|�+t | = |BR | for any t ∈ (0, 2π). (1.12)

The following theorem is our main result concerning time-periodic solutions of the
two-phase problem for the Navier–Stokes equations.

Theorem 3. Let 1 < p, q < ∞ and 2/p+N/q < 1.�+ = BR and�− = �\(BR ∪
SR). Then, there exist a positive constant ε and a bijective map x = 
(y, t) from
� onto itself such that for any f ∈ L p,per((0, 2π), Lq(�)N ) satisfying the smallness
condition: ‖f‖L p((0,2π),Lq (�)) ≤ ε, there exist v±(y, t), q±(y, t) and ρ(y, t) with

v± ∈ L p,per((0, 2π), H2
q (�±)N ) ∩ H1

p,per((0, 2π), Lq(�±)N ),

q± ∈ L p,per((0, 2π), H1
q (�±)),

ρ ∈ L p,per((0, 2π),W 3−1/q
q (SR)) ∩ H1

p,per((0, 2π),W 2−1/q
q (SR))

(1.13)

such that

�±t = {x = 
(y, t) | y ∈ �±}, u±(x, t) = v±(
−1(x, t), t),

p±(x, t) = q±(
−1(x, t), t),

where y = 
−1(x, y) is the inverse map of x = 
(y, t), are solutions of problem
(1.9), and �t is given by

�t = {x = y + R−1ρ(y, t) + ξ(t) | y ∈ SR},
where ξ(t) is the barycenter point of �+ defined by setting

ξ(t) = 1

|�+t |
∫

�+t

x dx .

Moreover, v± and ρ satisfy the estimate:
∑

±
(‖v±‖L p((0,2π),H2

q (�±)) + ‖∂tv±‖L p((0,2π),Lq (�±)))

+ ‖ρ‖
L p((0,2π),W 3−1/q

q (SR))
+ ‖∂tρ‖

L p((0,2π),W 2−1/q
q (SR))

+ ‖∂tρ‖
L∞((0,2π),W 1−1/q

q (SR))
≤ Cε

(1.14)

for some constant C independent of ε.

Method Since the domain�t is unknown, using the Hanzawa transform, we reduce
the equations onto a fixed domain, which results in a system of quasilinear equations.
Thus, we cannot use the analytic C0-semi-group approach. Our main tool is to use the
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L p-Lq maximal regularity for periodic solutions to the linearized equations, which can
be obtained by using theR-solver to the generalized resolvent problem and applying
the transference theorem ([1,2]) to the solution formula represented by the R-solver.
This is a quite new and more direct approach and a completely different idea than
exploiting the Poincaré operator.

Further notation This section is ended by explaining further notation used in this
paper. We denote the sets of all complex numbers, real numbers, integers, and natural
numbers by C, R, Z, and N, respectively. Let N0 = N ∪ {0}. Let X be a Banach
space with norm ‖ · ‖X . For any X -valued function f : R → X the functions F[ f ]
and F−1[ f ] denote the Fourier transform and the inverse Fourier transform of f ,
respectively, defined by setting

F[ f ](τ ) = 1

2π

∫

R

e−iτ t f (t) dt, F−1[ f ](t) =
∫

R

ei tτ f (τ ) dτ.

Let g : T → X be an X -valued function defined on the torus T = R/2πZ. We define
the Fourier transform FT acting on g by setting

FT[g](k) = 1

2π

∫ 2π

0
e−ikt g(t) dt,

which is regarded as a correspondence g �→ (FT[g](k)) = {FT[g](k) ∈ X | k ∈ Z}.
For any sequence (ak) = {ak ∈ X | k ∈ Z}, we define the inverse Fourier transform
F−1
T

acting on (ak) by setting

F−1
T

[(ak)](t) =
∑

k∈Z
eikt ak .

For any X -valued periodic function f with period 2π , we set

fS = 1

2π

∫ 2π

0
f (t) dt, f⊥ = f − fS .

The fS and f⊥ are called stationary part and oscillatory part of f , respectively.
For 1 ≤ p ≤ ∞, L p(R, X) and H1

p(R, X) denote the standard Lebesgue and
Sobolev spaces of X -valued functions defined on R, and ‖ · ‖L p(R,X), ‖ · ‖H1

p(R,X)

denote their respective norms. For θ ∈ (0, 1), H θ
p,per((0, 2π), X) denotes the X -

valued Bessel potential space of periodic functions defined by

H θ
p,per((0, 2π), X) = { f ∈ L p,per((0, 2π), X) | ‖ f ‖H θ

p ((0,2π),X) < ∞},

‖ f ‖H θ
p ((0,2π),X) =

(∫ 2π

0
‖F−1

T
[(1 + k2)θ/2FT[ f ](k)](t)‖p

X dt
)1/p

.

As usual, we set L p,per((0, 2π), X) = H0
p,per((0, 2π), X).

For any multi-index α = (α1, . . . , αN ) ∈ N
N
0 we set ∂α

x h = ∂
α1
1 · · · ∂αN

N h with
∂i = ∂/∂xi . For any scalar function f , we write

∇ f = (∂1 f, . . . , ∂N f ), ∇̄ f = ( f, ∂1 f, . . . , ∂N f ),
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∇n f = (∂α
x f | |α| = n), ∇̄n f = (∂α

x f | |α| ≤ n) (n ≥ 2),

where ∂0x f = f . For any m-vector of functions f = �( f1, . . . , fm), we write

∇f = (∇ f1, . . . ,∇ fm), ∇̄f = (∇̄ f1, . . . , ∇̄ fm),

∇nf = (∇n f1, . . . ,∇n fm), ∇̄nf = (∇̄n f1, . . . , ∇̄n fm).

For any N -vector of functions, u = �(u1, . . . , uN ), sometimes ∇u is regarded as
an (N × N )-matrix of functions whose (i, j)th component is ∂ j ui . For any m-vector
V = (v1, . . . , vm) and n-vector W = (w1, . . . , wn), V ⊗ W denotes an (m × n)

matrix whose (i, j)th component is ViW j . For any (mn × N )-matrix A = (Ai j,k |
i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , N ), AV ⊗ W denotes an N -column vector
whose kth component is the quantity:

∑m
j=1

∑n
j=1 Ai j,kviw j .

Let a · b =< a, b >= ∑N
j=1 a jb j for any N -vectors a = (a1, . . . , aN ) and

b = (b1, . . . , bN ). For any N -vector a, let �0a = aτ := a− < a, n > n. For any
two (N × N )-matrices A = (Ai j ) and B = (Bi j ), the quantity A : B is defined by
A : B = ∑N

i, j=1 Ai j B ji . For any domain G with boundary ∂G, we set

(u, v)G =
∫

G
u(x) · v(x) dx, (u, v)∂G =

∫

∂G
u · v(x) dσ,

where v(x) is the complex conjugate of v(x) and dσ denotes the surface element of
∂G. Given 1 < q < ∞, let q ′ = q/(q − 1). For L > 0, let BL = {x ∈ R

N | |x | < L}
and SL = {x ∈ R

N | |x | = L}.
For two Banach spaces X and Y , X+Y = {x+ y | x ∈ X, y ∈ Y },L(X,Y ) denotes

the set of all bounded linear operators from X into Y andL(X, X) is written simply as
L(X). Moreover, letRL(X,Y )({T (λ) | λ ∈ I }) be theR-bound of the operator family
{T (λ) | λ ∈ I } ⊂ L(X,Y ) (see also Definition 7). Let

iR = {iλ ∈ C | λ ∈ R}, iRλ0 = {iλ ∈ iR | |λ| ≥ λ0}.
The letter C denotes a generic constant and Ca,b,c,... denotes that the constant

Ca,b,c,... depends on a, b, c, . . .; the value of C and Ca,b,c,... may change from line to
line.

2. Linearization principle

We now formulate the problems (1.1) and (1.9) in a fixed domain and state main
results in this setting. Theorems 1 and 3 follow from the main theorems of this section.

2.1. One-phase problem

Let�t , u and p satisfies equations (1.1) and the periodicity condition (1.2).We have

((μD(u) − pI)nt , ei )�t = σ(��t x, ei )�t = −σ(∇�t x,∇�t ei )�t = 0;
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((μD(u) − pI)nt , xie j − x jei )�t = σ(��t x, xie j − x jei )�t

= −σ(∇�t x j ,∇�t xi )�t + σ(∇�t xi ,∇�t x j )�t = 0.

Multiplying the first equation in (1.1) with p� and integrating the resultant formula on
�t and using the divergence theorem of Gauss give that

d

dt
(u, p�)�t = (f, p�)�t .

In fact, we have used the fact that

d

dt

∫

�t

u(x, t) · p�(x) dx =
∫

�t

< ∂tu + u · ∇u, p� > dx,

which follows from the Reynolds transport theorem 1 and that div u = 0 in �t . Thus,
the periodicity condition (1.2) yields that

∫ 2π

0

(∫

D
f(x, ·) · p�(x) dx

)
dt = 0 for � = 1, . . . , M, (2.1)

where we have used the assumption that supp f(·, t) ⊂ D for any t ∈ R. Thus, the
condition (1.6) is a necessary one to prove Theorem 1. From this observation, instead
of problem (1.2), we consider the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + u · ∇u − Div (μD(u) − pI) +
M∑

k=1

∫ 2π

0
(u(·, t), pk)�t dt pk = f in �t ,

div u = 0 in �t ,

(μD(u) − pI)nt = σH(�t )nt on �t ,

V�t = u · nt on �t

(2.2)
for t ∈ R. In fact, if �t , u and p satisfy equations (2.2), then we have

d

dt
(u(·, t), p�)�t +

M∑

k=1

∫ 2π

0
(u(·, t), pk)�t dt (pk, p�)�t = (f, p�)�t ,

which, combined with the periodicity condition (1.2), the assumption (1.3) and (2.1),
leads to

∫ 2π

0
(u(·, t), pk)�t dt = 0 for k = 1, . . . , M.

1For any f (x, t) defined on �t , we have

d

dt

∫

�t
f (x, t) dx =

∫

�t
(∂t f + div ( f u)) dx,

which is called the Reynolds transport theorem.
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Thus,�t , u and p satisfy the first equation in (1.1). Therefore, under the stated assump-
tions, a solution to problem (2.2) is a solution to the original problem (1.1). However,
as we shall see below, the condition (2.1) is not necessary to find a solution to (2.2).

From now on, we consider problem (2.2). We reduce problem (2.2) to some non-
linear equations on BR by using the Hanzawa transform, which we explain below. Let
ξ(t) be the barycenter point of �t defined by setting

ξ(t) = 1

|BR |
∫

�t

x dx, (2.3)

where we have used the fact that |�t | = |BR |, which follows from the assumption
(1.5). By the Reynolds transport theorem, we see that

d

dt
ξ(t) = 1

|BR |
∫

�t

(∂t x + u · ∇x) dx = 1

|BR |
∫

�t

u(x, t) dx (2.4)

because div u = 0. Let ρ(y, t) be an unknown time-periodic function with period 2π
such that

�t = {x = y + ρ(y, t)n + ξ(t) | y ∈ SR},
where SR = {x ∈ R

N | |x | = R} and n is the unit outer normal to SR , that is n = x/|x |
for x ∈ SR . Let Hρ be a suitable extension of ρ to R

N , and then by the K -method
in the theory of real interpolation [9,21], we see that there exist constants C1 and C2

such that

C1‖Hρ(·, t)‖Hk
q (RN ) ≤ ‖ρ(·, t)‖

Wk−1/q
q (SR )

≤ C2‖Hρ(·, t)‖Hk
q (RN ) for k = 1, 2, 3,

C1‖∂t Hρ(·, t)‖Hk
q (RN ) ≤ ‖∂tρ(·, t)‖

Wk−1/q
q (SR )

≤ C2‖∂t Hρ(·, t)‖Hk
q (RN ) for k = 1, 2, (2.5)

for any t ∈ (0, 2π). In the following, we fix themethod of this extension. For example,
Ĥρ is the unique solution of the Dirichlet problem:

(1 − �)Ĥρ = 0 in RN\SR, Ĥρ |SR = ρ.

Let ϕ be a C∞(RN ) function which equals one for x ∈ B2R and zero for x �∈ B3R ,
and we set Hρ = ϕ Ĥρ . We assume that

sup
t∈R

‖∇Hρ(·, t)‖H1∞(RN ) ≤ δ (2.6)

with some small constant δ > 0. Notice that y/|y| = R−1y for y ∈ SR is the unit
outer normal to SR . Let 
(y, t) = y + R−1Hρ(y, t)y + ξ(t). We choose δ > 0 so
small that the map x = 
(y, t) is injective. In fact, for any y1 and y2

|
(y1, t) − 
(y2, t)| ≥ |y1 − y2| − sup
t∈R

‖∇Hρ(·, t)‖H1∞(RN )|y1 − y2|
≥ (1 − δ)|y1 − y2|,
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which leads to the injectivity of the transformation x = 
(y, t) for any t ∈ R provided
that 0 < δ < 1. Moreover, using the inverse mapping theorem, we see that the map
x = 
(y, t) is surjective from R

N onto R
N .

Let
�t = {x = y + R−1Hρ(y, t)y + ξ(t) | y ∈ BR},
�t = {x = y + R−1ρ(y, t)y + ξ(t) | y ∈ SR}. (2.7)

Let u(x, t) and p(x, t) satisfy equations (1.1), and let v(y, t) = u(x, t) and q(y, t) =
p(x, t). We derive an equation for v and ρ from the kinematic condition: V�t = u · nt

on �t . From the definition:

V�t = ∂x

∂t
· nt = (

∂ρ

∂t
n + ξ ′(t)) · nt .

To represent ξ ′(t), we introduce the Jacobian J (t) of the transformation x = 
(y, t),
which is written as J (t) = 1 + J0(t) with

J0(t) = det
(
δi j + R−1 ∂

∂yi
(Hρ(y, t)y j )

)

i, j=1,...,N − 1.

Choosing δ > 0 small enough in (2.6), we have

|J0(t)| ≤ C‖∇Hρ(·, t)‖L∞(BR). (2.8)

From (2.4) it follows that

ξ ′(t) = 1

|BR |
∫

BR

v(y, t) dy + 1

|BR |
∫

BR

v(y, t)J0(t) dy, (2.9)

and so noting that n · n = 1, we have the kinematic equation:

∂tρ − (v − 1

|BR |
∫

BR

v(y, t) dy) · n = d(v, ρ) (2.10)

with

d(v, ρ) = 1

|BR |
∫

BR

v(y, t)J0(t) dy · (n−nt )+ ∂ρ

∂t
n · (n−nt )+v · (nt −n). (2.11)

As will be seen in Sect. 3, we have< H(�t )nt , nt >= (�SR + (N −1)/R2)ρ − (N −
1)/R+ nonlinear terms, and −(N − 1)/R2 is the first eigen-value of the Laplace-
Beltrami operator �SR on SR with eigen-functions y j/R for y = (y1, . . . , yN ) ∈ SR .
We need to derive some auxiliary equations to avoid the zero and first eigen-values
of �SR . From the assumption (1.5) and the representation formulas of �t and �t in
(2.7), by using polar coordinates we have

|BR | = |�t | =
∫

SR

(∫ 1+R−1ρ(ω,t)

0
r N−1 dr

)
dω = 1

N

∫

SR
(1 + R−1ρ(ω, t))N dω
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= |BR | + R−1
∫

SR
ρ dω +

N∑

k=2

NCk

N
R−k

∫

SR
ρk dω,

and so we have
∫

SR
ρ dω +

N∑

k=2

NCk

N
R1−k

∫

SR
ρk dω = 0 (2.12)

where dω denotes the surface element of SR . Moreover, from (2.3) and the assumption
(1.5), using polar coordinates centered at ξ(t), we have

0 = 1

|BR |
∫

�t

(x − ξ(t)) dx = 1

|BR |
∫

SR

(∫ 1+R−1ρ(ω,t)

0
r Nω dr

)
dω

= 1

|BR |
1

N + 1

∫

SR
(1 + R−1ρ(ω, t))N+1ω dω

= 1

|BR |
(
R−1

∫

SR
ρω dω +

N+1∑

k=2

N+1Ck

N + 1
R−k

∫

SR
ρkω dω

)
,

from which it follows that

∫

SR
ρω j dω +

N+1∑

k=2

N+1Ck

N + 1
R1−k

∫

SR
ρkω j dω = 0 (2.13)

for j = 1, . . . , N . Thus, under the assumption (1.5) and the representation of �t and
�t in (2.7), the kinematic condition (2.10) is equivalent to the equation

∂tρ +
∫

SR
ρ dω +

N∑

k=1

(∫

SR
ρωk dω

)
yk

−
(

v − 1

|BR |
∫

BR

v dy
)

· n = d̃(v, ρ) on SR × (0, 2π) (2.14)

with

d̃(v, ρ) = d(v, ρ) −
N∑

k=2

NCk

N
R1−k

∫

SR
ρk dω −

N+1∑

k=2

N+1Ck

N + 1
R1−k

(∫

SR
ρkω dω

)
yk .

(2.15)
Therefore, to prove the existence of (�t , u, p), we shall prove the well-posedness of
the following equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tv + LvS − Div (μ(D(v) − qI) = G + F(v, ρ) in BR × (0, 2π),

div v = g(v, ρ) = div g(v, ρ) in BR × (0, 2π),

∂tρ + Mρ − Av · n = d̃(v, ρ) on SR × (0, 2π),

(μD(v) − q)n − (BRρ)n = h(v, ρ) on SR × (0, 2π),

(2.16)
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where we have set

LvS =
M∑

k=1

(vS, pk)BR pk; Av = v − 1

|BR |
∫

BR

v dy;

Mρ =
∫

SR
ρ dω +

N∑

k=1

(∫

SR
ρωk dω

)
yk;

BRρ = (�SR + N − 1

R2 )ρ = R−2(�S1 + (N − 1))ρ,

(2.17)

where �S1 is the Laplace–Beltrami operator on the unit sphere S1. For the functions
on the right side of equations (2.16), G(y, t) and F(v, ρ) are given in (3.13) in Sect.
3, g(v, ρ) and g(v, ρ) given in (3.6) in Sect. 3, d̃(v, ρ) has been given in (2.15) and
h(v, ρ) = (h′(v, ρ), hN (v, ρ)) is given in (3.31) and (3.34) in Sect. 3.
The following theorem is the unique existence theorem of 2π -periodic solutions of

problem (2.16).

Theorem 4. Let 1 < p, q < ∞ and 2/p + N/q < 1. Then, there exists a small
constant ε > 0 such that if f satisfies the assumption (1.6) and the smallness condition:
‖f‖L p((0,2π),Lq (D)) ≤ ε, then problem (2.16) admits 2π -periodic solutions v, q, and
ρ satisfying the regularity condition (1.7) and the estimate (1.8) in Theorem 1.

Proof of Theorem 1. We prove Theorem 1 with the help of Theorem 4. Let ξ(t) be
defined by

ξ(t) =
∫ t

0
ξ ′(s) ds + c

where c is chosen in such a way that

∫ 2π

0
ξ(s) ds = 0. (2.18)

Here, ξ ′(t) is given by the formula in (2.9). Then, we define�t and �t by the formulas
in (2.7). Let
(y, t) = y+R−1Hρ y+ξ(t). By choosing ε sufficiently small, estimates
(1.8) and (2.5) ensure that the condition (2.6) is satisfied with small δ > 0. This yields
the existence of the inverse map y = 
−1(x, t) of the map: x = 
(y, t). Thus,
the velocity field u(x, t) and the pressure p(x, t) on �t are well-defined by setting
u(x, t) = v(y, t) and p(x, t) = q(y, t). Since div u = 0 in �t , |�t | is a constant, and
so |�t | = |BR | by assumption (1.5). Moreover, if we set

η(t) = 1

|BR |
∫

�t

x dx,

then

η′(t) = 1

|BR |
∫

�t

u(x, t) dx = ξ ′(t),
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and so η(t) = ξ(t) + d with some constant d. We assume that the assumption (1.4)
holds, and then by (2.18) we have

0 =
∫ 2π

0
η(t) dt = 2πd +

∫ 2π

0
ξ(t) dt = 2πd,

which leads to d = 0, that is

ξ(t) = 1

|BR |
∫

�t

x dx .

Combining this with (1.5) gives that
∫

SR
(R + ρ)N dω = 0,

∫

SR
(R + ρ)N+1 dω = 0,

which yields that ρ satisfies the equation:

∂tρ − Av · n = d(v, ρ) on SR .

Therefore, the kinematic equation: V�t = u · nt holds on �t . So far, we see that �t ,
u and p satisfy equations (2.2). Since D ⊂ BR , there exists a constant ε0 > 0 for
which D ⊂ BR−3ε0 . Since �t is a small perturbation of BR , choosing ε > 0 smaller
if necessary, we may assume that BR−ε0 ⊂ �t , and so by (1.6) we have

∫ 2π

0
(f(·, t), p�)�t dt = 0 for � = 1, . . . , N . (2.19)

Multiplying the first equation in (2.2) with p�, integrating the resultant formulas with
respect to x on �t and with respect to t on (0, 2π), and using the periodicity (1.2) and
(2.19) we have

M∑

k=1

∫ 2π

0
(u(·, t), pk)�t dt

∫ 2π

0
(pk, p�)�t =

∫ 2π

0
(f(·, t), p�)�t dt = 0 (2.20)

for � = 1, . . . , M . Since �t is a small perturbation of BR , we may assume that the
assumption (1.3) holds, and so by (2.20) we have

∫ 2π

0
(u(·, t), p�)�t dt = 0 for � = 1, . . . , M.

Therefore, �t , u and p satisfy equations (1.1), and so we see that Theorem 1 follows
immediately from Theorem 4. �
2.2. Two-phase problem

We now formulate problem (1.9) in the fixed domain. The idea is essentially the
same as in the one-phase case. Let �̇ = �\SR , �+ = BR and �− = �\BR . We
define the barycenter point, ξ(t), of �+t by setting

ξ(t) = 1

|BR |
∫

�+t

x dx, (2.21)
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where we have used the fact that |�+t | = |BR |, which follows from the assumption
(1.12). By the Reynolds transport theorem, we see that

d

dt
ξ(t) = 1

|BR |
∫

�t

u(x, t) dx . (2.22)

Let ρ(y, t) be an unknown periodic function with period 2π such that

�t = {x = y + ρ(y, t)n + ξ(t) | y ∈ SR},
where SR = {x ∈ R

N | |x | = R} and n is the unit outer normal to SR , that is n = y/|y|
for y ∈ SR .
In the following, we fix the method how to extend this to a transformation from �̇

to �t . Let H be a unique solution of the Dirichlet problem:

(1 − �)Hρ = 0 in RN\SR, Hρ |SR = ρ.

Let L be a large number for which � ⊂ BL . From the K -method in real interpolation
theory [9,21], we see that

C1‖Hρ(·, t)‖Hk
q (RN ) ≤ ‖ρ(·, t)‖

Wk−1/q
q (SR )

≤ C2‖Hρ(·, t)‖Hk
q (RN ) for k = 1, 2, 3,

C1‖∂t Hρ(·, t)‖Hk
q (RN ) ≤ ‖∂tρ(·, t)‖

Wk−1/q
q (SR )

≤ C2‖∂t Hρ(·, t)‖Hk
q (RN ) for k = 1, 2, (2.23)

for any t ∈ (0, 2π). We may assume that there exists a small number ω > 0 for
which BR+3ω ⊂ �. Let ϕ be a function in C∞(RN ) for which equals one for x ∈
BR+ω and zero for x �∈ BR+2ω. Let 
(y, t) = y + ϕ(y)(R−1Hρ(y, t)y + ξ(t)).
Notice that 
(y, t) = y + R−1Hρ(y, t)y + ξ(t) for y ∈ BR . Setting �(y, t) =
ϕ(y)(R−1Hρ(y, t)y + ξ(t)), we assume that

sup
t∈R

‖�(·, t)‖H1∞(RN ) ≤ δ (2.24)

with some small constant δ > 0. We choose δ > 0 so small that the map: y �→ x =

(y, t) is bijective from � onto itself. In fact, for any y1 and y2

|
(y1, t) − 
(y2, t)| ≥ |y1 − y2|
− sup

t∈R
‖∇�(·, t)‖H1∞(RN )|y1 − y2| ≥ (1 − δ)|y1 − y2|,

which leads to the injectivity of the map: x = 
(y, t) for any t ∈ R provided that
0 < δ < 1. Moreover, using the fact that x = 
(y, t) = y for y ∈ �\BR+2ω, and the
inverse mapping theorem, we see that the map x = 
(y, t) is surjective from � onto
itself. Let

�+t = {x = 
(y, t) = y + R−1Hρ(y, t)y + ξ(t) | y ∈ BR},
�−t = {x = 
(y, t) = y + ϕ(y)(R−1Hρ(y, t)y + ξ(t)) | y ∈ �\(SR ∪ BR)},

�t = {x = y + R−1ρ(y, t)y + ξ(t) | y ∈ SR},
(2.25)
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Notice that R−1y is the unit outer normal to SR for y ∈ SR . In the following, the jump
quantity of f defined on �\SR is also denoted by [[ f ]], which is defined by setting

[[ f ]](x0, t) = lim
y→x0
y∈�+

f (y, t) − lim
y→x0
y∈�−

f (y, t) for x0 ∈ SR,

where we have set �+ = BR and �− = �\(BR ∪ SR). Let �̇ = �+ ∪ �−, and for
f defined on �̇, we write f± = f |�± . On the other hand, for f± defined on �±, we
define f by f |�± = f±.
Let u(x, t) and p(x, t) satisfy the equations (1.9), and let 
−1(x, t) be the

inverse map of x = 
(y, t). Let v±(y, t) = u±(
−1(y, t), t) and q±(y, t) =
p±(
−1(y, t), t) for y ∈ �±t . We derive an equation for v+ and ρ from the kinematic
condition V�t = u · nt on �t . Noting that [[u]] = 0 on �t , we may also assume that
[[v]] = 0 on SR , and so v+ = v− on SR .

From the definition it follows that

V�t = ∂x

∂t
· nt =

(
∂ρ

∂t
n + ξ ′(t)

)

· nt ,

Here and in the following, the unit outer normal to SR is denoted by n, which is given
by n(y) = R−1y for y ∈ SR . To represent the time derivative of ξ(t) given in (2.21),
we introduce the Jacobian J+(t) of the transformation: x = y + R−1Hρ y + ξ(t) for
y ∈ BR , which is written as J+(t) = 1 + J0,+(t) with

J0,+(t) = det
(
δi j + R−1 ∂

∂yi
(Hρ(y, t)y j )

)

i, j=1,...,N − 1 for y ∈ BR .

Choosing δ > 0 small enough in (2.24), we have

‖J0,+(t)‖L∞(BR) ≤ C‖∇Hρ(·, t)‖L∞(BR). (2.26)

From (2.21) it follows that

ξ ′(t) = 1

|BR |
∫

BR

v+(y, t) dy + 1

|BR |
∫

BR

v+(y, t)J0,+(t) dy, (2.27)

and noting that n · n = 1, on SR we have the kinematic equation:

∂tρ − (v − 1

|BR |
∫

BR

v+(y, t) dy) · n = d(v+, ρ) (2.28)

with

d(v+, ρ)= 1

|BR |
∫

BR

v+(y, t)J0,+(t) dy · (n − nt )+∂ρ

∂t
n · (n − nt ) + v+ · (nt − n).

As was already discussed in Sect. 2.1, from the assumption (1.12) and the represen-
tation formulas of �+t and �t in (2.25), we have (2.12) in Sect. 2.1, too. Moreover,
from (2.21) and the assumption (1.12), we have (2.13) in Sect. 2.1, too. Thus, under



On periodic solutions for one-phase and two-phase problems

the assumption (1.12) and the representation of �t and �+t in (2.25), the kinematic
condition is equivalent to the equation:

∂tρ +
∫

SR
ρ dω +

N∑

k=1

(∫

SR
ρωk dω

)
yk

−
(

v+ − 1

|BR |
∫

BR

v+ dy
)

· n = d̃(v+, ρ) on SR × (0, 2π) (2.29)

with

d̃(v+, ρ) = d(v+, ρ)−
N∑

k=2

NCk

N

∫

SR
R1−kρk dω−

N+1∑

k=2

N+1Ck

N + 1
R1−k

(∫

SR
ρkω dω

)
yk .

(2.30)
And then, to prove Theorem 3, we shall prove the global well-posedness of the fol-
lowing equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tv± − Div (μ±(D(v±) − q±) = G± + F±(v, ρ) in �± × (0, 2π),

div v± = g±(v, ρ) = div g±(v, ρ) in �± × (0, 2π),

∂tρ + Mρ − Av+ · n = d̃(v+, ρ) on SR × (0, 2π),

[[μ±D(v±) − q±]]n − (BRρ)n = h̃(v, ρ) on SR × (0, 2π),

[[v]] = 0 on SR × (0, 2π),

v− = 0 on S × (0, 2π),

(2.31)

where we have set

Av+ = v+ − 1

|BR |
∫

BR

v+ dy (2.32)

andMρ and BRρ are the same as in (2.17) in Sect. 2.1. For the functions on the right
side of equations (2.31), G± and F±(v, ρ) are defined in (3.39) of Sect. 3, g±(v, ρ)

and g±(v, ρ) are defined in (3.38) of Sect. 3, and h̃(v, ρ) is defined in (3.40) of Sect. 3
.

The following theorem is the unique existence theorem of 2π -periodic solutions of
problem (2.31).

Theorem 5. Let 1 < p, q < ∞ and 2/p + N/q < 1. Then, there exists a small
constant ε > 0 such that for any f ∈ L p,per((0, 2π), Lq(�)N ) satisfying the smallness
condition: ‖f‖L p((0,2π),Lq (�)) ≤ ε, problem (2.31) admits solutions v±, q±, and ρ

satisfying the regularity condition (1.13) and the estimate (1.14) in Theorem 3.

Employing the same argument as in the proof of Theorem 1 in Sect. 2.1, we see
that Theorem 3 immediately follows from Theorem 5.
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3. Derivation of nonlinear terms

3.1. One-phase problem case

First, we consider the one-phase problem case and we consider the map

x = y + �(y, t), (3.1)

where �(y, t) = R−1Hρ(y, t)y + ξ(t) and Hρ satisfies the condition (2.5) and (2.6).
Recall that Hρ(y, t) = ρ(y, t) for y ∈ SR . Let �t , �t , u(x, t) and p(x, t) satisfy the
equations (1.1) and

�t = {x = y + �(y, t) | y ∈ BR}, �t = {x = y + R−1ρ(y, t)y + ξ(t) | y ∈ SR}.
Choose δ > 0 small in such a way that there exists an inverse map: y = 
−1(x, t)
of the map: x = 
(y, t) = y + �(y, t). Let v(y, t) = u(
−1(y, t), t) and q(y, t) =
p(
−1(y, t), t). By the chain rule, we have

∇x = (I + V0(k))∇y,
∂

∂xi
= ∂

∂yi
+

N∑

j=1

V0i j (k)
∂

∂y j
(3.2)

where ∇z = �(∂/∂z1, . . . , ∂/∂zN ) for z ∈ {x, y} and k = (k0, k1, . . . , kN ) =
(Hρ,∇Hρ). Here, V0(k) is an (N × N )-matrix of C∞ functions defined for |k| ≤ δ

with V0(0) = 0 and V0i j (k) is the (i, j)th component of V0(k). By (3.2), we can write
D(u) as D(u) = D(v) + DD(k)∇v with

D(v)i j = ∂vi

∂y j
+ ∂v j

∂yi
,

(DD(k)∇v)i j =
N∑

k=1

(
V0 jk(k)

∂vi

∂yk
+ V0ik(k)

∂v j

∂yk

)
.

(3.3)

We next consider div v. By (3.2), we have

div xu =
N∑

j=1

∂u j

∂x j
=

N∑

j,k=1

(δ jk + V0 jk(k))
∂v j

∂yk
= div yv + V0(k) : ∇v. (3.4)

Let J be the Jacobian of the transformation (3.1). Choosing δ > 0 small enough, we
may assume that J = J (k) = 1 + J0(k), where J0(k) is a C∞ function defined for
|k| < σ such that J0(0) = 0.
To obtain another representation formula of div xu, we use the inner product (·, ·)�t .

For any test function ϕ ∈ C∞
0 (�t ), we set ψ(y) = ϕ(x). We then have

(div xu, ϕ)�t = −(u,∇ϕ)�t = −(Jv, (I + V0)∇yψ)�

= (div ((I + �V0)Jv), ψ)� = (J−1div ((I + �V0)Jv), ϕ)�t ,
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which, combined with (3.4), leads to

div xu = div yv + V0(k) : ∇v = J−1(div yv + div y(J
�V0(k)v)). (3.5)

Recalling that J = J (k) = 1 + J0(k), we define g(v, ρ) and g(v, ρ) by letting

g(v, ρ) = −(J0(k)div v + (1 + J0(k))V0(k) : ∇v),

g(v, ρ) = −(1 + J0(k))�V0(k)v,
(3.6)

and then by (3.5) we see that the divergence free condition: div u = 0 is transformed
to the second equation in the equations (2.16). In particular, it follows from (3.5) that

J0(k)div v + J (k)V0(k) : ∇v = div (J (k)�V0(k)v). (3.7)

To derive F(v, ρ), we first observe that

N∑

j=1

∂

∂x j
(μD(u)i j − pδi j )

=
N∑

j,k=1

μ(δ jk + V0 jk)
∂

∂yk
(D(v)i j + (DD(k)∇v)i j ) −

N∑

j=1

(δi j + V0i j )
∂q

∂y j
,

(3.8)

where we have used (3.3). Since

∂

∂t
[ui (y + �(y, t), t)] = ∂ui

∂t
(x, t) +

N∑

j=1

∂� j

∂t

∂ui
∂x j

(x, t),

we have

∂ui
∂t

= ∂vi

∂t
−

N∑

j,k=1

∂� j

∂t
(δ jk + V0 jk)

∂vi

∂yk
,

and therefore,

∂ui
∂t

+
N∑

j=1

u j
∂ui
∂x j

= ∂vi

∂t
+

N∑

j,k=1

(v j − ∂� j

∂t
)(δ jk + V0 jk(k))

∂vi

∂yk
. (3.9)

Putting (3.8) and (3.9) together gives

fi (x, t) =
(∂vi

∂t
+

N∑

j,k=1

(v j − ∂� j

∂t
)(δ jk + V0 jk(k))

∂vi

∂yk

)

− μ

N∑

j,k=1

(δ jk + V0 jk(k))
∂

∂yk
(D(v)i j + (DD(k)∇v)i j )
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−
N∑

j=1

(δi j + V0i j (k))
∂q

∂y j
.

Since (I + ∇�)(I + V0) = (∂x/∂y)(∂y/∂x) = I, that is,

N∑

i=1

(δmi + ∂m�i )(δi j + V0i j (k)) = δmj , (3.10)

we have

N∑

i=1

(δmi + ∂m�i ) fi (�(y, t), t)

=
N∑

i=1

(δmi + ∂m�i )
(∂vi

∂t
+

N∑

j,k=1

(v j − ∂�i

∂t
)(δ jk + V0 jk(k))

∂vi

∂yk

)

− μ

N∑

i, j,k=1

(δmi + ∂m�i )(δ jk + V0 jk(k))
∂

∂yk
(D(v)i j + (DD(k)∇v)i j ) − ∂q

∂ym
.

Thus, changing i to � and m to i in the formula above, we define an N -vector of
functions F1(v, ρ) by letting

F1(v, ρ)|i = −
N∑

j,k=1

(v j − ∂� j

∂t
)(δ jk + V0 jk(k))

∂vi

∂yk

−
N∑

�=1

∂i��

(∂v�

∂t
+

N∑

j,k=1

(v j − ∂� j

∂t
)(δ jk + V0 jk(k))

∂v�

∂yk

)

+ μ
( N∑

j=1

∂

∂y j
(DD(k)∇v)i j +

N∑

j,k=1

V0 jk(k)
∂

∂yk
(D(v)i j + (DD(k)∇v)i j )

+
N∑

j,k,�=1

∂i��(δ jk + V0 jk(k))
∂

∂yk
(D(v)�j + (DD(k)∇v)�j )

)
, (3.11)

where F1(u, ρ)|i denotes the i th component of F1(u, ρ).
Moreover,

(I + ∇�)

M∑

k=1

∫ 2π

0
(u(·, t), pk(·))�t dt pk(x)

= (I + ∇�)

M∑

k=1

∫ 2π

0

∫

BR

(v(y, t) · pk(y + �(y, t))(1 + J0(t)) dydt pk(y + �(y, t))

= LvS + F2(v, ρ)



On periodic solutions for one-phase and two-phase problems

with

F2(v, ρ) =
M∑

k=1

{∫ 2π

0

∫

BR

(v(y, t) · (pk(y)J0(t) + p̃k(�(y, t))(1 + J0(t)) dydtpk(y)

+
∫ 2π

0

∫

BR

v(y, t) · pk(y + �(y, t))(1 + J0(t)) dydt p̃k(�(y, t))

+ ∇�

∫ 2π

0

∫

BR

v(y, t) · pk(y + �(y, t))(1 + J0(t)) dydt pk(y + �(y, t)),

(3.12)
where we have set

p̃k(�(y, t)) =
{
0 for k = 1, . . . , N ,

ci j (�i (y, t)e j − � j (y, t)ei ) for k = N + 1, . . . , M.

Thus, setting

G(y, t) = (I+∇�(y, t))f(y+�(y, t), t), F(v, ρ) = F1(v, ρ)+F2(v, ρ), (3.13)

we have the first equation in equations (2.16).
We next consider the transformation of the boundary conditions. Recall that �t is

represented by x = y + ρ(y, t)n(y) + ξ(t) for y ∈ SR with n(y) = y/|y|. Let x0
be any point on SR and let 
(p) be a C∞ diffeomorphism on RN such that—up to a
rotation—it holds

BR ∩ Bω(x0) = 
({p ∈ R
N | 0 < pN < ω, | |p′| < ω}) ∩ Bω(x0),

where we have set Bω(x0) = {y ∈ R
N | |y − x0| < ω} and p′ = (p1, . . . , pN−1).

Notice that y = 
(p′, 0) ∈ SR ∩ Bω(x0) and ρ(y, t) = Hρ(
(p′, 0), t). Let {xk}Kk=1
and {ζk}Kk=1 be a finite number of points on SR and a partition of unity of SR such

that supp ζk ⊂ Bω(xk) and
∑K

k=1 ζk(y) = 1 on SR . In the following, we represent
functions on each SR∩Bω(xk), and to represent functions globally, we use the formula:

f =
K∑

k=1

ζ 1
k f in SR . (3.14)

Thus, for the detailed calculations, we only consider the domain BR ∩ Bω(x�) (� =
1, . . . , K ), and use the local coordinate system: y = 
�(p) for p ∈ U , where we have
written 
 = 
�, and U = {p ∈ R

N | 0 < pN < ω, |p′| < ω}.
We write ρ = ρ(y(p1, . . . , pN−1, 0), t) in the following. By the chain rule, we

have

∂ρ

∂pi
= ∂

∂pi
Hρ(
�(p1, . . . , pN−1, 0), t) =

N∑

m=1

∂Hρ

∂ym

∂
�,m

∂pi
|pN=0, (3.15)
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where we have set 
� = �(
�,1, . . . , 
�,N ), and so, ∂ρ/∂pi is defined in Bω(x0) by
letting

∂ρ

∂pi
=

N∑

m=1

∂Hρ

∂ym
◦ 
�

∂
�,m

∂pi
. (3.16)

We first represent nt . Since �t is given by x = y + ρ(y, t)n + ξ(t) for y ∈ SR ,

nt = a(n +
N−1∑

i=1

biτi ) with τi = ∂

∂pi
y = ∂

∂pi

�(p

′, 0).

The vectors τi (i = 1, . . . , N − 1) form a basis of the tangent space of SR at y =
y(p1, . . . , pN−1). Since |nt |2 = 1, we have

1 = a2(1 +
N−1∑

i, j=1

gi j bi b j ) with gi j = τi · τ j (3.17)

because τi · n = 0. The vectors
∂x

∂pi
(i = 1, . . . , N − 1) form a basis of the tangent

space of �t , and so nt · ∂x

∂pi
= 0. Thus, we have

0 = a

⎛

⎝n +
N−1∑

j=1

b jτ j

⎞

⎠ ·
(

∂y

∂pi
+ ∂ρ

∂pi
n + ρ

∂n
∂pi

)

. (3.18)

Since n · ∂y

∂pi
= n · τi = 0,

∂n
∂pi

· n = 0 (because of |n|2 = 1), and
∂y

∂pi
· ∂y

∂p j
=

τi · τ j = gi j , recalling that n = R−1y = R−1
�, by (3.18) we have

∂ρ

∂pi
+

N−1∑

j=1

(1 + R−1ρ)gi j b j = 0.

Let G = (gi j ) and G−1 = (gi j ), and then setting ∇′
�ρ = (∂ρ/∂p1, . . . , ∂ρ/∂pN−1),

we have

bi = −(1 + R−1ρ)−1
N−1∑

k=1

gik
∂ρ

∂pk
, b = −(1 + R−1ρ)−1G−1∇′

�ρ, (3.19)

which leads to

nt = a
(

n − (1 + R−1ρ)−1
N−1∑

i, j=1

gi j
∂ρ

∂p j
τi

)
. (3.20)

Moreover, combining (3.17) and (3.19), we have

a = (1 + (1 + R−1ρ)−2 < G−1∇′
�ρ,∇′

�ρ >)−1/2.
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Using the formula:

(1 + f )−1/2 = 1 − 1

2

∫ 1

0
(1 + θ f )−3/2 dθ f,

we have

a = 1 − V�(ρ,∇′
�ρ)

with

V�(ρ,∇′
�ρ) = 1

2

∫ 1

0
(1 + θ(1 + R−1ρ)−2 < G−1∇′

�ρ,∇′
�ρ >)−3/2 dθ(1 + R−1ρ)−2

< G−1∇′
�ρ,∇′

�ρ > .

Combining these formulas obtained above gives

nt = n −
N−1∑

i, j=1

gi j
∂ρ

∂p j
τi + Vn(ρ,∇′

�ρ) (3.21)

where we have set

Vn(ρ,∇′
�ρ) = ρ

R + ρ

N−1∑

i, j=1

gi j
∂ρ

∂p j
τi

−
⎛

⎝n −
N−1∑

i, j=1

(1 + R−1ρ)−1gi j
∂ρ

∂p j
τi

⎞

⎠ V�(ρ,∇′
�ρ).

From (3.16), ∇′
�ρ is extended toRN by the formula: ∇′

�ρ = (∇
�)∇�ρ ◦
�, and
so we may write

Vn(ρ,∇′
�ρ) = Vn,�(k)∇̄�ρ ⊗ ∇̄�ρ

on Bω(x�)with some functionVn,�(k) = Vn,�(y, k) defined on Bω(x�)×{k | |k| ≤ δ}
with Vn,�(0) = 0 possessing the estimate

‖(Vn,�(·, k), ∂kVn,�(·, k))‖H1∞(Bω(x�))
≤ C

with some constant C independent of �. Here and in the following k are the variables
corresponding to ∇̄Hρ = (Hρ,∇Hρ). In view of (3.21), we have

nt = n −
N−1∑

i, j=1

gi jτi
∂ρ

∂p j
+ Vn,�(k)∇̄�ρ ⊗ ∇̄�ρ on Bω(x�) ∩ SR . (3.22)

Thus, in view of (3.14) and (3.16), we may write

nt = n −
N−1∑

i, j=1

gi j∂ ′
jρτi + Vn(∇̄Hρ)∇̄Hρ ⊗ ∇̄Hρ on SR, (3.23)
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where ∂ ′
jρ = ∂ρ/∂p j locally on Bω(x�) ∩ SR , ∇̄Hρ = (Hρ,∇Hρ), and Vn(k) is a

matrix of functions defined on BR × {k | |k| < δ} possessing the estimate:

‖(Vn, ∂kVn)(·, k)‖H1∞(BR) ≤ C for |k̄| ≤ δ. (3.24)

And also we may write

nt = n + Ṽn(∇̄Hρ)∇̄Hρ (3.25)

where Ṽn(k) is a matrix of functions defined on BR × {k | |k| < δ} possessing the
estimate:

‖(Ṽn(·, k), ∂kṼn(·, k))‖H1∞(BR) ≤ C for |k| ≤ δ. (3.26)

We now consider the boundary condition:

(μD(u) − pI)nt = σH(�t )nt − p0nt (3.27)

It is convenient to divide the formula in (3.27) into the tangential part and normal part
on �t as follows:

�tμD(u)nt = 0, (3.28)

< μD(v)nt , nt > −p = σ < H(�t )nt , nt > −p0 = hN (v, ρ) (3.29)

Here,�t is defined by�td = d− < d, nt > nt for any N -vector of functions d. In the
last equation in equations (2.16), we set h′(v, ρ) = h(v, ρ)− < h(v, ρ), n > n and
hN (v, ρ) =< h(v, ρ), n >. By (3.25) and (3.3), we see that the boundary condition
(3.28) is transformed to the following formula:

(μD(v)n)τ = h′(v, ρ) on � × (0, T ), (3.30)

where we have set dτ = d− < d, n > n and

h′(v, ρ) = −μD(v)Ṽn(∇̄Hρ)∇̄Hρ

+ μ{< D(v)Ṽn(∇̄Hρ)∇̄Hρ, n + Ṽn(∇̄Hρ)∇̄Hρ > (n + Ṽn(∇̄Hρ)∇̄Hρ)

+ < D(v)n, Ṽn(∇̄Hρ)∇̄Hρ > (n + Ṽn(∇̄Hρ)∇̄Hρ)

+ < D(v)n, n > Ṽn(∇̄Hρ)∇̄Hρ} − μ(DD(k)∇v)(n + Ṽn(∇̄Hρ)∇̄Hρ)

− μ < (DD(k)∇v)(n + Ṽn(∇̄Hρ)∇̄Hρ), n

+ Ṽn(∇̄Hρ)∇̄Hρ > (n + Ṽn(∇̄Hρ)∇̄Hρ).

(3.31)
Finally,we derive the nonlinear term hN (u, ρ) in (3.29). Recall that�t is represented

by x = (R + ρ)n(y) + ξ(t) for y ∈ SR , where n = y/|y| ∈ S1. Then, we have

∂x

∂p j
= (R + ρ)τ j + ∂ρ

∂p j
n
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where τ j = ∂n
∂p j

, which forms a basis of the tangent space of S1. Since τ j · n = 0, the
(i, j)th component of the first fundamental form Gt = (gti j ) of �t is given by

gti j = ∂x

∂pi
· ∂x

∂p j
= (R + ρ)2gi j + ∂ρ

∂pi

∂ρ

∂p j
,

where gi j = τi · τ j is the (i, j)th element of the first fundamental form, G, of S1, and
so

Gt = (R + ρ)2(G + (R + ρ)−2∇′
�ρ ⊗ ∇′

�ρ)

= (R + ρ)2G(I + (R + ρ)−2(G−1∇′
�ρ) ⊗ ∇′

�ρ).

Since

det(I + a′ ⊗ b′) = 1 + a′ · b′, (I + a′ ⊗ b′)−1 = I − a′ ⊗ b′

1 + a′ · b′ (3.32)

for any (N − 1)-vectors a′ and b′ ∈ R
N−1, we have

G−1
t = (R + ρ)−2

(
I − (R + ρ)−2(G−1∇′

�ρ) ⊗ ∇′
�ρ

1 + (R + ρ)−2 < G−1∇′
�ρ,∇′

�ρ >

)
G−1

= (R + ρ)−2G−1 + O2.

Here and in the following, O2 denotes a symbol defined by setting

O2 = a0H
2
ρ +

N∑

j=1

b j Hρ

∂Hρ

∂y j
+

N∑

i, j=1

ci j
∂Hρ

∂yi

∂Hρ

∂y j

with some coefficients a0, b j and ci j defined on BR satisfying the estimate:
|(a0, b j , ci j )(y, t)| ≤ C and |∇(a0, b j , ci j )(y, t)| ≤ C |∇2Hρ(y, t)| provided that
‖Hρ‖L∞((0,2π),H1∞(BR)) ≤ δ. In particular,

gi jt = (R + ρ)−2gi j + O2,

componentwise.
We next calculate the Christoffel symbols of �t . Since

τti = (R + ρ)τi + ∂ρ

∂pi
n,

τti j = (R + ρ)τi j + ∂ρ

∂p j
τi + ∂ρ

∂pi
τ j + ∂2ρ

∂pi∂p j
n,

we have

< τti j , τt� > = (R + ρ)2 < τi j , τ� > +(R + ρ)

(
∂ρ

∂p�

�i j + gi�
∂ρ

∂p j
+ g j�

∂ρ

∂pi

)
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+ ∂2ρ

∂pi∂p j

∂ρ

∂p�

,

where �i j =< τi j , n >, and so

�k
ti j = gk�t < τti j , τt� >

=
(

(R + ρ)−2gk� + O2

)(

(R + ρ)2 < τi j , τ� >

+ (R + ρ)(
∂ρ

∂p�

�i j + gi�
∂ρ

∂p j
+ g j�

∂ρ

∂pi
) + ∂2ρ

∂pi∂p j

∂ρ

∂p�

)

= �k
i j + (R + ρ)−1gk�(

∂ρ

∂p�

�i j + δki
∂ρ

∂p j
+ δkj

∂ρ

∂pi
)

+ ((R + ρ)−2gk�
∂ρ

∂p�

+ O2)
∂2ρ

∂pi∂p j
+ O2.

Thus,

��t f = gi jt (∂i∂ j f − �k
ti j∂k f )

= (R + ρ)−2gi j (∂i∂ j f − �k
i j∂k f ) + (Ak(∇′

pρ,∇′2
p ρ)∂k f + O2 ⊗ (∇̄′2 f )

where ∇̄′2 f is an ((N − 1)2 + N )-vector of the form: ∇̄′2 f = (∂i∂ j f, ∂i f, f | i, j =
1, . . . , N − 1), ∂i = ∂/∂pi , ∇′2

p = (∂i∂ jρ | i, j = 1, . . . , N − 1), and

Ak(∇′
pρ,∇′2

p ρ) = −(R + ρ)−3gi j gk�
(

∂ρ

∂p�

�i j + δki
∂ρ

∂p j
+ δkj

∂ρ

∂pi

)

− (R + ρ)−2
(

(R + ρ)−2gi j gk�
∂ρ

∂p�

+ gi j O2

)
∂2ρ

∂pi∂p j
,

and so

H(�t )nt = ��t [(R + ρ)n + ξ(t)]
= (R + ρ)−2gi j (∂i∂ j − �k

i j∂k)((R + ρ)n) + (Ak∇2
pρ)∂k((R + ρ)n)

+ O2 ⊗ ∇̄′2((R + ρ)n)

= (R + ρ)−1gi j (∂i∂ jn − �k
i j∂kn) + (R + ρ)−2gi j (∂iρ∂ jn + ∂ jρ∂in)

+ (R + ρ)−2gi j (∂i∂ jρ − �k
i j∂kρ)n + Ak(∇′

pρ,∇′2
p ρ)(∂kρ)n

+ Ak(∇′
pρ,∇′2

p ρ)(R + ρ)∂kn + O2 ⊗ ∇̄′2(R + ρ)

Combining this formula with (3.21), using < ∂in, n >= 0, < n, τ� >= 0, �S1n =
−(N − 1)n, and (3.15) gives

< H(�t )nt , nt >

= −(R + ρ)−1(N − 1) + (R + ρ)−2�S1ρ + (O1 + O2) ⊗ ∇2
pρ + O2,
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where O1 denotes a symbol defined by setting

O1 = a′
0Hρ +

N∑

j=1

b′
j
∂Hρ

∂y j

with somecoefficientsa′
0 andb

′
j definedon BR satisfying the estimate: |(a′

0, b
′
j )(y, t)| ≤

C and |∇(a′
0, b

′
j )(y, t)| ≤ C |∇2Hρ(y, t)| provided that ‖Hρ‖L∞((0,2π),H1∞(BR)) ≤ δ.

Since

(R + ρ)−1 = R−1 − ρR−2 + O(ρ2),

(R + ρ)−2�S1ρ = R−2�S1ρ + 2R−3ρ�S1ρ + O2 ⊗ ∇2
pρ,

we have

< H(�t )nt , nt >= −N − 1

R
+ Bρ + (O1 + O2) ⊗ ∇2

pρ + O2. (3.33)

Setting p0 = −(N − 1)/R, from (3.27) we have

< μD(v)n, n > −q − σBρ = hN (v, ρ)

on SR×(0, 2π). Here, in view of (3.3) and (3.33), we have defined hN (v, ρ) by letting

hN (v, ρ) = Vh,N (∇̄Hρ)∇̄Hρ ⊗ ∇v + σ Ṽ′
�(∇̄Hρ)∇̄Hρ ⊗ ∇̄2Hρ, (3.34)

where Vh,N (k) and Ṽ′
�(k) are functions defined on BR × {k | |k| < δ} possessing

the estimate:

sup
|k|<δ

‖(Vh,N (·, k), ∂kVh,N (·, k))‖H1∞(BR) ≤ C,

sup
|k|<δ

‖(Ṽ′
�(·, k), ∂kṼ′

�(·, k))‖H1∞(BR) ≤ C

for some constant C .

3.2. Two-phase problem case

Let �+ = BR and �− = �\(BR ∪ SR). In the two-phase case, we let

�+(y, t) = R−1Hρ(y, t)y + ξ(t), �−(y, t) = ϕ(y)(R−1Hρ(y, t)y + ξ(t)).

Let J±(t) be the Jacobian of themap: x = y+�±(y, t) for y ∈ �±, which are defined
by setting

{
J+(t) = det(I + R−1∇y(Hρ(y, t)y)) for y ∈ �+,

J−(t) = det(I + ∇y(ϕ(y)(R−1(Hρ(y, t)y + ξ(t))) for y ∈ �−.
(3.35)
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Notice that

ξ(t) =
∫ t

0

∫

BR

v+(y, s)J+(s) dyds + c

where c is the unique constant for which the following equality holds:

∫ 2π

0
ξ(t) = 0.

We assume that

sup
t∈(0,2π)

‖Hρ(·, t)‖H1∞(�±) ≤ δ, sup
t∈(0,2π)

|ξ(t)| ≤ δ (3.36)

with suitably small constant δ > 0. Since

|ξ(t)| ≤ C sup
t∈(0,2π)

‖v(·, t)‖Lq (BR) sup
t∈(0,2π)

|J+(t)||BR|,

there exists a constant δ1 > 0 such that if

sup
t∈(0,2π)

‖v+(·, t)‖Lq (BR) ≤ δ1 (3.37)

then the condition for ξ(t) in (3.36) holds. Thus, in the proof of Theorem 5, we assume
that the conditions (3.36) and (3.37) hold.
Set J0±(t) = J±(t) − 1. By the chain rule, we have

∇x = (I + V±0(k±))∇y,
∂

∂xi
+

N∑

j=1

V±0i j (k±)
∂

∂y j

where V±0(k±) is given by

V±0(k±) =
{

(I + ∇y(R
−1Hρ(y, t)y)−1 − I for y ∈ �+,

(I + ∇y�−,ρ(y, t))−1 − I for y ∈ �−.

Here and in the following,k+ andk− denote the variables corresponding to (Hρ,∇Hρ)

and (�−,ρ,∇�−,ρ).
Employing the same argument as for obtaining the formulas in (3.6), we have

g±(v, ρ) = −(J0±(k±)div v± + (1 + J0±(k±))V0±(k±) : ∇v±),

g±(v, ρ) = −(1 + J0±(k±))�V0±(k±)v±.
(3.38)

And also, from (3.13) we have

G±(y, t) = (I + ∇�±(y, t))f(y + �±(y, t), t),

F±(v, ρ) = �(F1±(v, ρ), . . . , FN±(v, ρ)) (3.39)
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with

Fi±(v, ρ) = −
N∑

j,k=1

(v± j − ∂�± j

∂t
)(δ jk + V0 jk(k±))

∂v±i

∂yk

−
N∑

�=1

∂i�±�

(∂v±�

∂t
+

N∑

j,k=1

(v± j − ∂�± j

∂t
)(δ jk + V±0 jk(k±))

∂v±�

∂yk

)

+ μ
( N∑

j=1

∂

∂y j
(DD(k±)∇v±)i j +

N∑

j,k=1

V0 jk(k±)
∂

∂yk
(D(v±)i j + (DD(k±)∇v±)i j )

+
N∑

j,k,�=1

∂i�±�(δ jk + V±0 jk(k))
∂

∂yk
(D(v±)�j + (DD(k±)∇v±)�j )

)
.

Here and in the following, we have set �±(y, t) = �(�±1(y, t), . . . , �±N (y, t)),
v± = �(v±1, . . . , v±N ), and

(DD(k±)∇v±)i j =
N∑

k=1

(
V±0 jk(k±)

∂v±i

∂yk
+ V±0ik(k±)

∂v± j

∂yk

)
.

To define the right hand side of the transmission condition, we use (3.31) and (3.34).
We first introduce a symbol ((·)). For f±, let [ f±] be a suitable extension of f± to �∓
such that

‖[ f±]‖Hk
q (�∓) ≤ Ck‖ f±‖Hk

q (�±), ‖∂t [ f±]‖Hk
q (�∓) ≤ Ck‖∂t f±‖Hk

q (�±)

with some constantCk . Here, if the right-hand side is finite, then [ f±] and ∂t [ f±] exist
and the estimates above hold. In particular, we set H0

q (�±) = Lq(�±). We set

ex[ f±](y, t) =
{
f±(y, t) for y ∈ �±,

[ f±](y, t) for y ∈ �∓.

And then, (( f )) is defined by setting

(( f )) = ex[ f+] − ex[ f−].
Using this symbol, we can proceed as for the derivation of (3.31) and (3.34) and define
h̃′(v, ρ) and h̃N (v, ρ) by setting

h̃′(v, ρ) = −μ((D(v)))Ṽn(∇̄Hρ)∇̄Hρ

+ μ{< ((D(v)))Ṽn(∇̄Hρ)∇̄Hρ, n + Ṽn(∇̄Hρ)∇̄Hρ > (n + Ṽn(∇̄Hρ)∇̄Hρ)

+ < ((D(v)))n, Ṽn(∇̄Hρ)∇̄Hρ > (n + Ṽn(∇̄Hρ)∇̄Hρ)

+ < ((D(v)))n, n > Ṽn(∇̄Hρ)∇̄Hρ} − μ((DD(k)∇v))(n + Ṽn(∇̄Hρ)∇̄Hρ)

− μ < ((DD(k)∇v))(n + Ṽn(∇̄Hρ)∇̄Hρ), n + Ṽn(∇̄Hρ)∇̄Hρ > (n + Ṽn(∇̄Hρ)∇̄Hρ)

h̃N (v, ρ) = Vh,N (∇̄Hρ)∇̄Hρ ⊗ ((∇v)) + σ Ṽ′
�(∇̄Hρ)∇̄Hρ ⊗ ∇̄2Hρ.

(3.40)
And then, we set h̃(v, ρ) = (h̃′(v, ρ), h̃N (v, ρ)).
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4. On periodic solutions of the linearized equations

In this section, we shall prove the L p–Lq maximal regularity of 2π -periodic solu-
tions of the linearized equations.

4.1. On linearized problem of one-phase problem

In this subsection, we consider the L p-Lq maximal regularity of periodic solutions
to linearized equations:

∂tu + LuS − Div (μD(u) − pI) = F in BR × (0, 2π),

div u = G = divG in BR × (0, 2π),

∂tρ + Mρ − (Au) · n = D on SR × (0, 2π),

(μD(u) − pI)n − (BRρ)n = H on SR × (0, 2π),

(4.1)

where L, M, and A are the linear operators defined in (2.17). We shall prove the
unique existence theorem of 2π -periodic solutions of equations (4.1). Our main result
is this section is stated as follows.

Theorem 6. Let 1 < p, q < ∞. Then, for any F, D, G, G and H with

F ∈ L p,per((0, 2π), Lq (BR)N ), D ∈ L p,per((0, 2π),W 2−1/q
q (SR))

G ∈ L p,per((0, 2π), H1
q (BR)) ∩ H1/2

p,per((0, 2π), Lq (BR)), G ∈ H1
p,per((0, 2π).Lq (BR)N ),

H ∈ L p,per((0, 2π), H1
q (BR)N ) ∩ H1/2

p,per((0, 2π), Lq (BR)N ),

problem (4.1) admits unique solutions u, p and ρ with

u ∈ L p,per((0, 2π), H2
q (BR)N ) ∩ H1

p,per((0, 2π), Lq(BR)N ),

p ∈ L p,per((0, 2π), H1
q (BR)),

ρ ∈ L p,per((0, 2π),W 3−1/q
q (SR)) ∩ H1

p,per((0, 2π),W 2−1/q
q (SR))

possessing the estimate:

‖u‖L p((0,2π),H2
q (BR)) + ‖∂tu‖L p((0,2π),Lq (BR)) + ‖∇p‖L p((0,2π),Lq (BR))

+ ‖ρ‖
L p((0,2π),W 3−1/q

q (SR))
+ ‖∂tρ‖

L p((0,2π),W 2−1/q
q (SR))

≤ C{‖F‖L p((0,2π),Lq (BR)) + ‖D‖
L p((0,2π),W 2−1/q

q (SR))
+ ‖∂tG‖L p((0,2π),Lq (BR))

+ ‖(G, H)‖L p((0,2π),H1
q (BR)) + ‖(G, H)‖

H1/2
p ((0,2π),Lq (BR))

}
(4.2)

for some constant C > 0.

To prove Theorem 6, our approach is to use the R-solver, Weis’ operator-valued
Fourier multiplier theorem [22] and a transference theorem, which is created in Eiter,
Kyed and Shibata [2]. To introduce the notion of R-solver, we introduce the R-
boundedness of operator families.
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Definition 7. Let X and Y be two Banach spaces. A family of operators T ⊂ L(X,Y )

is calledR-bounded on L(X,Y ), if there exist a constant C > 0 and p ∈ [1,∞) such
that for each n ∈ N, {Tj }nj=1 ∈ T n , and { f j }nj=1 ∈ Xn , we have

‖
n∑

k=1

rkTk fk‖L p((0,1),Y ) ≤ C‖
n∑

k=1

rk fk‖L p((0,1),X).

Here, the Rademacher functions rk , k ∈ N, are given by rk : [0, 1] → {−1, 1},
t �→ sign (sin 2kπ t). The smallest such C is calledR-bound of T on L(X,Y ), which
is denoted by RL(X,Y )T .

We quote Weis’ operator-valued Fourier multiplier theorem and the transference
theorem for operator-valued Fourier multipliers.

Theorem 8. [Weis] Let X and Y be two UMD Banach spaces. Let m ∈ C1

(R\{0},L(X,Y )) satisfies the multiplier condition:

RL(X,Y ){(τ∂τ )
�m(τ ) | τ ∈ R\{0}} ≤ rb

for � = 0, 1 with some constant rb. Let Tm be a multiplier defined by Tm[ f ] =
F−1[mF[ f ]]. Then, Tm ∈ L(L p(R, X), L p(R,Y )) with

‖Tm[ f ]‖L p(R,Y ) ≤ Cprb‖ f ‖L p(R,X)

for any p ∈ (1,∞) with some constant Cp depending on p but independent of rb.

The transference theorem for operator-valued Fourier multipliers obtained in [2] is
stated as follows.

Theorem 9. Let X and Y be two Banach spaces and p ∈ (1,∞). Assume that Y is
reflexive. Let

m ∈ L∞(R,L(X,Y )) ∩ C(R,L(X,Y )),

and let m|T denote the restriction of m on T. We define multipliers on R and T

associated with m by setting

Tm,R[ f ](t) = F−1[mF[ f ]], Tm,T[ f ] = F−1
T

[m|TFT[ f ]].
If Tm,R ∈ L(L p(R, X), L p(R,Y )) possessing the estimate:

‖Tm,R[ f ]‖L p(R,Y ) ≤ M‖ f ‖L p(R,X)

for any f ∈ L p(R, X) with some constant M, then Tm,T ∈ L(L p(T, X), L p(T,Y ))

and

‖Tm,T[ f ]‖L p(T,Y ) ≤ CpM‖ f ‖L p(T,X)

for any f ∈ L p(T, X) with some constant Cp depending solely on p and independent
of M.



T. Eiter et al. J. Evol. Equ.

Remark 10. In the usual scalar-valued multiplier case, the transference theorem was
proved by de Leeuw [1], and so this theorem is an extension to the operator-valued
case.

We now consider theR-solver of the generalized resolvent problem:

ikv − Div (μD(v) − qI) = f in BR,

div v = g = div g in BR,

ikη + Mη − (Av) · n = d on SR,

(μD(v) − qI)n − (BRη)n = h on SR

(4.3)

for k ∈ R. From Theorem 4.8 in Shibata [18] (cf. also Shibata [15,16]) we know the
following theorem concerned with the existence of an R-solver of problem (4.1).

Theorem 11. Let 1 < q < ∞ and let Rk0 = R\(−k0, k0). Let

Xq(BR) = {(f, d, h, g, g) | f ∈ Lq(BR)N , d ∈ W 2−1/q
q (SR),

h ∈ H1
q (BR)N , g ∈ H1

q (BR), g ∈ Lq(BR)N },
Xq(BR) = {F = (F1, F2, . . . , F7) | F1, F3, F7 ∈ Lq(BR)N ,

F2 ∈ W 2−1/q
q (SR), F4 ∈ H1

q (BR)N ,

F5 ∈ Lq(BR), F6 ∈ H1
q (BR)}.

Then, there exist a constant k0 > 0 and operator families A(ik), P(ik), and H(ik)
with

A(ik) ∈ C1(Rk0 ,L(Xq(BR), H2
q (BR)N )),

P(ik) ∈ C1(Rk0 ,L(Xq(BR), H1
q (BR))),

H(ik) ∈ C1(Rk0 ,L(Xq(BR),W 3−1/q
q (SR)))

such that for any (f, d, h, g, g) and k ∈ Rk0 , v = A(ik)Fk , q = P(ik)Fk and
η = H(ik)Fk , where

Fk = (f, d, (ik)1/2h, h, (ik)1/2g, g, ikg),

are unique solutions of equations (4.3), and

RL(Xq (BR),H2−m
q (BR)N )

({(k∂k)�((ik)m/2A(ik)) | k ∈ Rk0}) ≤ rb,

RL(Xq (BR),Lq (BR)N )({(k∂k)�∇P(ik) | k ∈ Rk0}) ≤ rb,

RL(Xq (BR),W 3−n−1/q
q (SR))

({(k∂k)�((ik)nH(ik)) | k ∈ Rk0}) ≤ rb

(4.4)

for � = 0, 1, m = 0, 1, 2 and n = 0, 1 with some constant rb.
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Remark 12. (1) Here and in the following, for θ ∈ (0, 1) we set

(ik)θ =
{
eiπθ/2|k|θ for k > 0,

e−iπθ/2|k|θ for k < 0.

(2) The functions F1, F2, F3, F4, F5, F6, and F7 are variables corresponding to f ,
d, (ik)1/2h, h, (ik)1/2g, g, and ik g, respectively.

(3) We define the norm ‖ · ‖Xq (BR) by setting

‖(F1, . . . , F7)‖Xq (BR) = ‖(F1, F3, F5, F7)‖Lq (BR)

+‖F2‖W 2−1/q
q (SR)

+ ‖(F4, F6)‖H1
q (BR).

Let ϕ(ik) be a function in C∞(R) which equals one for k ∈ Rk0+2 and zero for
k �∈ Rk0+1, and letψ(ik) be a function inC∞(R)which equals one for k ∈ Rk0+4 and
zero for k �∈ Rk0+3. Notice that ϕ(ik)ψ(ik) = ϕ(ik). Let A(ik), P(ik) andH(ik) be
theR-solvers given in Theorem 11. Then, we have

RL(Xq (BR),H2−m
q (BR)N )

({(k∂k)�((ik)m/2(ϕ(ik)A(ik))) | k ∈ Rk0}) ≤ C‖ϕ‖H1∞(R)rb,

RL(Xq (BR),Lq (BR)N )({(k∂k)�∇(ϕ(ik)P(ik)) | k ∈ Rk0}) ≤ C‖ϕ‖H1∞(R)rb,

RL(Xq (BR),W 3−n−1/q
q (SR))

({(k∂k)�((ik)n(ϕ(ik)H(ik))) | k ∈ Rk0}) ≤ C‖ϕ‖H1∞(R)rb
(4.5)

for � = 0, 1, m = 0, 1, 2 and n = 0, 1. To prove (4.5), we use the following lemma
concerning the fundamental properties of theR-bound and scalar-valued Fourier mul-
tipliers.

Lemma 13. (a) Let X and Y be Banach spaces, and let T and S be R-bounded
families in L(X,Y ). Then, T + S = {T + S | T ∈ T , S ∈ S} is also anR-bounded
family in L(X,Y ) and

RL(X,Y )(T + S) ≤ RL(X,Y )(T ) + RL(X,Y )(S).

(b) Let X, Y and Z be Banach spaces, and let T and S be R-bounded families in
L(X,Y ) and L(Y, Z), respectively. Then, ST = {ST | T ∈ T , S ∈ S} is also an
R-bounded family in L(X, Z) and

RL(X,Z)(ST ) ≤ RL(X,Y )(T )RL(Y,Z)(S).

(c) Let 1 < p, q < ∞ and let D be a domain in R
N . Let m = m(λ) be a

bounded function defined on a subset U of C and let Mm(λ) be a map defined by
Mm(λ) f = m(λ) f for any f ∈ Lq(D). Then, RL(Lq (D))({Mm(λ) | λ ∈ U }) ≤
CN ,q,D‖m‖L∞(U ).

(d) Let n = n(τ ) be a C1-function defined on R\{0} that satisfies the conditions
|n(τ )| ≤ γ and |τn′(τ )| ≤ γ with some constant c > 0 for any τ ∈ R\{0}. Let Tn
be an operator-valued Fourier multiplier defined by Tn f = F−1[nF[ f ]] for any f
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with F[ f ] ∈ D(R, Lq(D)). Then, Tn is extended to a bounded linear operator from
L p(R, Lq(D)) into itself. Moreover, denoting this extension also by Tn, we have

‖Tn‖L(L p(R,Lq (D))) ≤ Cp,q,Dγ.

Here, we only prove the R-boundedness of ϕ(ik)ikA(ik). The R-boundedness of
the other terms can be proved by the same argument. Let n ∈ N, {k�}n�=1 ∈ R

n ,
{F�}n�=1 ∈ Xq(BR)n . Changing the labeling of indices if necessary, we may assume
that ϕ(k�) �= 0 for k = 1, . . . ,m and ϕ(k�) = 0 for � = m + 1, . . . , n. And then,
using Lemma 13, we have

‖
n∑

�=1

r�ϕ(ik�)(ik�)A(ik�)F�‖Lq ((0,1),Lq (BR))

= ‖
m∑

�=1

r�ϕ(ik�)(ik�)A(ik�)F�‖Lq ((0,1),Lq (BR))

≤ rb‖
m∑

�=1

r�ϕ(ik�)F�‖Lq ((0,1),Lq (BR))

= rb‖
n∑

�=1

r�ϕ(ik�)F�‖Lq ((0,1),Lq (BR))

≤ Cq,R‖ϕ‖H1∞(BR)rb‖
n∑

�=1

r�F�‖Lq ((0,1),Lq (BR)),

which shows that

RL(Xq (BR),Lq (BR)N )({ikϕ(ik)A(ik) | k ∈ Rk0}) ≤ Cq,R‖ϕ‖H1∞(R)rb.

For f ∈ {F,G, G, D, H}, let
fψ = F−1

T
[ψFT[ f ]].

We consider the high frequency part of the equations (4.1):

∂tuψ − Div (μD(uψ) − pψ I) = Fψ in BR × (0, 2π),

div uψ = Gψ = divGψ in BR × (0, 2π),

∂tρψ + Mρψ − (Auψ) · n = Dψ on SR × (0, 2π),

(μD(uψ) − pψ I)n − (BRρψ)n = Hψ on SR × (0, 2π).

(4.6)

By Theorem 8, Theorem 9, and (4.5), we have immediately the following theorem.

Theorem 14. Let 1 < p, q < ∞. Then, for any functions F, G, G, D, and H with

F ∈ L p,per((0, 2π), Lq(BR)N ), D ∈ L p,per((0, 2π),W 2−1/q
q (BR)),

H ∈ H1/2
p,per((0, 2π), Lq(BR)N ) ∩ L p,per((0, 2π), H1

q (BR)N ),
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G ∈ H1/2
p,per((0, 2π), Lq(BR)) ∩ L p,per((0, 2π), H1

q (BR)),

G ∈ H1
p,per((0, 2π), Lq(BR)N ),

We let

uψ = F−1
T

[ϕ(ik)A(ik)Fk(Fψ, Dψ, Hψ,Gψ, Gψ)](·, t),
pψ = F−1

T
[ϕ(ik)P(ik)Fk(Fψ, Dψ, Hψ,Gψ, Gψ)](·, t),

ρψ = F−1
T

[ϕ(ik)A(ik)Fk(Fψ, Dψ, Hψ,Gψ, Gψ)](·, t),
where we have set

Fk(Fψ, Dπ , Hψ,Gψ, Gψ) = ψ(ik)(FT[F](ik),FT[D](ik), (ik)1/2FT[H](ik),FT[H](ik),
(ik)1/2FT[G](ik),FT[G](ik), ikFT[G](ik)).

Then, uψ , pψ and ρψ are the unique solutions of equations (4.6), which possess the
following estimate:

‖uψ‖L p((0,2π),H2
q (BR)) + ‖∂tuψ‖L p((0,2π),Lq (BR)) + ‖∇pψ‖L p((0,2π),Lq (BR))

+ ‖ρψ‖
L p((0,2π),W 3−1/q

q (SR))
+ ‖∂tρψ‖

H1
p((0,2π),W 2−1/q

q (SR))

≤ C{‖Fψ‖L p((0,2π),Lq (BR))

+ ‖Dψ‖
L p((0,2π),W 2−1/q

q (SR))
+ ‖�1/2(Gψ, Hψ)‖L p((0,2π),Lq (BR))

+ ‖(Gψ, Hψ)‖L p((0,2π),H1
q (BR)) + ‖∂tGψ‖L p((0,2π),Lq (BR))}

for some constant C > 0. Here, we have set

�1/2(Gψ, Hψ) = F−1
T

[(ik)1/2ψ(ik)(FT[G](ik),FT[H](ik))].
We now consider the lower frequency part of solutions of equations (4.1). Namely,

we consider equations (4.3) for k ∈ R with 1 ≤ |k| < k0 + 4. We shall show the
following theorem.

Theorem 15. Let 1 < q < ∞ and k ∈ Z with 1 ≤ |k| ≤ k0 + 3. Then,
for any f ∈ Lq(BR)N , g ∈ H1

q (BR), d ∈ W 2−1/q
q (SR), h ∈ H1

q (BR)N , and

g ∈ Lq(BR)N , problem (4.3) admits unique solutions v ∈ H2
q (BR)N , q ∈ H1

q (BR),

and η ∈ W 3−1/q
q (SR) possessing the estimate:

‖v‖H2
q (BR) + ‖∇q‖Lq (BR) + ‖η‖

W 3−1/q
q (SR)

≤ C(‖f‖Lq (BR) + ‖d‖
W 2−1/q

q (SR)
+ ‖(g, h)‖H1

q (BR) + ‖g‖Lq (BR))
(4.7)

for some constant C > 0.

Proof. From Theorem 11, problem (4.3) with k = k0 + 4 admits unique solutions
vk0 ∈ H2

q (BR)N , qk0 ∈ H1
q (BR), and ηk0 ∈ W 3−1/q

q (SR) possessing the estimate:

‖vk0‖H2
q (BR) + ‖∇qk0‖Lq (BR) + ‖ηk0‖W 3−1/q

q (SR)

≤ C(‖f‖Lq (BR) + ‖d‖
W 2−1/q

q (SR)
+ ‖(g, h)‖H1

q (BR) + ‖g‖Lq (BR))
(4.8)
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for some constant C . Thus, for any k ∈ R with |k| < k0 + 4, we consider the unique
solvability of the equations:

ikw − Div (μD(w) − rI) = f, divw = 0 in BR,

ikζ + Mζ − (Aw) · n = d on SR,

(μD(w) − rI)n − σ(BRζ )n = 0 on SR,

(4.9)

where we have set f = i(k−k0)vk0 and d = i(k0−k)ηk0 . In fact, if we set v = vk0 +w,
q = qk0 + r, and η = ηk0 + ζ , then v, q and η are unique solutions of equations (4.3).
In what follows, we study the unique solvability of equations (4.9) in the case where

f ∈ Lq(BR) and d ∈ W 2−1/q
q (SR) are arbitrary. To solve (4.9), it is convenient to study

the functional analytic form of (4.9), and so we eliminate the pressure term r and the
divergence condition divw = 0 in BR . Given v ∈ H2

q (BR)N and ζ ∈ W 3−1/q
q (SR),

let K = K (v, ζ ) ∈ H1
q (BR) be the unique solution of the weak Dirichlet problem:

(∇K ,∇ϕ)BR = (Div (μD(v)) − ∇div v,∇ϕ)BR for any ϕ ∈ Ĥ1
q ′,0(BR) (4.10)

subject to
K =< μD(v)n, n > −σBζ − div v on SR, (4.11)

where we have set

Ĥ1
q ′,0(BR) = {ϕ ∈ Lq,loc(BR) | ∇ϕ ∈ Lq(BR)N , ϕ|SR = 0}

and q ′ = q/(q−1). In view of Poincaré’s inequality, Ĥ1
q ′,0(BR) = H1

q ′,0(BR) = {ϕ ∈
H1
q ′(BR) | ϕ|SR = 0}. Instead of (4.9), we consider the equations:

ikw − Div (μD(w) − K (w, ζ )I) = f in BR,

ikζ + Mζ − (Aw) · n = d on SR,

(μD(w) − K (w, ζ )I)n − σ(BRζ )n = 0 on SR .

(4.12)

In view of the boundary condition (4.11) for K (w, ζ ), that w and ζ satisfy the third
equation of equations (4.12) is equivalent to

(μD(w)n)τ = 0 and divw = 0 on SR, (4.13)

where dτ = d− < d, n > n for any N -vector d. Let Jq(BR) be a solenoidal space
defined by setting

Jq(BR) = {v ∈ Lq(BR) | (v,∇ϕ)BR = 0 for any ϕ ∈ Ĥ1
q ′,0(BR)}.

Obviously, for v ∈ H1
q (BR), in order that div v = 0 in BR , it is necessary and sufficient

that v ∈ Jq(BR). For any f ∈ Lq(BR)N , let ψ ∈ H1
q,0(BR) be a unique solution of

the weak Dirichlet problem:

(∇ψ,∇ϕ)BR = (f,∇ϕ)BR for any ϕ ∈ Ĥ1
q ′,0(BR).
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Let g = f − ∇ψ and inserting this formula into equations (4.9), we have

ikw − Div (μD(w) − (r − ψ)I) = g, divw = 0 in BR,

ikζ + Mζ − (Aw) · n = d on SR,

(μD(w) − (r − ψ)I)n − σ(BRζ )n = 0 on SR .

where we have used the fact that ψ |SR = 0. Therefore, we shall solve equations (4.9)

for f ∈ Jq(BR) and d ∈ W 2−1/q
q (SR). When f ∈ Jq(BR), the equations (4.9) and

(4.12) are equivalent. In fact, if w ∈ H2
q (BR)N and ζ ∈ W 3−1/q

q (SR) satisfy equations

(4.9) with some r ∈ H1
q (BR). Then, for any ϕ ∈ Ĥ1

q ′,0(BR), we have

0 = (f,∇ϕ)BR = (ikw − Div (μD(w)),∇ϕ)BR + (∇r,∇ϕ)BR

= (∇(r − K (w, ζ )),∇ϕ)BR ,

where we have used the fact that divw = 0. Moreover, from the boundary conditions
in equations (4.9) and (4.11), it follows that

r − K (w, ζ ) =< μD(w)n, n > −σBRζ − K (w, ζ ) = divw = 0

on SR because divw = 0. Thus, the uniqueness of the solutions to his weak Dirichlet
problem yields that r = K (w, ζ ), and so w and ζ satisfy equations (4.12). Conversely,
let w ∈ H2

q (BR)N and ζ ∈ W 3−1/q
q (SR) be solutions of equations (4.12). For any

ϕ ∈ Ĥ1
q ′,0(BR), we have

0 = (f,∇ϕ)BR = ik(w,∇ϕ)BR − (Div (μD(w)),∇ϕ)BR + (∇K (w, ζ ),∇ϕ)BR

= −ik(divw, ϕ)BR − (∇divw,∇ϕ)BR

Moreover, from the boundary condition (4.13) it follows that divw = 0 on SR . The
uniqueness implies that divw = 0 in BR . Thus, w, r = K (w, ζ ) and ζ are solutions
of equations (4.9). In particular, for solutions w and ζ of equations (4.12), we see that
w satisfies the divergence condition: divw = 0 in BR automatically.
From now on, we study the unique existence theorem for equations (4.12) for any

f ∈ Jq(BR) and d ∈ W 2−1/q
q (SR). To formulate problem (4.12) in a functional analytic

setting, we define the spaces Hq , Dq and the operator A by setting

Hq = {(f, d) | f ∈ Jq(BR), d ∈ W 2−1/q
q (SR)},

Dq = {(w, ζ ) ∈ Hq | w ∈ H2
q (BR)N , ζ ∈ W 3−1/q

q (SR), (μD(w))τ |SR = 0},
AU = (Div (μD(w) − K (w, ζ )I), (−Mζ + (Aw) · n)|SR ) for U = (w, ζ ) ∈ Dq ,

where we have used (4.13) and divw = 0 in the definition of Dq . We write equations
(4.12) as

ikU − AU = F inHq . (4.14)

In view of Theorem 11, we see that k = k0 + 4 is an element of the resolvent set
of the operator A, and so (i(k0 + 4)I − A)−1 exists in L(Hq ,Dq). Since BR is a
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compact set, it follows from the Rellich compactness theorem that (i(k0 +4)I −A)−1

is a compact operator from Hq into itself. Thus, in view of Riesz–Schauder theory,
in particular, Fredholm alternative principle, that k belongs to the resolvent set if and
only if uniqueness holds for k. Thus, our task is to prove the uniqueness of solutions
to equations (4.14). Let U = (w, ζ ) ∈ Dq satisfy the homogeneous equations:

ikU − AU = 0 inHq . (4.15)

Namely, (w, ζ ) ∈ Dq satisfies equations:

ikw − Div (μD(w) − K (w, ζ )I) = 0 in BR,

ikζ + Mζ − (Aw) · n = 0 on SR,

(μD(w) − K (w, ζ )I)n − σ(BRζ )n = 0 on SR .

(4.16)

We first prove that

(ζ, 1)SR = 0, (ζ, x j )SR = 0 for j = 1, . . . , N . (4.17)

Integrating the second equation of equations (4.16) and applying the divergence the-
orem of Gauss gives that

0 = ik(ζ, 1)SR + (ζ, 1)SR |SR | −
∫

BR

divAw dx = (ik + |SR |)(ζ, 1)SR ,

where we have set |SR | = ∫

SR
dω and we have used the fact that divw = 0 in BR .

Thus, we have (ζ, 1)SR = 0. Multiplying the second equation of equations (4.16)
with x j , integrating the resultant formula over SR and using the divergence theorem
of Gauss gives that

0 = ik(ζ, x�)SR + (ζ, x�)SR (x�, x�)SR −
∫

BR

div (x�Aw) dx, (4.18)

because (x j , x�)SR = 0 for j �= �. Since

∫

BR

div (x�Aw) dx =
∫

BR

(w� − 1

|BR |
∫

BR

w� dx) dx = 0,

we have (ζ, x�)SR = 0, because (x�, x�)SR = (R2/N )|SR | > 0. Thus, we have proved
(4.17). In particular, Mζ = 0 in (4.16).
We now prove that w = 0. For this purpose, we first consider the case where

2 ≤ q < ∞. Since BR is bounded, Dq ⊂ D2. Multiplying the first equation of (4.16)
withw and integrating the resultant formula over BR and using the divergence theorem
of Gauss gives that

0 = ik‖w‖2L2(BR) − σ(BRζ, n · w)SR + μ

2
‖D(w)‖2L2(BR),
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because divw = 0 in BR . By the second equation of (4.16) withMζ = 0, we have

σ(BRζ, n · w)SR = σ(BRζ, ikζ )SR +
N∑

k=1

1

|BR |
∫

BR

w j dt (BRζ, R−1x j )SR

where we have used n = R−1x = R−1(x1, . . . , xN ) for x ∈ SR . Thus,

(BRζ, x j )SR = (ζ, (�SR + N − 1

R2 )x j )SR = 0.

Moreover, since ζ satisfies (4.17), we know that

−(BRζ, ζ )SR ≥ c‖ζ‖2L2(SR)

for some positive constant c, and therefore (4.18) implies w = 0.
Now the first equation of (4.16) yields ∇K (w, ζ ) = 0, so that K (w, ζ ) is constant.

Integration of the third equation of (4.16) over SR combined with (4.17) shows that
this constant is 0, that is, K (w, ζ ) = 0.

Finally, the third equation of (4.16) yields that BRζ = 0 on SR , and so by (4.17) we
have ζ = 0. This completes the proof of the uniqueness in the case where 2 ≤ q < ∞.
In particular, we have the unique existence theorem of solutions to equation (4.14).
We now consider the case where 1 < q < 2. Let f be any element in Jq ′(BR) and

let V = (v, η) ∈ Dq ′ be a solution of the equation:

−ikV − AV = (f, 0) inHq ′ .

The existence of such V has already been proved above. Since d = 0, we see that η

satisfies the relations:

(η, 1)SR = 0, (η, x j )SR = 0 for j = 1, . . . , N ,

and soMη = 0. Using the divergence theorem of Gauss, we have

(w, f)BR = (w,−ikv − Div (μD(v) − K (v, η)I))BR

= (ikw, v)BR − (w, (μD(v) − K (v, η)I)n)SR + μ

2
(D(w), D(v))BR

= (Div (μ(D(w) − K (w, ζ )I), v)BR − σ(w · n,BRη)SR + μ

2
(D(w), D(v))BR

= σ(BRζ, n · v)SR − σ(w · n,BRη)SR

= σ(BRζ,−ikη + 1

|BR |
∫

BR

v dy · n)SR − σ(ikζ

+ 1

|BR |
∫

BR

w dy · n,BRη)SR .

Using the fact that (BRζ, x j )SR = (x j ,BRη)SR = 0, we have

(w, f)BR = σ ik(BRζ, η)SR − σ ik(ζ,BRη)SR
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= σ ik
{N − 1

R2 (ζ, η)SR − (∇SR ζ,∇SRη)SR

− N − 1

R2 (ζ, η)SR + (∇SR ζ,∇SRη)SR

}
= 0.

For any g ∈ Lq ′(BR)N , let ψ ∈ Ĥ1
q ′,0(BR) be a unique solution of the weak Dirichlet

problem:

(∇ψ,∇ϕ)BR = (g,∇ϕ)BR for any ϕ ∈ Ĥ1
q,0(BR).

Let f = g − ∇ψ , and then f ∈ Jq ′(BR), and so using the fact that w ∈ Jq(BR), we
have (w, g)BR = (w, f)BR + (w,∇ψ)BR = 0. The arbitrariness of g ∈ Lq ′(BR)N

implies that w = 0. Thus, the second equation of (4.16) and (4.17) leads to ζ = 0.
This completes the proof of the uniqueness in the case where 1 < q < 2, and therefore
the proof of Theorem 15. �

We now consider the linearized stationary problem:

Lv − Div (μD(v) − pI) = f in BR,

div v = g = div g in BR,

Mρ − (Av) · n = d on SR,

(μD(v) − pI)n − σ(BRρ)n = h on SR .

(4.19)

We shall prove the following theorem.

Theorem 16. Let 1 < q < ∞. Then, for any f ∈ Lq(BR)N , d ∈ W 2−1/q
q (SR),

g ∈ H1
q (BR), g ∈ Lq(BR)N , and h ∈ H1

q (BR)N , problem (4.19) admits unique

solutions v ∈ H2
q (BR)N , p ∈ H1

q (BR), and ρ ∈ W 3−1/q
q (SR) possessing the estimate:

‖v‖H2
q (BR) + ‖p‖H1

q (BR) + ‖ρ‖
W 3−1/q

q (SR)

≤ C(‖f‖Lq (BR) + ‖d‖
W 2−1/q

q (SR)
+ ‖(g, h)‖H1

q (BR) + ‖g‖Lq (BR))
(4.20)

for some constant C > 0.

Proof. The strategy of the proof is the same as that of Theorem 15. Since Lv, Mρ,
and |BR |−1

∫

BR
v dy are lower order perturbations, choosing k0 > 0 large enough, the

generalized resolvent problem:

ik0v + Lv − Div (μD(v) − pI) = f in BR,

div v = g = div g in BR,

ik0ρ + Mρ − (Av) · n = d on SR,

(μD(v) − pI)n − σ(BRρ)n = h on SR .

(4.21)

admits unique solutions: v ∈ H2
q (BR)N , p ∈ H1

q (BR), and ρ ∈ W 3−1/q
q (SR) possess-

ing the estimate (4.20). Of course, the constant C in (4.20) depends on k0 in this case,
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but k0 is fixed, and so we can say that C in (4.20) is some fixed constant. The essential
part of the proof is to show the unique existence of solutions to equations (4.19) with
g = g = h = 0, that is

Lv − Div (μD(v) − pI) = f in BR,

div v = 0 in BR,

Mρ − (Av) · n = d on SR,

(μD(v) − pI)n − σ(BRρ)n = 0 on SR .

(4.22)

And then, the uniqueness of the reduced problem in the L2 framework implies the
unique existence of solutions as was studied in the proof Theorem 15. Thus, we
define the reduced problem corresponding to equations (4.19). For v ∈ H2

q (BR)N and

ρ ∈ W 3−1/q
q (SR), let K = K (v, ρ) ∈ H1

q (BR) be the unique solution of the weak
Dirichlet problem:

(∇K ,∇ϕ)BR = (Div (μD(v) − Lv − ∇div v,∇ϕ)BR for any ϕ ∈ Ĥ1
q ′,0(BR),

(4.23)
subject to the boundary condition:

K =< μD(v)n, n > −σBRρ − div v on BR . (4.24)

Then, the reduced problem corresponding to problem (4.19) with g = g = h = 0 is
given by the following equations:

Lv − Div (μD(v) − K (v, ρ)I) = f in BR,

Mρ − (Av) · n = d on SR,

(μD(v) − K (v, ρ)I)n − σ(BRρ)n = 0 on SR .

(4.25)

Then, for f ∈ Jq(BR) and d ∈ W 2−1/q
q (SR), problems (4.22) and (4.25) are equivalent.

In fact, if problem (4.22) admits unique solutions v ∈ H2
q (BR)N , p ∈ H1

q (BR) and

ρ ∈ W 3−1/q
q (SR), then for any ϕ ∈ Ĥ1

q ′,0(BR), we have

0 = (f,∇ϕ)BR = (Lv − Div (μD(v)),∇ϕ)BR + (∇p,∇ϕ)BR

= (∇(p − K (v, ρ)),∇ϕ)BR

because div v = 0 in BR . Moreover, from the boundary conditions in (4.22) and (4.24)
it follows that

p − K (v, ρ) =< μD(v)n, n > −σBRρ − K (v, ρ) = div v = 0

on SR . The uniqueness of the weak Dirichlet problem leads to p = K (v, ρ), and
therefore v and ρ satisfy equations (4.25). Conversely, if v ∈ H2

q (BR)N and ρ ∈
W 3−1/q

q (SR) satisfy the equations (4.25), then for any ϕ ∈ Ĥ1
q ′,0(BR) we have

0 = (f,∇ϕ)BR = (Lv − Div (μD(v),∇ϕ)BR + (∇K (v, ρ),∇ϕ)BR = (∇div v,∇ϕ)BR .
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Moreover, the boundary conditions of (4.25) and (4.24) gives that

div v =< μD(v)n, n > −σBRρ − K (v, ρ) = 0.

The uniqueness of the weak Dirichlet problem yields that div v = 0, and therefore, v,
p = K (v, ρ) and ρ are solutions of equations (4.22).
Finally, we show the uniqueness of equations (4.21) in the L2-framework, which

yields Theorem 16. Let v ∈ H2
2 (BR)N and ρ ∈ W 5/2

2 (SR) satisfy the homogeneous
equations:

Lv − Div (μD(v) − K (v, ρ)I) = 0 in BR,

Mρ − (Av) · n = 0 on SR,

(μD(v) − K (v, ρ)I)n − σ(BRρ)n = 0 on SR .

(4.26)

Note that div v = 0 in BR . Employing the same argument as in the proof of Theorem
15, we have

(ρ, 1)SR = 0, (ρ, x j )SR = 0 for j = 1, . . . , N . (4.27)

In particular,Mρ = 0. Multiplying the first equation with v, integrating the resultant
formula on BR and using the divergence theorem of Gauss gives that

0 = (Lv, v)BR + σ(BRρ, n · v)SR + μ

2
‖D(v)‖2L2(BR),

because (K (v, ρ), div v) = 0 as follows from div v = 0 in BR . From (2.17) it follows
that

(Lv, v)BR =
M∑

k=1

|(v, pk)BR |2.

From the second equation of (4.26) withMρ = 0 it follows that

(BRρ, n · v)SR =
N∑

j=1

R−1(BRρ, x j )SR
1

|BR |
∫

BR

v j dy = 0.

Combining these formulas yields that

0 =
M∑

k=1

|(v, pk)BR |2 + μ

2
‖D(v)‖2L2(BR),

which leads to D(v) = 0 and (v, pk)BR = 0 for k = 1, . . . , M . Thus, we have v = 0.
From the first equation of (4.26), we have ∇K (v, ρ) = 0, and so K (v, ρ) = c with
some constant c. From the boundary condition of (4.26), we have σBρ = −c on BR .
Integrating this formula on SR and using the fact (ρ, 1)SR = 0 in (4.27) gives that
c = 0. Thus, BRρ = 0 on SR , but we know (4.27), and so

0 = −(BRρ, ρ)SR ≥ c‖ρ‖2L2(SR)

for some constant c > 0, which shows that ρ = 0. This completes the proof of the
uniqueness in the L2 framework, the proof of Theorem 16. �
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Proof of Theorem 6. We now prove Theorem 6. Let uψ , pψ and ρψ be functions
given in Theorem 14 which are solutions of equations (4.6). Notice that ψ(ik) = 1
for |k| ≥ k0 + 4 and ψ(ik) = 0 for |k| ≤ k0 + 3. For k ∈ Z with 1 ≤ |k| ≤ k0 + 3, let

f = FT[F](ik), g = FT[G](ik), g = FT[G](ik),
d = FT[D](ik), h = FT[H](ik)

in equations (4.3), and we write solutions v, q and η as vk = v, qk = q and ηk = η.
Let

uk = eiktvk, pk = eiktqk, ρk = eiktηk,

and then, uk , pk and ρk satisfy the equations:

∂tuk − Div (μD(uk) − pkI) = eiktFT[F](ik) in BR,

div uk = eiktFT[G](ik) = div (eiktFT[G](ik)) in BR,

∂tρk + Mρk − (Auk) · n = eiktFT[D](ik) on SR,

(μD(uk) − pkI)n − (BRρk)n = eiktFT[H](ik) on SR .

(4.28)

Let f = FS , d = DS , g = GS , g = GS and h = HS in equations (4.19), and let v, p
and ρ be unique solutions of equations (4.19). We write uS = v, pS = p and ρS = ρ.
Under these preparations, we set

u = uS +
∑

1≤|k|≤k0+3

uk + uψ,

p = pS +
∑

1≤|k|≤k0+3

pk + pψ,

ρ = ρS +
∑

1≤|k|≤k0+3

ρk + ρψ

and then u, p and ρ are unique solutions of equations (4.1). Moreover, by Theorem
14, Theorem 15, and Theorem 16, we see that u, p and ρ satisfy the estimate (4.2). In
fact, for f = fS + ∑

1≤|k|≤k0+3 e
ikt fk + fψ , we have the following estimates:

‖ f ‖L p((0,2π),X) ≤ ‖ fS‖L p((0,2π),X) +
∑

1≤|k|≤k0+3

‖eikt fk‖L p((0,2π),X) + ‖ fψ‖L p((0,2π),X)

≤ (2π)1/p‖ fS‖X + (2π)1/p
∑

1≤|k|≤k0+3

‖ fk‖X + ‖ fψ‖L p((0,2π),X),

‖∂t f ‖L p((0,2π),X) ≤
∑

1≤|k|≤k0+3

‖(ik)eikt fk‖L p((0,2π),X) + ‖∂t fψ‖L p((0,2π),X)

≤ (2π)1/p(k0 + 3)
∑

1≤|k|≤k0+3

‖ fk‖X + ‖∂t fψ‖L p((0,2π),X).

By Hölder’s inequality, we have

‖ fS‖L p((0,2π),X) ≤ 2π‖ f ‖L p((0,2π),X),
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‖eiktFT[ f ](ik)‖L p((0,2π),X) ≤ 2π‖ f ‖L p((0,2π),X),

and for any UMD Banach space X , using Lemma 13 and transference theorem, The-
orem 9, we have

‖ fψ‖L p((0,2π),X), ≤ C‖ψ‖H1∞‖ f ‖L p((0,2π),X),

‖∂t fψ‖L p((0,2π),X) ≤ C‖ψ‖H1∞‖∂t f ‖L p((0,2π),X),

‖�1/2 fψ‖L p((0,2π),X) ≤ ‖F−1
T

[((ik)1/2/(1 + k2)1/4)ψ(ik)(1 + k2)1/4

FT[ f ](ik)]‖L p((0,2π),X)

≤ C
( ∑

�=0,1

sup
λ∈R

|(λ d

dλ

)�
(((iλ)1/2/(1 + λ2)1/4)ψ(iλ))|)

‖ f ‖
H1/2

p ((0,2π),X)
.

�

4.2. On linearized problem of two-phase problem

In this subsection, we consider the linear equations:

∂tu± − Div (μD(u±) − p±I) = F± in �± × (0, 2π),

div u± = G± = divG± in �± × (0, 2π),

∂tρ + Mρ − (Au) · n = D on SR × (0, 2π),

[[μD(u) − pI)]]n − (BRρ)n = H on SR × (0, 2π),

[[u]] = 0 on SR × (0, 2π),

u− = 0 on S × (0, 2π).

(4.29)

where �+ = BR , �− = �\(BR ∪ SR), and M, A and BR are the linear operators
defined in (2.17).We shall prove the unique existence theoremof 2π -periodic solutions
of equations (4.29). Our main result in this section is stated as follows.

Theorem 17. Let 1 < p, q < ∞. Then, for any F±, D, G±, G± and H with

F± ∈ L p,per((0, 2π), Lq(�±)N ), D ∈ L p,per((0, 2π),W 2−1/q
q (SR))

G± ∈ L p,per((0, 2π), H1
q (�±)) ∩ H1/2

p,per((0, 2π), Lq(�±)),

G± ∈ H1
p,per((0, 2π), Lq(�±)N ),

H ∈ L p,per((0, 2π), H1
q (�)N ) ∩ H1/2

p,per((0, 2π), Lq(�)N ),

problem (4.1) admits unique solutions u±, p± and ρ with

u± ∈ L p,per((0, 2π), H2
q (�±)N ) ∩ H1

p,per((0, 2π), Lq(�±)N ),

p± ∈ L p,per((0, 2π), H1
q (�±)),

∑

±

∫

�±
p±(x, t) dx = 0 for t ∈ (0, 2π),
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ρ ∈ L p,per((0, 2π),W 3−1/q
q (SR)) ∩ H1

p,per((0, 2π),W 2−1/q
q (SR))

possessing the estimate:

∑

±
{‖u±‖L p((0,2π),H2

q (�±)) + ‖∂tu±‖L p((0,2π),Lq (�±)) + ‖∇p±‖L p((0,2π),Lq (�±))}

+ ‖ρ‖
L p((0,2π),W 3−1/q

q (SR))
+ ‖∂tρ‖

L p((0,2π),W 2−1/q
q (SR))

≤ C{
∑

±
‖F±‖L p((0,2π),Lq (�±)) + ‖D‖

L p((0,2π),W 2−1/q
q (SR))

+
∑

±
‖∂tG±‖L p((0,2π),Lq (�±))

+
∑

±
‖G±‖L p((0,2π),H1

q (�±)) + ‖G±‖
H1/2

p ((0,2π),Lq (�±))

+ ‖H‖L p((0,2π),H1
q (�)) + ‖H‖

H1/2
p ((0,2π),Lq (�))

}
(4.30)

for some constant C > 0.

To prove Theorem 17, the strategy is the same as in the proof of Theorem 6. There-
fore, we first consider the R-solver of the generalized resolvent problem:

ikv± − Div (μD(v±) − q±I) = f± in �±,

div v± = g± = div g± in �±,

ikη + Mη − (Av+) · n = d on SR,

[[μD(v) − qI]]n − (BRη)n = h on SR,

[[v]] = 0 on SR,

v− = 0 on S

(4.31)

for k ∈ R. From Theorem 2.1.4 in Shibata and Saito [19] we know the following
theorem concerned with the existence of an R-solver of problem (4.29).

Theorem 18. Let 1 < q < ∞ and let Rk0 = R\(−k0, k0). Let

Xq(�̇) = {(f, d, h, g, g) | f ∈ Lq(�̇), d ∈ W 2−1/q
q (SR),

h ∈ H1
q (�)N , g ∈ H1

q (�̇), g ∈ Lq(�̇)N },
Xq(�̇) = {F = (F1, F2, . . . , F7) | F1, F7 ∈ Lq(�̇)N , F2 ∈ W 2−1/q

q (SR),

F3 ∈ Lq(�)N , F4 ∈ H1
q (�)N ,

F5 ∈ Lq(�̇), F6 ∈ H1
q (�̇)}.

Then, there exist a constant k0 > 0 and operator families A(ik), P(ik), and H(ik)
with

A(ik) ∈ C1(Rk0 ,L(Xq(�̇), H2
q (�̇)N )),
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P(ik) ∈ C1(Rk0 ,L(Xq(�̇), Ḣ1
q (�̇))),

H(ik) ∈ C1(Rk0 ,L(Xq(�̇),W 3−1/q
q (SR)))

such that for any (f, d, h, g, g) and k ∈ Rk0 , v = A(ik)Fk , q = P(ik)Fk and
η = H(ik)Fk , where

Fk = (f, d, (ik)1/2h, h, (ik)1/2g, g, ikg),

are unique solutions of equations (4.31), and

RL(Xq (�̇),H2−m
q (�̇)N )

({(k∂k)�((ik)m/2A(ik)) | k ∈ Rk0}) ≤ rb,

RL(Xq (�̇),Lq (�̇)N )({(k∂k)�∇P(ik) | k ∈ Rk0}) ≤ rb,

RL(Xq (�̇),W 3−n−1/q
q (SR))

({(k∂k)�((ik)nH(ik)) | k ∈ Rk0}) ≤ rb

(4.32)

for � = 0, 1, m = 0, 1, 2 and n = 0, 1 with some constant rb.

Remark 19. (1) Here f ∈ Lq(�̇)means that f± ∈ Lq(�±), and f ∈ H1
q (�̇)means

that f± ∈ H1
q (�±), and we set

‖ f ‖Lq (�̇) =
∑

±
‖ f±‖Lq (�±), ‖ f ‖H1

q (�̇) =
∑

±
‖ f±‖H1

q (�±).

Moreover, we define

Ḣ1
q (�̇) =

{
θ ∈ H1

q (�̇) |
∫

�̇

θ dx = 0
}
.

(2) For f defined on �̇, we set f± = f |�± and for f± defined on�±, we set f = f±
on�±. The functions F1, F2, F3, F4, F5, F6, and F7 are variables corresponding
to f , d, (ik)1/2h, h, (ik)1/2g, g, and ik g, respectively.

(3) We define the norm ‖ · ‖Xq (�) by setting

‖(F1, . . . , F7)‖Xq (�) = ‖(F1, F5, F7)‖Lq (�̇) + ‖F2‖W 2−1/q
q (SR)

+ ‖F6‖H1
q (�̇)

+‖F3‖Lq (�) + ‖F4‖H1
q (�)).

Let ϕ(ik) be a function in C∞(R) which equals one for k ∈ Rk0+2 and zero for
k �∈ Rk0+1, and let ψ(ik) be a function in C∞(R) which equals one for k ∈ Rk0+4

and zero for k �∈ Rk0+3. For f ∈ {F±,G±, G±, D, H}, we set
fψ = F−1

T
[ψFT[ f ]].

We consider the high frequency part of the equations (4.29):

∂tu±ψ − Div (μD(u±ψ) − p±ψ I) = F±ψ in �± × (0, 2π),

div u±ψ = G±ψ = divG±ψ in �± × (0, 2π),

∂tρψ + Mρψ − (Au+ψ) · n = Dψ on SR × (0, 2π),

[[μD(uψ) − pψ I)n − (BRρψ)n = Hψ on SR × (0, 2π),

[[uψ ]] = 0 on SR × (0, 2π),

u−ψ = 0 on S × (0, 2π).

(4.33)
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By Theorem 8, Theorem 9, and the analogue of (4.5) resulting from (4.35), we have
immediately the following theorem.

Theorem 20. Let 1 < p, q < ∞. Then, for any functions F, G, G, D, and H with

F ∈ L p,per((0, 2π), Lq(�̇)N ), D ∈ L p,per((0, 2π),W 2−1/q
q (SR)),

H ∈ H1/2
p,per((0, 2π), Lq(�)N ) ∩ L p,per((0, 2π), H1

q (�)N ),

G ∈ H1/2
p,per((0, 2π), Lq(�̇)) ∩ L p,per((0, 2π), H1

q (�̇)),

G ∈ H1
p,per((0, 2π), Lq(�̇)N ),

We let

uψ = F−1
T

[ϕ(ik)A(ik)Fk(Fψ, Dψ, Hψ,Gψ, Gψ)](·, t),
pψ = F−1

T
[ϕ(ik)P(ik)Fk(Fψ, Dψ, Hψ,Gψ, Gψ)](·, t),

ρψ = F−1
T

[ϕ(ik)A(ik)Fk(Fψ, Dψ, Hψ,Gψ, Gψ)](·, t),

where we have set

Fk(Fψ, Dπ , Hψ,Gψ, Gψ) = ψ(ik)(FT[F](ik),FT[D](ik),
(ik)1/2FT[H](ik),FT[H](ik),

(ik)1/2FT[G](ik),FT[G](ik), ikFT[G](ik)).

Then, uψ , pψ and ρψ are the unique solutions of equations (4.33), which possess the
following estimate:

‖uψ‖L p((0,2π),H2
q (�̇)) + ‖∂tuψ‖L p((0,2π),Lq (�̇)) + ‖∇pψ‖L p((0,2π),Lq (�̇))

+ ‖ρψ‖
L p((0,2π),W 3−1/q

q (SR))
+ ‖∂tρψ‖

H1
p((0,2π),W 2−1/q

q (SR))

≤ C{‖Fψ‖L p((0,2π),Lq (�̇)) + ‖Dψ‖
L p((0,2π),W 2−1/q

q (SR))
+ ‖∂tGψ‖L p((0,2π),Lq (�̇))

+ ‖�1/2Gψ‖L p((0,2π),Lq (�̇)) + ‖Gψ‖L p((0,2π),H1
q (�̇))

+ ‖�1/2Hψ‖L p((0,2π),Lq (�)) + ‖Hψ‖L p((0,2π),H1
q (�))}

for some constant C > 0. Here, we have set

�1/2(Gψ, Hψ) = F−1
T

[(ik)1/2ψ(ik)(FT[G](ik),FT[H](ik))].

We now consider the lower frequency part of solutions of equations (4.29). Namely,
we consider equations (4.31) for k ∈ R with 1 ≤ |k| < k0 + 4. We shall show the
following theorem.

Theorem 21. Let 1 < q < ∞ and k ∈ Z with |k| ≤ k0 + 3. Then, for any
f± ∈ Lq(�±)N , g± ∈ H1

q (�±), d ∈ W 2−1/q
q (SR), h ∈ H1

q (�)N , and g± ∈
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Lq(�±)N , problem (4.31) admits unique solutions v± ∈ H2
q (�±)N , q± ∈ H1

q (�±)

with
∫

�
q dx = 0, and η ∈ W 3−1/q

q (SR) possessing the estimate:

‖v‖H2
q (�̇) + ‖∇q‖Lq (�̇) + ‖η‖

W 3−1/q
q (SR)

≤ C(‖f‖Lq (�̇) + ‖d‖
W 2−1/q

q (SR)
+ ‖g‖H1

q (�̇) + ‖g‖Lq (�̇) + ‖h‖H1
q (�))

(4.34)

for some constant C > 0.

Proof. The strategy of the proof is the same as that in Theorem 15. The only difference
is the reduced problem. First, we can reduce equations (4.31) to equations:

ikv − Div (μD(v) − pI) = f in �̇,

div v = 0 in �̇,

ikρ + Mρ − (Av+) · n = d on SR,

[[μD(v) − pI]]n − (BRρ)n = 0 on SR,

[[v]] = 0 on SR,

v− = 0 on S.

(4.35)

For any v± ∈ H2
q (�±)N and ρ ∈ W 3−1/q

q (SR), let K = K (v, ρ) ∈ Ḣ1
q (�̇) be the

unique solution of the weak Neumann problem:

(∇K ,∇ϕ)�̇ = (Div (μD(v)) − ∇div v,∇ϕ)�̇ for any ϕ ∈ Ḣ1
q ′(�) (4.36)

subject to the transmission condition:

[[K ]] =< [[μD(v)]]n, n > −σ(BRζ )n − [[div v]] on SR, (4.37)

where μ is piecewise constant defined by μ|�± = μ±. Here and in the following,
Ḣ1
q (�) is defined by setting

Ḣ1
q (�) =

{
ϕ ∈ H1

q (�) |
∫

�

ϕ dx = 0
}
.

The reduced problem corresponding to equations (4.35) is

ikv − Div (μD(v) − K (v, ρ)I) = f in �̇,

ikρ + Mρ − (Av+) · n = d on SR,

[[μD(v) − K (v, ρ)I]]n − σ(BRρ)n = 0 on SR,

[[v]] = 0 on SR,

v− = 0 on S.

(4.38)

Let Jq(�̇) be the solenoidal space defined by setting

Jq(�̇) = {u ∈ Lq(�̇) | (u,∇ϕ)�̇ = 0 for any ϕ ∈ Ḣ1
q ′(�)}.
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For any f ∈ Jq(�̇) and d ∈ W 2−1/q
q (SR), problems (4.35) and (4.38) are equivalent.

In fact, if problem (4.35) admits unique solutions v ∈ H2
q (�̇)N , p ∈ Ḣ1

q (�̇) and ρ ∈
W 3−1/q

q (SR), then using the divergence theorem of Gauss and noting that [[ϕ]] = 0
on SR gives that for any ϕ ∈ Ḣ1

q ′(�),

0 = (f,∇ϕ)�̇ = ik(v,∇ϕ)�̇ − (∇div v,∇ϕ)�̇

+ (∇(p − K (v, ρ)),∇ϕ)�̇ = (∇(p − K (v, ρ)),∇ϕ)�̇

because div v = 0 on �̇. Moreover, the transmission conditions in (4.35) and (4.37)
gives that

[[p − K (v, ρ)]] = [[div v]] = 0 on SR .

Thus, the uniqueness of the weak Neumann problem in Ḣ1
q (�̇) yields that p −

K (v, ρ) = 0 in �. Thus, v and ρ satisfy the equations (4.38).
Conversely, if v ∈ H2

q (�̇)N and ρ ∈ W 3−1/q
q (SR) satisfy equations (4.38), then the

divergence theorem of Gauss gives that for any ϕ ∈ Ḣ1
q ′(�) we have

0 = (f,∇ϕ)�̇ = ik(v,∇ϕ)�̇ − (∇div v,∇ϕ)�̇ = −{ik(div v, ϕ)�̇ + (∇div v,∇ϕ)�̇}.

Moreover, the transmission conditions in (4.38) and (4.37) give that

[[div v]] =< [[μD(v)]]n, n > −σ(BRζ ) − [[K ]] = 0 on SR .

Thus, the uniqueness of this weak Neumann problem yields that div v = c in �̇

for some global constant c. Now the divergence theorem of Gauss and the boundary
conditions in (4.38) yield c = 0, that is, div v = 0, which shows that v, p = K (v, ρ)

and ρ satisfy equations (4.35).
Employing the same argument as that in the proof of Theorem 15, we see that to

prove Theorem 21, it is sufficient to prove the uniqueness of solutions to equations
(4.38) in the L2 framework. Thus, we choose v ∈ H2

2 (�̇)N and ρ ∈ W 5/2
2 (SR) be

solutions of the homogeneous equations:

ikv − Div (μD(v) − K (v, ρ)I) = 0 in �̇,

ikρ + Mρ − (Av+) · n = 0 on SR,

[[μD(v) − K (v, ρ)I]]n − σ(BRρ)n = 0 on SR,

[[v]] = 0 on SR,

v− = 0 on S,

(4.39)

and we shall show that v = 0 and ρ = 0. Notice that div v = 0 on �̇. Moreover, by
[[v]] = 0, we have v ∈ H1

q (�) ∩ H2
q (�̇). Integrating the second equation in (4.39)

over SR and using the divergence theorem of Gauss on �+ = BR gives that

0 = ik(ρ, 1)SR +
∫

SR
ρ dω|SR |
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−
∫

BR

div (v+ − 1

|BR |
∫

BR

v+ dy) dx = (ik + |SR |)
∫

SR
ρ dω|SR |

because div v+ = 0 on BR , and so (ρ, 1)SR = 0. Moreover, multiplying the second
equation in (4.39) by x j and integrating over SR , similar arguments lead to

0 = ik(ρ, x j )SR +
∫

SR
ρx j dω(x j , x j )SR −

∫

BR

div {x j (v+(x) − 1

|BR |
∫

BR

v+ dy)} dx

= ik(ρ, x j )SR +
∫

SR
ρx j dω(x j , x j )SR −

∫

BR

(v+ j (x) − 1

|BR |
∫

BR

v+ j dy) dx

= ik(ρ, x j )SR +
∫

SR
ρx j dω(x j , x j )SR ,

because (1, x j )SR = 0, and (xk, x j )SR = 0 for j �= k. Since (x j , x j )SR =
(R2/N )|SR | > 0, we have (ρ, x j ) = 0. Summing up, we have proved

(ρ, 1)SR = 0, (ρ, x j )SR = 0 ( j = 1 . . . , N ). (4.40)

In particular, Mρ = 0.
We now prove that v = 0. Multiplying the first equation of (4.39) with v and

integrating the resultant formula over �̇ and using the divergence theorem of Gauss
gives that

0 = ik‖v‖2
L2(�̇)

− σ(BRρ, n · v)SR + μ

2
‖D(v)‖2

L2(�̇)
,

because div v = 0 in �̇. By the second equation of (4.39) withMρ = 0, we have

σ(BRρ, n · v)SR = σ(BRρ, ikρ)SR +
N∑

k=1

1

|BR |
∫

BR

w j dt (BRρ, R−1x j )SR

where we have used n = R−1x = R−1(x1, . . . , xN ) for x ∈ SR . This also yields

(BRρ, x j )SR = (ρ, (�SR + N − 1

R2 )x j )SR = 0.

Moreover, since ρ satisfies (4.40), we know that

−(BRρ, ρ)SR ≥ c‖ρ‖2L2(SR)

for some positive constant c, and therefore we have D(v) = 0. Since v ∈ H1
q (�) and

v = 0 on S−, we have v = 0.
Finally, the first equation of (4.39) yields that ∇K (v, ρ) = 0, which shows that

K (v, ρ) is constant in �̇. Thus, [[K (v, ρ)]] is constant. Integrating the third equation
of (4.39) yields that

[[K (v, ρ)]]
∫

SR
dω = σ(�SRρ, 1)SR + N − 1

R2 (ρ, 1)SR = 0

where we have used (4.40). In particular, K (v, ρ) is a constant globally in �. Finally,
we haveBRρ = 0 on SR , which, combined with (4.40) leads to ρ = 0. This completes
the proof of uniqueness for equations (4.38) in the L2 framework. Therefore, we have
proved Theorem 21. �
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Proof of Theorem 17. Employing the same argument as in the proof of Theorem 6
and using Theorem 20 and Theorem 21, we can prove Theorem 17. We may omit the
detailed proof. �

5. Proofs of main results

In this section, we shall prove Theorem 4. The proof of Theorem 5 is parallel to
that of Theorem 4, and so we may omit it. We prove Theorem 4 with the help of the
usual Banach fixed-point argument, and we define an underlying space Iε with some
small constant ε > 0 determined later by setting

Iε = {(v, h) | v ∈ L p,per((0, 2π), H2
q (BR)N ) ∩ H1

p,per((0, 2π), Lq (BR)N ),

h ∈ L p,per((0, 2π),W 3−1/q
q (SR)) ∩ H1

p,per((0, 2π),W 2−1/q
q (SR)) ∩ H1∞,per((0, 2π),

W 1−1/q
q (SR)),

sup
t∈(0,2π)

‖Hh(·, t)‖H1∞(BR ) ≤ δ, E(v, h) ≤ ε}, (5.1)

where we have set

E(v, h) = ‖v‖L p((0,2π),H2
q (BR)) + ‖v‖H1

p((0,2π),L2
q (BR))

+ ‖h‖
L p((0,2π),W 3−1/q

q (BR))
+ ‖h‖

H1
p((0,2π),W 2−1/q

q (BR))

+ ‖∂t h‖
L∞((0,2π),W 1−1/q

q (SR))
.

In view of (2.9), we define ξ(t) by setting

ξ(t) =
∫ t

0
ξ ′(s) ds + c = 1

|BR |
∫ t

0

∫

BR

v(x, s)(1 + J0(x, s)) dxds + c (5.2)

where c is a constant for which
∫ 2π

0
ξ(s) ds = 0, that is,

c = − 1

2π |BR |
∫ 2π

0

(∫ t

0

∫

BR

(v(x, s)(1 + J0(x, s)) dxds
)
dt. (5.3)

We choose δ > 0 so small that the map x = 
(y, t) = y + �(y, t) with �(y, t) =
�h(y, t) = R−1Hh(y, t)y + ξ(t) is one to one. In particular, we may assume that
δ > 0 and the inverse map: y = �(y, t) is well-defined and has the same regularity
property as 
(y, t). In particular, we may assume that

�(D) ⊂ BR . (5.4)

Since ε > 0 will be chosen small eventually, we may assume that 0 < ε < 1, and
so for example, we estimate ε2 < ε if necessary. Let (v, h) ∈ Iε and let u and ρ be
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solutions of linearized equations:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu + LuS − Div (μ(D(u) − pI) = G + F(v, h) in BR × (0, 2π),

div u = g(v, h) = div g(v, h) in BR × (0, 2π),

∂tρ + Mρ − Au · n = d̃(v, h) on SR × (0, 2π),

(μD(u) − pI)n − (BRρ)n = h(v, h) on SR × (0, 2π).

(5.5)

In view of Theorem 6, we shall show that

‖F(v, h)‖L p((0,2π),Lq (BR))

+ ‖d̃(v, h)‖
L p((0,2π),W 2−1/q

q (SR))
+ ‖(g(v, h), h(v, h)‖

H1/2
p ((0,2π),Lq (BR))

+ ‖(g(v, h), h(v, h)‖L p((0,2π),H1
q (BR)) + ‖∂tg(v, h)‖L p((0,2π),Lq (BR)) ≤ Cε2,

(5.6)
for some constant C > 0 independent of ε > 0. In the following, C denotes generic
constants independent of ε > 0, the value of which may change from line to line.
Before starting with the estimates of the nonlinear terms, we summarize some inequal-
ities which are useful for our estimations. The following inequalities follow from
Sobolev’s inequality and the estimate of the boundary trace:

‖ f ‖L∞(BR) ≤ C‖ f ‖H1
q (BR),

‖ f g‖H1
q (BR) ≤ C‖ f ‖H1

q (BR)‖g‖H1
q (BR),

‖ f g‖H2
q (BR) ≤ C(‖ f ‖H2

q (BR)‖g‖H1
q (BR) + ‖ f ‖H1

q (BR)‖g‖H2
q (BR)),

‖ f g‖
W 1−1/q

q (SR)
≤ C‖ f ‖

W 1−1/q
q (SR)

‖g‖
W 1−1/q

q (SR)
,

‖ f g‖
W 2−1/q

q (SR)
≤ C(‖ f ‖

W 2−1/q
q (SR)

‖g‖
W 1−1/q

q (SR)
+ ‖ f ‖

W 1−1/q
q (SR)

‖g‖
W 2−1/q

q (SR)
)

(5.7)
for N < q < ∞ with some constant C . The following inequalities follow from real
interpolation theorem and the periodicity of functions, which will be used to estimate
the L∞ norm with respect to the time variable of lower order regularity terms with
respect to the space variable x :

‖v‖
L∞((0,2π),B2(1−1/q)

q,p (BR ))
≤ C(‖v‖L p((0,2π),H2

q (BR )) + ‖∂tv‖L p((0,2π),Lq (BR ))),

‖h‖
L∞((0,2π),B3−1/p−1/q

q,p (SR ))
≤ C(‖h‖

L p((0,2π),W 3−1/q
q (SR ))

+ ‖∂t h‖
L p((0,2π),W 2−1/q

q (SR ))
).

(5.8)
In fact, to obtain (5.8) we use the following well-known result: Let X and
Y be two Banach spaces such that Y is continuously embedded into X , and
then C([0,∞), (X,Y )1−1/p,p) is continuously embedded into H1

p((0,∞), X) ∩
L p((0,∞),Y ) and

‖ f ‖L∞((0,∞),(X,Y )1−1/p,p) ≤ ‖ f ‖L p((0,∞),Y ) + ‖ f ‖H1
p((0,∞),X).

For its proof, we refer to [9,21].
We start with the estimate of F(v, h). From (3.11), we have

‖F1(v, h)‖Lq (BR) ≤ C{‖v‖L∞(BR)‖∇v‖Lq (BR) + ‖∂t�h‖L∞(BR)‖∇v‖Lq (BR)
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+ ‖∇�h‖L∞(BR)‖∂tv‖Lq (BR) + ‖∇�h‖L∞(BR)‖∇2v‖Lq (BR)

+ ‖∇2�h‖Lq (BR)‖∇v‖L∞(BR)).

By (5.7) and (2.5), we have

‖F1(v, h)‖L p((0,2π),Lq (BR)) ≤ C{‖v‖L∞((0,2π),H1
q (BR))‖v‖L p((0,2π),H1

q (BR))

+ ‖∂t h‖
L p((0,2π),W 1−1/q

q (SR))
‖v‖L∞((0,2π),H1

q (BR))

+ ‖h‖
L∞((0,2π),W 2−1/q

q (SR))
(‖∂tv‖Lq ((0,2π),Lq (BR))

+ ‖v‖L p((0,2π),H2
q (BR))),

which, combined with (5.8) and (5.1), leads to

‖F1(v, h)‖L p((0,2π),Lq (BR)) ≤ Cε2, (5.9)

because 1 < 2(1 − 1/p) and 2 − 1/q < 3 − 1/p − 1/q. From (3.12), it follows that

‖F2(v, h)(·, t)‖Lq (BR )

≤ C
∫ 2π

0
‖v(·, t)‖Lq (BR )(‖J0(·, t)‖L∞(BR )

+ ‖�(·, t)‖L∞(BR )(1 + ‖J0(·, t)‖L∞(BR ))) dt

+
∫ 2π

0
‖v(·, t)‖Lq (BR )(1 + ‖�(·, t)‖L∞(BR ))(1 + ‖J0(·, t)‖L∞(BR )) dt‖�(·, t)‖Lq (BR )

+ ‖∇�(·, t)‖Lq (BR )

∫ 2π

0
‖v(·, t)‖Lq (BR )(1 + ‖�(·, t)‖L∞(BR ))(1 + ‖J0(·, t)‖L∞(BR )) dydt

× (1 + ‖�(·, t)‖L∞(BR )).

To estimate F2(v, h), we recall

J0(y, t) = det
(
δi j + R−1 ∂

∂y j
Hh(y, t)yi

)
− 1

and that �(y, t) = R−1Hh(y, t)y + ξ(t), where ξ(t) is given by

ξ(t) =
∫ t

0

1

|BR |
∫

BR

(v(y, s)(1 + J0(y, s)) dyds + c,

c = −
∫ 2π

0

∫ t

0

1

|BR |
∫

BR

(v(y, s)(1 + J0(y, s)) dydsdt.

(5.10)

By (5.7) and (2.5) we obtain

‖Hh(·, t)‖L∞(BR) ≤ C‖h(·, t)‖
W 1−1/q

q (SR)
≤ Cε,

‖∇Hh(·, t)‖L∞(BR) ≤ C‖h(·, t)‖
W 2−1/q

q (SR)
≤ Cε,

(5.11)

By (5.7), (2.5), (5.8), the fact that 2 − 1/q < 3 − 1/p − 1/q, and (5.1), we have

‖J0(·, t)‖L∞(BR) ≤ C‖∇Hh(·, t)‖L∞(BR)(1 + ‖∇Hh(·, t)‖L∞(BR))
N−1

≤ C‖h(·, t)‖
W 2−1/q

q (SR)
(1 + ‖h(·, t)‖

W 2−1/q
q (SR)

)N−1

≤ Cε.

(5.12)
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From (5.10) and (5.1), it follows that

|ξ(t)| ≤ C‖v‖L p((0,2π),Lq (BR)) ≤ Cε. (5.13)

In particular, by (5.11) and (5.13), we have

‖�(·, t)‖L∞(BR) ≤ Cε, ‖∇�(·, t)‖L∞(BR) ≤ Cε. (5.14)

Combining (5.1) and (5.14) gives that

‖F2(v, h)‖L p((0,2π),Lq (BR)) ≤ Cε‖v‖L p((0,2π),Lq (BR)) ≤ Cε2,

which, combined with (5.9), leads to

‖F(v, h)‖L p((0,2π),Lq (BR)) ≤ Cε2. (5.15)

By (5.4) and (5.14), we have

‖G‖L p((0,2π),Lq (BR)) ≤ C‖f‖L p((0,2π),Lq (D)). (5.16)

We next estimate d̃(v, h). By (3.25) and (5.1),

‖nt − n‖
W 1−1/q

q (SR)
≤ C‖Hh(·, t)‖H2

q (BR) ≤ Cε,

‖nt − n‖
W 2−1/q

q (SR)
≤ C(‖Hh(·, t)‖H3

q (BR) + ‖Hh(·, t)‖H2
q (BR)‖Hh(·, t)‖H2∞(BR)).

Since we assume that 2/p+ N/q < 1, we can choose κ > 0 so small that 2+ N/q +
κ − 1/q < 3 − 1/p − 1/q and 1 + N/q + κ < 2(1 − 1/p), and then by Sobolev’s
inequality and (5.8) we have

sup
t∈(0,2π)

‖v(·, t)‖H1∞(BR) ≤ C sup
t∈(0,2π)

‖v(·, t)‖
B2(1−1/p)
q,p (BR)

≤ Cε;

sup
t∈(0,2π)

‖Hh(·, t)‖H2∞(BR) ≤ C sup
t∈(0,2π)

‖h(·, t)‖
B3−1/p−1/q
q,p (SR)

≤ Cε,
(5.17)

where we have used (2.5) in the last inequality. Then, in particular, using again (2.5),
we have

‖nt − n‖
W 2−1/q

q (SR)
≤ C‖Hh(·, t)‖H3

q (BR) ≤ C‖h(·, t)‖
W 3−1/q

q (SR)
.

Thus, applying (5.12) to the formula in (2.11) and using (5.1) and (5.7) gives that

‖d(v, h)‖
L p((0,2π),W 2−1/q

q (SR))
≤ Cε(‖v‖L∞((0,2π),H1

q (BR)) + ‖v‖L p((0,2π),H2
q (BR))

+ ‖∂t h‖
L∞((0,2π),W 1−1/q

q (SR))

+ ‖∂t h‖
L p((0,2π),W 2−1/q

q (SR))
)

≤ Cε2.

(5.18)
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On the other hand, by (5.11),

‖h(·, t)‖L∞(SR) ≤ C‖Hh(·, t)‖L∞(BR) ≤ Cε,

and so
∣
∣
∣

∫

SR
hk dω

∣
∣
∣ ≤ Cε2,

∣
∣
∣

∫

SR
hkω dω

∣
∣
∣ ≤ Cε2 for k ≥ 2,

which, combined with (5.18), leads to

‖d̃(v, h)‖
L p((0,2π),W 2−1/q

q (SR))
≤ Cε2. (5.19)

We next consider g(v, h) given in (3.6), where ρ is replaced by h. We may write

g(v, h) = Vg(k)(Hh,∇Hh) ⊗ v.

where k denotes variables corresponding to (Hh,∇Hh) and Vg is a C∞ function
defined on |k| < δ. We write

∂tg(v, h) = V′
g(k)∂t (Hh,∇Hh) ⊗ (Hh,∇Hh) ⊗ v + Vg(k)∂t (Hh,∇Hh) ⊗ v

+Vg(k)(Hh,∇Hh) ⊗ ∂tv,

and so, by (5.11), (2.5), we have

‖∂tg(v, h)‖L p((0,2π),Lq (BR)) ≤ C(‖v‖L∞((0,2π),H1
q (BR)) + ‖h‖

L∞((0,2π),W 2−1/q
q (SR))

)

× (‖h‖
H1

p((0,2π),W 2−1/q
q (SR))

+ ‖∂tv‖L p((0,2π),Lq (BR)))

≤ Cε2.

(5.20)
We next estimate g(v, h) and h(v, h) = (h′(v, h), hN (v, h)) given in (3.6), (3.31)

and (3.34), where ρ is replaced by h. We may write

g(v, h) = Vg(k)(Hh,∇Hh) ⊗ ∇v,

where k are variables corresponding to (Hh,∇Hh) and Vg(k) is some matrix of C∞
functions defined on |k| < δ. To estimate g, we use the following two lemmas.

Lemma 22. Let 1 < p < ∞ and N < q < ∞. Let

f ∈ H1∞,per((0, 2π), Lq(BR)) ∩ L∞,per((0, 2π), H1
q (BR)),

g ∈ H1/2
p,per((0, 2π), Lq(BR)) ∩ L p,per((0, 2π), H1

q (BR)).

Then, we have

‖ f g‖
H1/2

p ((0,2π),Lq (BR))
+ ‖ f g‖L p((0,2π),H1

q (BR))

≤ C(‖ f ‖H1∞((0,2π),Lq (BR)) + ‖ f ‖L∞((0,2π),H1
q (BR)))

1/2‖ f ‖1/2
L∞((0,2π),H1

q (BR))

× (‖g‖
H1/2

p ((0,2π),Lq (BR))
+ ‖g‖L p((0,2π),H1

q (BR)))

(5.21)
for some constant C > 0.
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Proof. By (5.7), we have

‖ f g‖L p((0,2π),H1
q (BR)) ≤ ‖ f ‖L∞((0,2π),H1

q (BR))‖g‖L p((0,2π),H1
q (BR)). (5.22)

To estimate the H1/2 norm, we use the complex interpolation relation:

H1/2
p,per((0, 2π), Lq (BR)) ∩ L p,per((0, 2π), H1/2

q (BR))

= (
L p,per((0, 2π), Lq (BR)), H1

p,per((0, 2π), Lq (BR)) ∩ L p,per((0, 2π), H1
q (BR))

)

1/2
(5.23)

where (·, ·)1/2 denotes a complex interpolation of order 1/2. By (5.7), we have

‖ f g‖H1
p((0,2π),Lq (BR)) ≤ C(‖∂t f ‖L∞((0,2π),Lq (BR)) + ‖ f ‖L∞((0,2π),H1

q (BR)))

× (‖g‖L p((0,2π),H1
q (BR)) + ‖∂t g‖L p((0,2π),Lq (BR))),

‖ f g‖L p((0,2π),Lq (BR)) ≤ C‖ f ‖L∞((0,2π),H1
q (BR))‖g‖L p((0,2π),Lq (BR)).

Thus, by (5.23), we have

‖ f g‖
H1/2

p ((0,2π),Lq (BR))
≤ C(‖ f ‖H1∞((0,2π),Lq (BR))

+ ‖ f ‖L∞((0,2π),H1
q (BR)))

1/2‖ f ‖1/2
L∞((0,2π),H1

q (BR))

× (‖g‖
H1/2

p ((0,2π),Lq (BR))
+ ‖g‖

L p((0,2π),H1/2
q (BR))

)

(5.24)
Since ‖g‖

L p((0,2π),H1/2
q (BR))

≤ C‖g‖L p((0,2π),H1
q (BR)), combining (5.22) and (5.24)

leads to (5.21), which completes the proof of Lemma 22. �

Lemma 23. Let 1 < p, q < ∞. Then, there exists a constant C such that for any u
with

u ∈ H1
p,per((0, 2π), Lq(BR)) ∩ L p,per((0, 2π), H2

q (BR)),

we have

‖u‖
H1/2

p ((0,2π),H1
q (BR))

≤ C(‖u‖H1
p((0,2π),Lq (BR)) + ‖u‖L p((0,2π),H2

q (BR))) (5.25)

for some constant C > 0.

Proof. As was proved in the proof of Proposition 1 in Shibata [17], there exist two
operators 
1 and 
2 with


1 ∈ C1(R\{0},L(Lq(BR), Lq(BR)N )), 
2 ∈ C1(R\{0},L(H2
q (BR), Lq(BR)N )

such that for any g ∈ H2
q (BR), we have

(1 + λ2)1/4∇g = 
1(λ)(1 + λ2)1/2g + 
2(λ)g,

and

RL(Lq (BR),Lq (BR)N )({(λ∂λ)
�
1(λ) | λ ∈ R\{0}}) ≤ rb,
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RL(H2
q (BR),Lq (BR)N )({(λ∂λ)

�
1(λ) | λ ∈ R\{0}}) ≤ rb,

for � = 0, 1 with some constant rb. Thus, by Weis’ operator-valued Fourier multiplier
theorem, Theorem 8, and transference theorem, Theorem 9, we have (5.25), which
completes the proof of Lemma 23. �

By (5.1), (2.5), (5.7) and (5.17), we have

‖∂t Vg(k)(Hh,∇Hh)‖L∞((0,2π),Lq (BR)) ≤ C‖h‖
H1

p((0,2π),W 1−1/q
q (BR))

≤ Cε,

‖Vg(k)(Hh,∇Hh)‖L∞((0,2π),H1
q (BR)) ≤ C‖Hh‖L∞((0,2π),H2

q (BR)) ≤ Cε.

Thus, by Lemma 22, Lemma 23, and (5.1), we have

‖g(v, h)‖
H1/2

p ((0,2π),Lq (BR))
+ ‖g(v, h)‖L p((0,2π),H1

q (BR))

≤ Cε(‖∇v‖
H1/2

p ((0,2π),Lq (BR))
+ ‖∇v‖L p((0,2π),H1

q (BR)))

≤ Cε(‖v‖L p((0,2π),H2
q (BR)) + ‖∂tv‖L p((0,2π),Lq (BR)))

≤ Cε2.

(5.26)

Analogously, recalling the definition of h(v, h) = (h′(v, h), hN (v, h)) given in
(3.31) and (3.34), where ρ is replaced by h, and using Lemma 22, we have

‖h(v, h)‖
H1/2

p ((0,2π),Lq (BR))
+ ‖h(v, h)‖L p((0,2π),H1

q (BR))

≤ Cε(‖∇v‖
H1/2

p ((0,2π),Lq (BR))
+ ‖∇v‖L p((0,2π),H1

q (BR))

+ ‖∇2
Hh‖H1/2

p ((0,2π),Lq (BR))
+ ‖∇2

Hh‖L p((0,2π),H1
q (BR))).

Since H1/2
p ((0, 2π), Lq(BR)) ⊃ H1

p((0, 2π), Lq(BR)), we have

‖∇2
Hh‖H1/2

p ((0,2π),Lq (BR))
≤ C‖∇2

Hh‖H1
p((0,2π),Lq (BR)),

and so using Lemma 23, (2.5), and (5.1), we have

‖h(v, h)‖
H1/2

p ((0,2π),Lq (BR))
+ ‖h(v, h)‖L p((0,2π),H1

q (BR))

≤ Cε(‖v‖H1
p((0,2π),Lq (BR)) + ‖v‖L p((0,2π),H2

q (BR))

+ ‖∂t Hh‖L p((0,2π),H2
q (BR)) + ‖Hh‖L p((0,2π),H3

q (BR)))

≤ Cε2.

(5.27)

Combining (5.15), (5.19), (5.20), (5.26), and (5.27) gives (5.6). Applying Theorem 6
to equations (5.5) and using (5.6) and (5.16) gives that

‖u‖L p((0,2π),H2
q (BR)) + ‖∂tu‖L p((0,2π),Lq (BR))

+ ‖ρ‖
L p((0,2π),W 3−1/q

q (SR))
+ ‖∂tρ‖

L p((0,2π),W 2−1/q
q (SR))

≤ M1‖f‖L p((0,2π),Lq (D)) + M2ε
2

(5.28)
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for some constants M1 and M2 independent of ε ∈ (0, 1). Finally, we estimate
‖∂tρ‖

L∞((0,2π),W 1−1/q
q (SR))

. From the third equation in equations (5.5), we have

‖∂tρ‖
W 1−1/q

q (SR)
≤ ‖Mρ‖

W 1−1/q
q (SR)

+ ‖Au‖
W 1−1/q

q (SR)
+ ‖d̃(v, h)‖

W 1−1/q
q (SR)

.

Therefore, by (5.1), (5.7), (5.8), (5.11), (5.12), and (5.13), we have

‖∂tρ‖
L∞((0,2π),W 1−1/q

q (SR))
≤ C(‖u‖L p((0,2π),H2

q (BR)) + ‖∂tu‖L p((0,2π),Lq (BR))

+ ‖ρ‖
L p((0,2π),W 3−1/q

q (SR))

+ ‖∂tρ‖
L p((0,2π),W 2−1/q

q (SR))
+ ε2),

which, combined with (5.28), leads to

E(u, ρ) ≤ M ′
1‖f‖L p((0,2π),Lq (D)) + M ′

2ε
2 (5.29)

for some constants M ′
1 and M ′

2 independent of ε ∈ (0, 1). We choose ε > 0 so small
that M ′

2ε < 1/2 and we assume that M ′
1‖f‖L p((0,2π),Lq (D)) ≤ ε/2. Then, we have

E(u, ρ) ≤ ε. (5.30)

Moreover, by (2.5) and (5.8), we have

sup
t∈(0,2π)

‖Hρ‖H1∞(BR)) ≤ C‖ρ‖
L∞((0,2π),W 1−1/q

q (SR))
≤ M3E(u, ρ) ≤ M3ε.

Choosing ε > 0 smaller if necessary, we may assume that 0 < M3ε < δ, and so
(u, ρ) ∈ Iε . If we define a map 
 acting on (v, h) ∈ Iε by setting 
(v, h) = (u, ρ),
and then 
 is a map from Iε into itself. Employing a similar argument as for proving
(5.30), we see that for any (vi , hi ) ∈ Iε (i = 1, 2),

E(
(v1, h1) − 
(v2, h2)) ≤ M4εE((v1, h1) − (v2, h2)).

Choosing ε > 0 smaller if necessary, we may assume that M4ε ≤ 1/2, and so 
 is a
contraction map on Iε . The Banach fixed-point theorem yields the unique existence of
a fixed point (v, ρ) ∈ Iε of the map 
, that is (v, ρ) = 
(v, ρ), which is the required
solution of equations (2.16). This completes the proof of Theorem 4.
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