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On periodic solutions for one-phase and two-phase problems of the
Navier-Stokes equations

THOMAS EITER, MADS KYED AND YOSHIHIRO SHIBATA

Abstract. This paper is devoted to proving the existence of time-periodic solutions of one-phase or two-
phase problems for the Navier-Stokes equations with small periodic external forces when the reference
domain is close to a ball. Since our problems are formulated in time-dependent unknown domains, the
problems are reduced to quasilinear systems of parabolic equations with non-homogeneous boundary con-
ditions or transmission conditions in fixed domains by using the so-called Hanzawa transform. We separate
solutions into the stationary part and the oscillatory part. The linearized equations for the stationary part
have eigen-value 0, which is avoided by changing the equations with the help of the necessary condi-
tions for the existence of solutions to the original problems. To treat the oscillatory part, we establish the
maximal L ,—Lg regularity theorem of the periodic solutions for the system of parabolic equations with
non-homogeneous boundary conditions or transmission conditions, which is obtained by the systematic
use of R-solvers developed in Shibata (Diff Int Eqns 27(3—4):313-368, 2014; On the R-bounded solution
operators in the study of free boundary problem for the Navier-Stokes equations. In: Shibata Y, Suzuki Y
(eds) Springer proceedings in mathematics & statistics, vol. 183, Mathematical Fluid Dynamics, Present
and Future, Tokyo, Japan, November 2014, pp 203-285, 2016; Comm Pure Appl Anal 17(4): 1681-1721.
https://doi.org/10.3934/cpaa.2018081, 2018; R boundedness, maximal regularity and free boundary prob-
lems for the Navier Stokes equations, Preprint 1905.12900v1 [math.AP] 30 May 2019) to the resolvent
problem for the linearized equations and the transference theorem obtained in Eiter et al. (R-solvers and
their application to periodic L estimates, Preprint in 2019) for the L, boundedness of operator-valued
Fourier multipliers. These approaches are the novelty of this paper.

1. Introduction

This paper is concerned with time-periodic solutions of one-phase and two-phase
problems for the Navier—Stokes equations. The periodic solutions for the Navier—
Stokes equations have been studied in many articles [3-8,10-14,20,23] and references
therein. One well-known approach to prove the existence of periodic solutions is the
utilization of the Poincaré operator, which maps an initial value into the solution of the
PDE attime 7, where 7 is the period of the data. A fixed point of the Poincaré operator
yields an initial value that induces a 7 -time-periodic solution. Such a utilization of
the Poincaré operator is naturally carried out under the global well-posedness of the
corresponding initial-boundary value problem for the bounded data on the right hand
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side of the equations. In the bounded domain case, this is deeply related with the
situation where O does not belong to the spectrum of the system of the linearized
equations. However, in many interesting problems in mathematical physics, we meet
the situation that O is in the spectrum. One-phase or two-phase problems for the Navier—
Stokes equations are typical examples. As explained in Sects. 1 and 2, the one-phase
and two-phase problems we treat in this paper are formulated by the Navier—Stokes
equations with free boundary condition or transmission condition on the interface in
a time-dependent domain €2;, which is also unknown. Usually, €2; is transformed to
a fixed domain 2 by introducing an unknown function representing the boundary or
the interface of €2,;. Thus, the problem treated here becomes a quasilinear system of
equations with nonlinear boundary or transmission conditions. The first of our key
approaches is to separate solutions into stationary part and oscillatory part. Then,
the zero eigen-value of the linearized equations appears only in the equations for
the stationary problem. We change the linearized equations by using some necessary
conditions for the unique existence of solutions to avoid eigen-value O for the linearized
problem. This technique is possible under the separation of the stationary part and the
oscillatory part, which does not appear when working with the Poincaré operator. The
second is to introduce a systematic approach to the maximal L ,—L, regularity for the
oscillatory part based solely on the R-solver for the resolvent problem of the linearized
equations developed in [15-19] and a transference theorem for the L , boundedness of
the operator-valued Fourier multiplier due to Eiter, Kyed and Shibata in [2]. The L ,—
L, maximal regularity for the oscillatory part of solutions is necessary because our
problem is a quasilinear system with non-homogeneous boundary conditions. Since
the maximal regularity for the oscillatory part of the periodic solutions does not seem
to be well-studied, our systematic approach gives a quite important contribution to the
study of systems of parabolic equations with non-homogeneous boundary conditions,
which is the novelty of this paper.

1.1. One-phase problem

Let Q; be a time-dependent domain in the N-dimensional Euclidean space RV
(N = 2). Let I'; be the boundary of €2; and n, the unit outer normal to I';. We assume
that €2; is occupied by some incompressible viscous fluid of unit mass density whose
viscosity coefficient is a positive constant u. Let u = ' (u1(x,1), ..., un(x,1)),
x = (x1,...,xy) € Q, and p = p(x, t) be the velocity field and the pressure field
in Q;, respectively, where | M denotes the transposed of M. We consider the Navier—
Stokes equations in €2, with free boundary condition as follows:

du+u-Vu—Div(uD@) —pl) =f in ;,
divu =0 in 2,
(uD(u) — pDn; = o H([y)ny on T,
Vr

(1.1)

=N on I
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fort € R.Here, f = f(x, ) is aprescribed time-periodic external force with period 27;
H (T';) denotes the (N — 1)-fold mean curvature of I'; which is given by H (I';)n, =
Ar,x for x € I';, where Ar, is the Laplace—Beltrami operator on I';; Vr, is the
evolution speed of I'; along n;; o is a positive constant representing the surface tension
coefficient; D(u) is the doubled deformation tensor given by D(u) = Vu+ ' Vu; and
I is the (N x N)-identity matrix. Moreover, for any (N x N)-matrix of functions
K whose (i, j)th component is K;;, Div K is an N-vector whose ith component is
Z?:l 0;K;; and for any N-vector of functions v = T(vl, ...,UN), V- VVisan
N-vector of functions whose ith component is Z;V:l v;d;v;, where 0; = 9/0x;.
Our problem is to find €2;, I';, u and p satisfying the periodic condition:

Q =Qon, Tt =T, uwlx, ) =ulx,r+27), px,1)=px,1+27)
(1.2)
forany r € R.
To state the main result, we introduce assumptions and some functional spaces. Let

pi=e ="7(0,...,0, 1,0,...,0)fori =1,...,Nandp, ¢ =N +1,..., M)
be one of x;e; —x;e; (1 <i < j < N). Notice that p; forms a basis of the rigid space
{v | D(v) = 0} and the number M is its dimension. We will construct €2; satisfying
the following two conditions:

2
e [ @pia ), 0, (13)
2
/ (/ xdx)dt:O, (1.4)
0 Q,
|2;| = |Bgr| foranyt € (0, 2m). (1.5)

Here and in the following, (M )¢, m=1.....n denotes an (N x N)-matrix whose (£, m)th
component is My p; for any domain G and (N — 1)-dimensional hypersurface S, we
let

(f. 8¢ =fo<x>~mdx, (f &)s =fsf<x)-@do,

where g(x) denotes the complex conjugate of g(x), and do the surface element of S.
|G| denotes the Lebesgue measure of a Lebesgue measurable set G of R"; and By is
the ball with radius R centered at the origin. For 1 < p < oo and any Banach space
X withnorm || - || x, let

Lp,per((ov 2m), X)={f:R—=>X|[fOlx € LI,IOC(R)v
f(t+2m)= f(t) foranyt € R,

m 1/p
p
10200 = ( /O Lol an)"" < oo,

Hj e (0,270), X) = {f : R = X | [ fDllx € L110c(R) and [ /()] x € L110c(R),
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f@) = f(t+2n), f(t)= f(r+2n) foranyr € R,
2

. 1/
om0 = ([ ArOIE +1fo1%ar) ™ < ool

where f denotes the derivative of f with respect to ¢. Let

2 » 1/p
I Ly02m0 = ([ 1rongar)”.
0
I/ ) 0,270, %) = I IL,0.2m), 0 + ||f||L,,((0,2n),X)-

For any domain G in RN and 1 < q <00, Ly(G), H;I(G), and B;,p(G) denote the
standard Lebesgue, Sobolev, and Besov spaces on G, and || - ||, ) Il - ||H,;"(G), and
Il - ”B*;.p(G) denote their respective norms. For any integer d, X4 denotes the d-fold
product of the space X, thatis X¢ = {g = (g1, ..., ga) | gieX(=1,....d)}
while the norm of X¢ is denoted by || - || x instead of || - || xa for simplicity.

The following theorem is our main result concerning time-periodic solutions of the
one-phase problem for the Navier—Stokes equations.

Theorem 1. Let 1 < p,g < ocoand?2/p+ N/q < 1. Let D C Bpg be a domain.
Then, there exists a positive constant € and an injective map x = ®(y, t) : Bg — RN
foreacht € (0,2m) with

® € Ly per((0, 27), H (Bp)Y) N H) (0. 27), H (Br))

for which the following assertion holds: If £ € L per((0, 27), Ly (D)N) satisfies the
support condition: suppf(-,t) C D foranyt € (0, 27), the orthogonal condition

27
(¢, 0),p)pdt =0 fort=1,..., M, (1.6)

and the smallness condition: ||f||Lp((0’2n—)’Lq(D)N) < €, then there existv(y, t), q(y, t),
and p(y, t) with
V € Lpper((0,27), Hy (Br)") N H) 0 ((0,277), Ly (BR)™),
q € Lpper((0, 2), qu (BRr)), 1.7
P € Lpper(0.2). Wy~ *(B)™) N Hy o (0. 27), Wy~ /7 (Sp)).

.pe
such that
Q={x=00.0|ye B}, ux.n)=v(@ '(x.,0.0),
Pl D) = q(@ " (x0). 1),
where ®~(x, 1) is the inverse map of the correspondence: x = ®(y,t) for any

t € (0, 2m), are solutions of equations (1.2) satisfying the periodicity condition (1.2),
and T'; is given by

Ti={x=y+R oG, 0y+E1) |ye Skl
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where &(t) is the barycenter point of 2; defined by setting

1
Et)y = — xdx.
12| Jg,

Moreover, v and p satisfy the estimate:
IVIlL,0.2m), 12 (BRy) + 13 VIIL, (0,27), L4 (BR))

+ ”p||L,,((0,27'[),W¢1371/q(SR)) + ”a”o”Lp((O,Zn),Wq%l/q(SR)) (1.8)

+ ”atp”Loo((O,Zn),qu_l/q(SR)) =< Ce

for some constant C independent of €.

Remark 2. In the construction of the map ®, we see that ®(y, 1) = y+ R p(y, 1) +
&(t) for y € Sg.

1.2. Two-phase problem

Let Q, be a time-dependent domain in the N-dimensional Euclidean space RY .
Let I'; be the boundary of I'; and ny its unit outer normal. Let 2 be a bounded domain
in RY and S the boundary of Q. We assume that @, € Q and I, NS = ¢. Let
Q_; = Q\ (24, UTy) and set 2, = Q4+, U Q_,;. We assume that Q.; be occupied by
some incompressible viscous fluids of unit mass densities whose viscosity coefficients
are positive constants p4. Letu = T(uy, ..., uy) and p be the velocity field and the
pressure field on €2;, respectively. We consider the following Navier—Stokes equations
with transmission condition on I'; and no-slip condition on S:

ougr +u-Vuyr —Div(uD@uy) —p D) =f in Q4

divar =0 in Q4,,

[[uD() — pI]ln, = c H(')my, [[u]] =0 onTIY, (1.9)
Vr, =u; - my onlI%,
u_ =0 onS

fort € R, where f = f(x, ¢) is a prescribed time-periodic external force with period
2m; u is the viscosity coefficient given by

_ M+ in Q+I9
U— in Qg3
and [[ f]] denotes the jump of fi defined on Q24 along n; defined by setting

[[fNCo) = lim fi(x) — lim f_(x) forxo el

xX€Qqt xeQ ¢
The purpose of this paperis also to find ., 'y, ut and p4 which satisfy the periodicity

condition:

Q:I:l = Q:I:l+27Tv Fl = FI+2711 u:l:(-x9t) = u:t(x,t+27T), p:i:(-xvt) :p:t(xvt+277)
(1.10)



T. EITER ET AL. J. Evol. Equ.

To state a main result, we introduce the assumptions about €2, as follows. We assume
that Q O Bpg for some R > 0, and that

/Ozn(/ﬂ xdx)dt:O, (1.11)

|24+ = |Bg| foranyrt € (0,2m). (1.12)
The following theorem is our main result concerning time-periodic solutions of the

two-phase problem for the Navier—Stokes equations.

Theorem 3. Letl < p,g <oocand2/p+N/q < 1.Qy = Bgrand Q_ = Q\(BrU
Sr). Then, there exist a positive constant € and a bijective map x = ®(y, t) from
Q onto itself such that for any £ € L per((0, 277), Lq(Q)N ) satisfying the smallness
condition: |f11L,«0,27),L, () =< €, there exist v+ (y, 1), q+(y, 1) and p(y,t) with
2 N 1 N
Vi € Lpper((0,27), HX(Q0)N) N H) 10 ((0,27), L)),
A+ € Lpper((0,27), Hy (Q)), (1.13)

p € Lpper(0,27), Wy~ /9 (Sg) N H} o (€0, 2), W~ /9 (Sp))

such that

Qur=x=d(, 1) | yeQu), urlx, 1) =va(d '(x,0),1),
pe(x,1) = qu(® ' (x,0),1),

where y = ®~!(x, y) is the inverse map of x = ®(y, 1), are solutions of problem
(1.9), and Ty is given by

Tr={x=y+R 'p(,0)+&1) |y e Sk}

where &(t) is the barycenter point of Q24 defined by setting

x dx.

£(1) =

|Q+[ | Qi
Moreover, vy and p satisfy the estimate:

Z(”Vi”L,,((O,zn),qu(Qi)) + 10Vl L, (0.27), L, (21)))
+

+ 1130l (1.14)

Ce

+ ”'O”Lp((o,zn),w,f*‘/"(s,g))
+ 19:pl|

Lp((0.27),Wg 1 (Sp))

- <
Loo((0,27), W, /7 (Sg)) =
for some constant C independent of €.

Method Since the domain €2, is unknown, using the Hanzawa transform, we reduce
the equations onto a fixed domain, which results in a system of quasilinear equations.
Thus, we cannot use the analytic Cy-semi-group approach. Our main tool is to use the
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L »-L, maximal regularity for periodic solutions to the linearized equations, which can
be obtained by using the R-solver to the generalized resolvent problem and applying
the transference theorem ([1,2]) to the solution formula represented by the R-solver.
This is a quite new and more direct approach and a completely different idea than
exploiting the Poincaré operator.

Further notation This section is ended by explaining further notation used in this
paper. We denote the sets of all complex numbers, real numbers, integers, and natural
numbers by C, R, Z, and N, respectively. Let Ng = N U {0}. Let X be a Banach
space with norm || - || x. For any X-valued function f : R — X the functions F[f]
and F~![f] denote the Fourier transform and the inverse Fourier transform of f,
respectively, defined by setting

1 . .
FlfI(o) = E/Re_’”f(t)dt, f_l[f](t)=Aelt’f(f)df.

Letg : T — X be an X-valued function defined on the torus T = R/27x7Z. We define
the Fourier transform F acting on g by setting

1 27 )
Frlglk) = E/(; e Me(r)dr,

which is regarded as a correspondence g +— (Fr[gl(k)) = {Frlglk) € X | k € Z}.
For any sequence (ay) = {ax € X | k € Z}, we define the inverse Fourier transform
Fr ! acting on (ay) by setting

Fr'laoln =) e*a.
keZ
For any X-valued periodic function f with period 2, we set
2

fs=2i fwde, fL=f—"fs.
T Jo

The fg and f, are called stationary part and oscillatory part of f, respectively.
For1l < p < oo, L,(R, X) and H 1% (R, X) denote the standard Lebesgue and
Sobolev spaces of X-valued functions defined on R, and || - [, @ x), || - | HA(R,X)

denote their respective norms. For 6 € (0, 1), H,e,’per((O, 2m), X) denotes the X-
valued Bessel potential space of periodic functions defined by
Hp per((0,270), X) = {f € Lp,per((0.270), X) | £l g 0.2).%) < 9},
S 2,0/2 p 1 \VP
1 £ 0.0 = /0 15 10+ KD F L1601 dr)

As usual, we set L per ((0, 277), X) = H[(,)’per((O, 2m), X).
For any multi-index o« = (ay,...,an) € Név we set 0%h = 9} -~-8;f,”h with
d; = 0/0x;. For any scalar function f, we write

Vi=@foo v, V=0 . v )
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V=@ f llal=n), V'f =@ f|lel<n) (n=2),
where 3)9]‘ = f. For any m-vector of functions f = T (f1, ..., fn), we write

VE=(Vfi,....,Vfn), VE= S, ...,V ),
V% =V"fi,....,V" ), V= "f1,...,V" ).

For any N-vector of functions, u = T(ul, ...,upy), sometimes Vu is regarded as
an (N x N)-matrix of functions whose (i, j)th component is d;u;. For any m-vector
V = (vi,...,vy) and n-vector W = (wy, ..., w,), V ® W denotes an (m x n)

matrix whose (i, j)th component is V; W;. For any (mn x N)-matrix A = (A;j; |
i=1,....mj=1,....n,k=1,...,N), AV ® W denotes an N-column vector
whose kth component is the quantity: Y7, 37y Aijrviw;.

Leta-b =< a,b >= Z;V:lajbj for any N-vectors a = (aj,...,ay) and
b = (b1, ...,by). For any N-vector a, let [Ipa = a; := a— < a,n > n. For any

two (N x N)-matrices A = (A;;) and B = (B;;), the quantity A : B is defined by
A:B= Z%:] A;;jBj;. For any domain G with boundary 9G, we set

@ v = [ ue Ve @ vie = [ u-vGde
G G
where v(x) is the complex conjugate of v(x) and do denotes the surface element of
dG.Given 1 < g < oo,letq’ =q/(q—1).ForL > 0,let B, = {x e R | |x| < L}
and S; = {x e RN | |x| = L}.

For two Banach spaces X and Y, X+Y ={x+y | x € X,y € Y}, L(X, Y) denotes
the set of all bounded linear operators from X into ¥ and £(X, X) is written simply as
L(X). Moreover, let R zx,yy({7 (1) | A € I}) be the R-bound of the operator family
{T(\W) | Ael}C L(X,Y) (see also Definition 7). Let

iR={irxeC|xeR} iRy, ={ir € iR | |A] = Ao}
The letter C denotes a generic constant and Cg .. denotes that the constant
Cu.b.c... dependsona,b,c, ...; the value of C and C, p ... may change from line to
line.

2. Linearization principle

We now formulate the problems (1.1) and (1.9) in a fixed domain and state main
results in this setting. Theorems 1 and 3 follow from the main theorems of this section.

2.1. One-phase problem

Let ©2;, u and p satisfies equations (1.1) and the periodicity condition (1.2). We have

((uD(u) — pDny, €;)r, = o (Ar,x, &)r, = —o(Vr,x, Vr,e;)r, = 0;
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((uD(u) — pDny, x;€; — xj€;)r, = o (Ar,x, xje; — x;e;)r,
= —o(Vr,xj, Vr,x)r, + o (Vr,x;, Vr,xj)r, = 0.

Multiplying the first equation in (1.1) with p, and integrating the resultant formula on
2, and using the divergence theorem of Gauss give that

d
Z(u, = (f.po)g,.
i (u, poo, = E, poe,

In fact, we have used the fact that

d
— u(x,t)~pg(x)dx=f < du+u-Vu,p, > dx,
dr Q Q

which follows from the Reynolds transport theorem ! and that divu = 0 in ;. Thus,
the periodicity condition (1.2) yields that

2
/ (f f(x,.).pe(x)dx)dmo fore=1,..., M, .1)
0 D
where we have used the assumption that suppf(-,#) C D for any ¢ € R. Thus, the

condition (1.6) is a necessary one to prove Theorem 1. From this observation, instead
of problem (1.2), we consider the following equations:

M 2
9 +u - Vu — Div (uD(w) — pD) + Z/ (@G0, pg, dipe =1 inQ,
0
k=1

diva =0 in €,
(uD(u) — pDn; = o H(Cy)ny on I,

Vr,=u-n, on [y
2.2)

for ¢ € R. In fact, if Q;, u and p satisfy equations (2.2), then we have

d M 2
Cn.pog, + 3 [ @B, b poa = € poa,
dt = 70

which, combined with the periodicity condition (1.2), the assumption (1.3) and (2.1),
leads to

2
(-, 1), pr)o, dt =0 fork=1,..., M.

IFor any f(x,t) defined on 2, we have
d .
—= / Sl ndx = / (3 f + div (fw)) dx,
dr Jo, Q

which is called the Reynolds transport theorem.
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Thus, €2;, u and p satisfy the first equation in (1.1). Therefore, under the stated assump-
tions, a solution to problem (2.2) is a solution to the original problem (1.1). However,
as we shall see below, the condition (2.1) is not necessary to find a solution to (2.2).

From now on, we consider problem (2.2). We reduce problem (2.2) to some non-
linear equations on By by using the Hanzawa transform, which we explain below. Let
&(t) be the barycenter point of €2; defined by setting

1
= — dx, 2.3
£(1) |BR|/th x 23)

where we have used the fact that |Q2;| = |Bg|, which follows from the assumption
(1.5). By the Reynolds transport theorem, we see that

d 1
Eé(r)— B |/ (Orx +u- Vx)dx—@ Q’u(x,t)dx (2.4)

because divu = 0. Let p(y, #) be an unknown time-periodic function with period 2
such that

Ii={x=y+pQ,On+&@1) |yc Sk},

where Sg = {x € RV | |x| = R} and nis the unit outer normal to Sg, thatisn = x /x|
for x € Sg. Let H, be a suitable extension of p to R¥, and then by the K-method
in the theory of real interpolation [9,21], we see that there exist constants C and Cp
such that

CillHp(, t)||1~11<(]RN) oG, DIy, ke aspy = C2llHp ('J)”Hk(RN) fork=1,2,3,
Cilld Hp (- Oll gy = 19:0C T)II k=1a(sqy = C2l0Hp G Dl gy fork =1,2, (2.5)

forany ¢t € (0, 2m). In the following, we fix the method of this extension. For example,
H ©» 1s the unique solution of the Dirichlet problem:

(1—=A)H, =0 inRM\Sg, Hyls, = p.

Letp bea C °(RM) function which equals one for x € By and zero for x ¢ B3g,
and we set H, = ¢ H,. We assume that

Sup [V Hy (- 1) 1 vy < 8 2.6)

teR
with some small constant § > 0. Notice that y/|y| = R~y for y € Sg is the unit

outer normal to Sg. Let ®(y,7) = y + R’al(y, t)y + &(t). We choose § > 0 so
small that the map x = ®(y, t) is injective. In fact, for any y; and y,

|®(y1, 1) = P(y2, O] = [y1 = y2| = sup [VH, (-, Dl g1 wyyly1 — yal
teR

> (1 =38)|y1 — y2l,
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which leads to the injectivity of the transformationx = ®(y, ¢) forany ¢ € R provided
that 0 < § < 1. Moreover, using the inverse mapping theorem, we see that the map
x = ®(y, 1) is surjective from RY onto RV .
Let
Q ={x=y+RHy(y.0)y +£(t) | y € Bg),

Ti={x=y+R o0,y +£&@1) |y e Sk}

Letu(x, 7) and p(x, 7) satisfy equations (1.1), and let v(y, t) = u(x, ¢t) and q(y, t) =
p(x, ). We derive an equation for v and p from the kinematic condition: Vr, = u-n;
on I';. From the definition:

Q2.7)

v, = 2 Lot ey
= — N, =(—n B | P
= T Y !
To represent £’(¢), we introduce the Jacobian J () of the transformation x = ®(y, 1),

which is written as J (1) = 1 + Jy(¢) with

Jo(t) = det(8;; + R_laiyi(Hp(y, DY) ety — L
Choosing § > 0 small enough in (2.6), we have
[Jo()] = CIIVH, (-, Dl Lo (Br)- (2.8)
From (2.4) it follows that
£ = L v(y,1)dy + L v(y. 1) Jo(1) dy, 2.9

|BR| JBg |BRI J g

and so noting that n - n = 1, we have the kinematic equation:

1
ohp—(V——— v(y,)dy) -n=d(v, p) (2.10)
|Br| JBg
with
1 0
dv,p) = — v(y, f)fo(f)dy~(n—nz)+—pn-(n—nz)+V~(nt—11)~ (2.11)
|Br| JBpg ot

As will be seen in Sect. 3, we have < H(I';)n;, n; >= (Ag, + (N — 1)/R2),o — (N —
1)/ R+ nonlinear terms, and —(N — 1)/R? is the first eigen-value of the Laplace-
Beltrami operator Ag, on Sg with eigen-functions y; /R for y = (y1, ..., yn) € Sg.
We need to derive some auxiliary equations to avoid the zero and first eigen-values
of Ag,. From the assumption (1.5) and the representation formulas of €2; and I'; in
(2.7), by using polar coordinates we have

1+R ' p(w,1) 1
|BR|:|Qt|:f (f rN‘ldr)dwz— 14+ R p(w, ) do
sz o N Jsg
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N
C
=|BR|+R’1/ pdo+ Y N—kR’k/ o do,
Sk N SR

k=2
and so we have
N oy
/ pdw—i—ZN—le_k/ oFdw =0 (2.12)
Sk = N Sk

where dw denotes the surface element of Sg. Moreover, from (2.3) and the assumption
(1.5), using polar coordinates centered at £(¢), we have

1 14+R 1 p(w,1)
(x—é(t))dx—— (/ erdr)da)
Sg WO

IBRI | BR|
= LL 1+ R 'p(w, )" wdw
BRI N +1 Js, '

1 _ N+1CI< k
=—(R 1/ pwdw + / P wda)),
|BR|( S Z N+1 Sk

from which it follows that

N+1Ck X
w;idw + E / widow=0 2.13
/S pPw; N T 1 5 P w;j ( )
for j = 1,..., N. Thus, under the assumption (1.5) and the representation of I'; and

€2, in (2.7), the kinematic condition (2.10) is equivalent to the equation

N
a,p+/ pdw + (/ pwkdw>yk
Sk =1 ISk
1 -
—(V—— de)~n=d(v,,0) on Sg x (0, 2m) (2.14)
|BR| JBg
with
u NCr N+1N 1Cx
d(v,p) =d(v, p) — —RH‘/ pdw — Y ST RIK / pwdw) yk.
2N R 2N R, )

(2.15)
Therefore, to prove the existence of (€2, u, p), we shall prove the well-posedness of
the following equations:

0;v+ Lvg — Div(u(D(v) — gql) = G + F(v, p) in Bg x (0,2m),
divv = g(v, p) = divg(v, p) in Bg x (0,2m),
o+ Mp—Av-n=d(v,p) on Sg x (0, 27),
(uD(V) —g)n — (Bgp)n = h(v, p) on Sg x (0, 27),

(2.16)
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where we have set

M
1
Lvs =) (Vs,Pu)Bp Pk; Av=v——— [ vdy;

,; N |Brl J5,

Mp:f pdw—i—Z/ pa)kda) Vi 217
SR

N — _
Brp = (Asy + T)" = R*(As, + (N — D)p,

where Ag, is the Laplace—Beltrami operator on the unit sphere S;. For the functions
on the right side of equations (2.16), G(y, t) and F(v, p) are given in (3.13) in Sect.
3, g(v, p) and g(v, p) given in (3.6) in Sect. 3, J(V, p) has been given in (2.15) and
h(v, p) = (W' (v, p), hn(v, p)) is given in (3.31) and (3.34) in Sect. 3.

The following theorem is the unique existence theorem of 27 -periodic solutions of
problem (2.16).

Theorem 4. Let 1 < p,q < oo and 2/p + N/q < 1. Then, there exists a small
constant € > 0 such that if f satisfies the assumption (1.6) and the smallness condition:
||f||Lp((0,2,,),Lq(D)) < €, then problem (2.16) admits 2m -periodic solutions v, q, and
p satisfying the regularity condition (1.7) and the estimate (1.8) in Theorem 1.

Proof of Theorem 1. We prove Theorem 1 with the help of Theorem 4. Let £(¢) be
defined by

t
£(1) =/ E(s)ds + ¢
0

where c is chosen in such a way that

2
£(s)ds = 0. (2.18)

Here, &' () is given by the formula in (2.9). Then, we define 2; and I'; by the formulas
in(2.7).Let®(y, 1) = y+R! H,y+&(t). By choosing € sufficiently small, estimates
(1.8) and (2.5) ensure that the condition (2.6) is satisfied with small § > 0. This yields
the existence of the inverse map y = & !(x,1) of the map: x = ®(y, ). Thus,
the velocity field u(x, 7) and the pressure p(x, r) on €2, are well-defined by setting
u(x,t) =v(y,t) and p(x, t) = q(y, t). Since divu = 0 in €2;, |€2] is a constant, and
so |L2;| = |Br| by assumption (1.5). Moreover, if we set

1
nt) = — xdx,
|BR|

then

n' (1) = |Bl | U(x,f)dXZf‘E/(t),
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and so n(t) = &(t) + d with some constant d. We assume that the assumption (1.4)
holds, and then by (2.18) we have

2 21
0= / n@)dt =2nd + | E@)dt =2nd,
0 0

which leads to d = 0, that is
E() = L x dx.
|Br| Jg,
Combining this with (1.5) gives that
(R+ p)N do =0, (R+ p)N*ldw =0,
SR SR

which yields that p satisfies the equation:
90— Av-n=d(v,p) on Sg.

Therefore, the kinematic equation: Vi, = u - n; holds on I';. So far, we see that €;,
u and p satisfy equations (2.2). Since D C Bp, there exists a constant €y > 0 for
which D C Bg_3¢,. Since £2; is a small perturbation of Bg, choosing € > 0 smaller
if necessary, we may assume that Bg_, C €2, and so by (1.6) we have

2
(f(.1).po)g dt =0 fore=1,...,N. (2.19)

Multiplying the first equation in (2.2) with pg, integrating the resultant formulas with
respect to x on £2; and with respect to ¢ on (0, 27), and using the periodicity (1.2) and
(2.19) we have

M 27 2 27
) f (- 1), po)g, dr / (B, PO, = / (0. poe, di =0 (220)
k=170 0 0

for ¢ = 1,..., M. Since €2; is a small perturbation of Bg, we may assume that the
assumption (1.3) holds, and so by (2.20) we have

2
(u(-,1),pe)e,dt =0 foré=1,..., M.

Therefore, €2, u and p satisfy equations (1.1), and so we see that Theorem 1 follows
immediately from Theorem 4. 0

2.2. Two-phase problem

We now formulate problem (1.9) in the fixed domain. The idea is essentially the
same as in the one-phase case. Let @ = Q\Sg, Q; = Bg and Q_ = Q\Bg. We
define the barycenter point, £(¢), of Q2, by setting

1
- dx, 221
&) Bl sz+,x X (2.21)
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where we have used the fact that |24;| = |Bg|, which follows from the assumption
(1.12). By the Reynolds transport theorem, we see that

d 1
&0 = Bl Jo u(x, 1) dx. (2.22)

Let p(y, t) be an unknown periodic function with period 2 such that

Fi={x=y+p(.0n+&@) |y e Sk},

where Sg = {x € RY | |x| = R} and n is the unit outer normal to Sg, thatisn = y/|y|
for y € Sg.

In the following, we fix the method how to extend this to a transformation from Q
to ;. Let H be a unique solution of the Dirichlet problem:

(1—=A)H, =0 inRM\Sg, Hyls, = p.

Let L be a large number for which € C By. From the K-method in real interpolation
theory [9,21], we see that

CillHp G, Dl vy = lloCs l)llqu—l/q(SR) = CollHp G Ol gpeyy fork =1,2,3,
Cl”ath(‘,t)“H{;(RN) < 6 0(, t)”sz’”"(SR) < Cllo Hp (-, t)||H4<(RN) fork =1,2, (2.23)

for any ¢ € (0,27). We may assume that there exists a small number @ > 0 for
which Bri3, C 2. Let ¢ be a function in C (R¥) for which equals one for x €
Bry and zero for x € Bryze. Let ®(y, 1) = y + ga(y)(R_al(y, 1y + &£(1)).
Notice that ®(y, 1) = y + R_al(y,t)y + &(t) for y € Bg. Setting W(y,t) =
go(y)(R_al(y, 1)y + &£(t)), we assume that

sup [W(, Dl gy wyy =6 (2.24)
teR

with some small constant § > 0. We choose § > 0 so small that the map: y > x =
®(y, t) is bijective from 2 onto itself. In fact, for any y; and y;
[D(y1, 1) — P(y2, D = [y1 — ¥2

—sup [[VW(, D)l gL @yylyr — y2l = (1 = 8)ly1 — yal,
teR

which leads to the injectivity of the map: x = ®(y, t) for any # € R provided that
0 < § < 1. Moreover, using the fact that x = ®(y, ) = y for y € Q\ Br424, and the
inverse mapping theorem, we see that the map x = ®(y, ¢) is surjective from 2 onto
itself. Let

Qi ={x =00, 1) =y+ R 'Hy(y, 1)y +&(t) | y € Bg),
Qu={x=00,0)=y+ o) R Hy(y,0)y + &) | y € Q\(Sr U Br)},

Ii={x=y+R 'p(y,0y+£@1) |y e Skl
(2.25)
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Notice that R~y is the unit outer normal to Sg for y € Sg. In the following, the jump
quantity of f defined on 2\ Sk is also denoted by [[ f]], which is defined by setting

[LAAlxo, 1) = lim f(y,#) — lim f(y, ) forxo € Sk,

YEQ4+ yeQ_

where we have set 24 = Bg and Q_ = Q\(Br U Sg). Let Q= Q4 U Q_, and for
f defined on Q, we write f+ = fla.. On the other hand, for f defined on Q4, we
define f by fla. = fx.

Let u(x,?) and p(x,r) satisfy the equations (1.9), and let ®~'(x,r) be the
inverse map of x = ®(y,1). Let va(y,1) = us(®'(y,1),1) and qe(y,1) =
p (P~ (v, 1), 1) for y € Q. We derive an equation for v, and p from the kinematic
condition Vr, = u - n, on I';. Noting that [[u]] = 0 on I';, we may also assume that
[[v]] = 0 on Sg, and so v, = v_ on Sg.

From the definition it follows that

ax ap
VF[ = E = <§n+§/(t)> -1y,

Here and in the following, the unit outer normal to Sy is denoted by n, which is given
by n(y) = R~y for y € Sg. To represent the time derivative of £(¢) given in (2.21),
we introduce the Jacobian J, (¢) of the transformation: x = y + R~! H,y + &(t) for
y € Bg, which is written as J4 () = 1 + Jo +(¢) with

y — 1 fory e Bg.

4 0
Jo+() = det(Sij + R 18_y(Hp(y, t)yj))i,j=1,...,
1

Choosing § > 0 small enough in (2.24), we have
1M0,+ Lo (Br) < CIVHp (- )| Loo(Br)- (2.26)

From (2.21) it follows that

1 1
£ =—=[ vi(,0dy+— [ vi(y,0)Jo+(®)dy, (2.27)
|BR| Br |BR| BRr

and noting thatn - n = 1, on Sk we have the kinematic equation:

1
op—(V——=/[ vi(y,0)dy) - n=d(vy,p) (2.28)
|BR| Br

with
1 ap
Ay, p)=—— [ vi(y.0)Jo+()dy - —n)+—n-m—n;) + vy - (0, —n).
|Br| JBg ot
As was already discussed in Sect. 2.1, from the assumption (1.12) and the represen-

tation formulas of 4; and I'; in (2.25), we have (2.12) in Sect. 2.1, too. Moreover,
from (2.21) and the assumption (1.12), we have (2.13) in Sect. 2.1, too. Thus, under
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the assumption (1.12) and the representation of I'; and €2, in (2.25), the kinematic
condition is equivalent to the equation:

N
8tp+/ pdw+2(/ pwkdw)yk
Sk k=1 7SR

1 -
—<V+ - — vy dy) -n=d(vy,p) onSg x (0,2m) (2.29)
|Br| JBg

with

al NCrk N+1N 1Ck
d(vs. p) =d(vy, )= :T/S R pF do— :*—R‘*"(/S prwdo) .
k=2 R R

= N+ 1

(2.30)
And then, to prove Theorem 3, we shall prove the global well-posedness of the fol-
lowing equations:

0 v+ —Div (u+(D(ve) — ) = G+ +Fx(v,p)  in Qi x (0, 2m),
divvy = g4 (v, p) =divgs(v, p) in Q1 x (0,2m),
dp+Mp—Avy -n=d(vy,p) on Sg x (0, 27), 23
[[neD(v+) — qzlln — (Brp)n = h(v, p) onSg x (0.27),
[[vl]=0 on Sg x (0, 27),
v.=0 on S x (0, 2m),
where we have set
1
AV+ =Vy - — Vi dy (2.32)

|BR| Br

and M p and Bgp are the same as in (2.17) in Sect. 2.1. For the functions on the right
side of equations (2.31), G+ and F4 (v, p) are defined in (3.39) of Sect. 3, g+ (v, p)
and g1 (v, p) are defined in (3.38) of Sect. 3, and h(v, p) is defined in (3.40) of Sect. 3

The following theorem is the unique existence theorem of 2 -periodic solutions of
problem (2.31).

Theorem 5. Let 1 < p,q < oo and 2/p + N/q < 1. Then, there exists a small
constant € > O such that for anyf € L ,er((0, 27), Ly M satisfying the smallness
condition: ||f||Lp((o,2ﬂ)’Lq(Q)) < ¢, problem (2.31) admits solutions vy, q+, and p
satisfying the regularity condition (1.13) and the estimate (1.14) in Theorem 3.

Employing the same argument as in the proof of Theorem 1 in Sect. 2.1, we see
that Theorem 3 immediately follows from Theorem 5.
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3. Derivation of nonlinear terms
3.1. One-phase problem case

First, we consider the one-phase problem case and we consider the map
x=y+W¥(.1), (3.1

where W (y, t) = R_al (y, 1)y + &(t) and H,, satisfies the condition (2.5) and (2.6).
Recall that H,(y,t) = p(y,t) for y € Sg. Let Q;, I';, u(x, ¢) and p(x, t) satisfy the
equations (1.1) and

Q=(x=y+WO,0|yeBr), Ti={x=y+R '\p(y.0Dy+&@1 |yeSg)

Choose § > 0 small in such a way that there exists an inverse map: y = ®~!(x, 1)
of the map: x = ®(y, 1) =y + ¥(y,1). Let v(y, 1) = u(®~ ' (y,1),1) and q(y, 1) =
p(dD_l (v, 1), t). By the chain rule, we have

N
a a a
Ve= @+ Vo)V, 5= oo > Voij () (3:2)
i i j=1 ]

where V. = T(3/8z1,...,8/dzy) for z € {x,y} and k = (ko, k1, ..., ky) =
(H,, VH,). Here, Vo(k) is an (N x N)-matrix of C* functions defined for [k| < §
with Vo(0) = 0 and Vy;; (K) is the (i, j)th component of Vo (k). By (3.2), we can write
D(u) as D(u) = D(v) + Dp(k) Vv with

D(v)y; = LUy U
V);] = — -_—,
Yoy o
N Av; v, (3-3)
DpR)VV)ij = Y (Vojx(K)s— + VoK)= ).
(Dp(k) V)lj k_1< Ojk( )a)’k + Voik( )8)’k>

We next consider div v. By (3.2), we have

N N
. ou;j v . )
lexll = jEZl E = J kE:1(8jk + Vojk(k))ﬁ = div yV + V()(k) : Vv, (34)

Let J be the Jacobian of the transformation (3.1). Choosing § > 0 small enough, we
may assume that J = J(k) = 1 + Jy(k), where Jy(k) is a C*° function defined for
k| < o such that Jy(0) = 0.

To obtain another representation formula of div ,u, we use the inner product (-, -)g, .
For any test function ¢ € C§°(2;), we set ¥/ (y) = ¢(x). We then have

(div u, @)g, = —(u, Vp)g, = —(Jv, A+ Vo)V, ¥)q
= (div (L + "Vo)Jv), ¥)g = (J7'div (T + "Vo)JIv), 9)q,,
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which, combined with (3.4), leads to
div yu = div ,v + Vo(k) : Vv = J ! (div yv + div , (J T Vo(k)V)). (3.5)
Recalling that J = J(k) = 1 + Jyp(k), we define g(v, p) and g(v, p) by letting

g(v, p) = —=(Jo(k)divv + (1 + Jo(k))Vo (k) : Vv),

3.6
g(v. p) = —(1 + Jo(k)) " Vo(K)v, 30

and then by (3.5) we see that the divergence free condition: divu = 0 is transformed
to the second equation in the equations (2.16). In particular, it follows from (3.5) that

Jo()divv + J (k) Vo(K) : Vv = div (J (k)T Vo(K)v). (3.7)

To derive F(v, p), we first observe that

N
Za— (uD);j — pdij)

N N
Z 8jk + vo,k> i + Do) VV)y) - > G+ voln
- . (3.8)
where we have used (3.3). Since
;[u O+ 0.0, t)]—— )+Z ’8"” X, 1),
we have
Qg _ dop N DYy O
or o L= / oy
and therefore,
du; N du; av,
5t ;"f iy = l;w/ )+ VO;k(k))—. (3.9)

Putting (3.8) and (3.9) together gives

. IV v;
PN i} 9% oy 2Y
fitx, 1) = ( o+ Ek I(Uj a7 )3k + VOJk(k))ayk)
J k=

— K Z 8k + VOJk(k)) (D(V)u + (Do) Vv)ij)
Jj.k=1
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- 2(8’] + VOlj (k))

j=1

Since I+ VW) + V) = (0x/dy)(dy/ox) =1, that is,

N
D Gi + 00 W) (81 + Voij (K)) = 8 (3.10)
i=1

we have

N

D Gmi 4 0 W) fi (W (., 1), 1)

i=1

N
ov;
= > i+ W) (S + 3w G+ vo,k<k>)—)
i=1 j.k=1
N 3C|
— 1Y i+ O DGk + vojk<k>) 5 Wi+ PodVVij) = 5o
i,j,k=1 3)’m

Thus, changing i to £ and m to i in the formula above, we define an N-vector of
functions Fy (v, p) by letting

Fi(v, p)li = Z (vj — )(3,k + vo,k(k»—

N aw N
Z (5 Z )(8,k + VO]k(k))—>
=1 J.k=

N

0
+ M(Z 3y, DoV, + kzl Voju) - O+ (PoOVV);)
=1 Js
N
Z 8+ Vo) (D) + PoV). (3.11)

where Fi (u, p)|; denotes the ith component of F (u, p).
Moreover,

M 2
@+Ve) > /O (-, 1), pr (), df pi(x)
k=1

M 2
=T+ VVY) Z/O /B vy, ) - pre(y + W (y, ) + Jo(1) dydt pe(y + W (y, 1))
k=1 R

= Lvs +Fa(v, p)
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with
M 2
Fa(v, p) = Z{/O fB vy, 1) - Pk () Jo(t) + Pr (W (y, D)L+ Jo(1)) dydepr(y)
k=1 R

21
+/0 fB vy, ) - pr(y + W (v, )1+ Jo(t)) dyds pe (W (y, 1))
R

2
+ V\IJ/O ‘/B v(y, 1) -pe(y + Yy, D)) + Jo(0) dyde pr (v + W (y, 1)),

(3.12)
where we have set

B (U (y. 1) 0 fork=1,..., N,
k Vs =
cij(\IJ,-(y,t)ej—\IJj(y,t)ei) fork=N+1,..., M.

Thus, setting
G(y,t) = A+VW(Q, ONE(y+W(y, 1), 1), F(v,p) =Fi(v, p)+Fa(v, p), (3.13)

we have the first equation in equations (2.16).

We next consider the transformation of the boundary conditions. Recall that I'; is
represented by x = y + p(y, t)n(y) + &(¢) for y € Sg with n(y) = y/|y|. Let xo
be any point on S and let ®(p) be a C* diffeomorphism on RY such that—up to a
rotation—it holds

Br N By(xo) = @({p e RV [0 < py <o, |Ip/| <®}) N By(xo),

where we have set B, (xg) = {y € RV | ly —x0| < w}and p’ = (p1,..., pN_1).
Notice that y = ®(p’, 0) € Sg N By, (xp) and p(y, t) = H,(®(p',0),1). Let {xk},fz1
and {{k}le be a finite number of points on Sk and a partition of unity of Sg such
that supp &x C By, (xx) and Zle Zk(y) = 1 on Sg. In the following, we represent
functions on each Sg N B, (xx), and to represent functions globally, we use the formula:

K

f=)_4f inSk. (3.14)
k=1

Thus, for the detailed calculations, we only consider the domain Bg N B, (x¢) (£ =
I,..., K), and use the local coordinate system: y = ®,(p) for p € U, where we have
written ® = &y, and U = {p e RV | 0 < py < w0, |P'| < w}.

We write p = p(y(p1,--., PN—1,0), 1) in the following. By the chain rule, we
have

N

ap a
—— =7 Hy(Pe(p1,.... pN-1,0),0) =
opi i ° n;

0H, 0Dy

—— |py=0: (3.15)
Oym Opi PN
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where we have set &y = T(q)g’l, ..., ®y n), and so, dp/dp; is defined in B, (xp) by
letting
N
BCIJ ]
a Z bm (3.16)
Di el opi

We first represent n;. Since I'; is givenby x = y 4+ p(y, t)n + &(¢) for y € Sg,

N-1
. ad 0
n, =a(+ Z bity) witht, = —y = —d(p/, 0).
izl opi opi
The vectors 7; (i = 1,..., N — 1) form a basis of the tangent space of Sg at y =
y(p1,..., PN—1). Since |n,|2 = 1, we have
N—1
L=a’(1+ ) gijbibj) withgi;j =1 -7, (3.17)
i, j=1
ox . .
because 7; - n = (. The vectors F . i=1,..., N — 1) form a basis of the tangent
pi
d
space of 'y, and so n; - a_x = 0. Thus, we have
Pi
N—1
ay ap on
O=a|n+ bitj ( +—n+p—>. (3.18)
JZ_} ]j opi  dp; api
0 on 0 0
Sincen-—y=n~l_0— n = 0 (because of |n|? = ),and—y-—yz
api api api  Op;j

T; - Tj = gij, recalling that n = R~'y = R~!®, by (3.18) we have

9
'0+Z(1+R p)gijb; = 0.
i o

Let G = (gij) and G~ I = (g'/), and then setting Vi.p = (3p/dp1, ..., 00/9pNn—-1),
we have

N—1
B
bi=-(1+R"p)" Y g’ka—p, b=—1+R'p)7'G Vo,  (3.19)
Pr
k=1
which leads to
N
n, :a(n— (1+R o) Y g”a—n). (3.20)
P

ij=1
Moreover, combining (3.17) and (3.19), we have

a=0+U+R"'p)2 <G 'Vp, Vip >)"1/2
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Using the formula:

I+ =1- %/0](1 +06f)73%do f,
we have
a=1-Vr(p, Vrp)
with
Vr(p, Vip) = %/0](1 +00+R )2 <G 'Vp, Vip >)32d0(1 + R p) 2
< G 'V, Vip > .

Combining these formulas obtained above gives

N-1
no=n— Y g1+ Valo. Vip) (3:21)
G o
J=
where we have set
p ;i 0p
Voo, Vip) = —— V1
n(0, Vrp) R+p 2 g op; "
i,j=1
N—1 ap
—|n- Z(1+R*1p)*1g”$n Vr(p, Vi-p).
ij=1 J

From (3.16), V[.p is extended to RY by the formula: Vip = (V&) VW, 0dy, and
SO we may write

Val(p, Vip) = Vi (k) V¥, ® VI,

on B, (x¢) with some function Vy, ¢ (k) = Vp ¢(y, k) defined on B, (x¢) x {k | |k| < §}
with Vy, ¢(0) = 0 possessing the estimate

[(Vn,e(-, K), 0k Vne(, k))”HJo(Bw(w)) =C
with some constant C independent of £. Here and in the following k are the variables
corresponding to VH, = (H,, VH,). In view of (3.21), we have

N—1
9 _ _
n=n-)Y gU‘L’ia—p + Vo KV, ® VW, on By(x)NSp.  (3.22)
e P,
i,j=1

Thus, in view of (3.14) and (3.16), we may write

N-—1
n,=n-— Z 70, pti + Va(VH,)VH, ® VH, on Sg, (3.23)
ij=1
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where 3},0 = dp/dp; locally on B, (x¢) N Sg, @Hp = (H,,VHp), and Vy(Kk) is a
matrix of functions defined on B x {k | |k| < 8} possessing the estimate:

1(Va, 3kVa) G, K)ll g1 gy < € for [k| < 6. (3.24)

And also we may write
n, =n+ Vy(VH,)VH, (3.25)

where Vn(k) is a matrix of functions defined on Bg x {k | |k| < &} possessing the
estimate:

I(VaC k), kVaC KDl s, < € for [k| < 8. (3.26)

We now consider the boundary condition:
(uD() — pDhn; = o H(I'1)n; — pon; (3.27)

It is convenient to divide the formula in (3.27) into the tangential part and normal part
on I'; as follows:

<uDMWn,n, > —p=o0 < HIT)n, ny > —po = hy (v, p) (3.29)
Here, I1; is defined by IT;d = d— < d, n; > n, for any N-vector of functions d. In the
last equation in equations (2.16), we set h'(v, p) = h(v, p)— < h(v, p),n > n and

hn(v, p) =< h(v, p),n >. By (3.25) and (3.3), we see that the boundary condition
(3.28) is transformed to the following formula:

(uD(v)n); =h'(v, p) onT x (0, T), (3.30)
where we have setd; =d— < d,n > n and

W (v, p) = —uDV)Vo(VH,)VH,
+ u{< DW)Vo(VH,)VH,,n+ Vo(VH,)VH, > (n+ Vo(VH,)VH,)
+ < DV)n, Vo(VH,)VH, > 0+ Vo (VH,)VH,)
+ <DWn,n > Vo(VH,)VH,} — u(Dp (&) Vv)(n + Va(VH,)VH))
— 1 < (DpR)VV)( + Vo (VH,)VH,). n

+ Va(VH,)VH, > (n+Va(VH,)VH,).
(3.31)
Finally, we derive the nonlinear term /2y (u, p) in (3.29). Recall that I'; is represented
by x = (R+ p)n(y) + &(¢) for y € Sg, where n = y/|y| € S1. Then, we have
ox ap
— = n

=R+07j+ —
op; / ap;
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where 7; = a‘r’%, which forms a basis of the tangent space of ;. Since 7; - n = 0, the
J
(i, j)th component of the first fundamental form G, = (g;;;) of I'; is given by
ax  dx

o= (R+ ) g +

ap dp
dpi  0p;j

8tij = a_pz op; )

where g;; = 7; - 7; is the (7, j)th element of the first fundamental form, G, of S, and
)

Gi=(R+p)*(G+(R+p) *Vip® Vip)
= (R+p)’GI+ (R + p) " 2(G~'V[-p) ® V}.p).

Since
aQb

detd+a' ®b)=1+a-b, Ad+a' b)) '=1--—"—""_
etd+a ®b) +a I+a" ®b) TTa b

(3.32)

for any (N — 1)-vectors a’ and b’ € RV ~!, we have

(R+p) (G 'Vpp) ® Vip )G_1
1+ (R+p)2 <G 'Vp, Vip >
=(R+p) G+ 0.

Gl = (R +,0)_2(I—

Here and in the following, O, denotes a symbol defined by setting

9H, 9H,

N 9H N
0, = aoHZ + ijHp—p + Z Cij—— ———
o dyj [ 7 0 9yj

with some coefficients ag, b; and c¢;; defined on Br satisfying the estimate:
l(ao, bj, cij)(y, )| < C and |V(ag, bj, cij)(y,1)| < C|V*H,(y,1)| provided that
I1Hpll Lo (0.27). HL (BR)) = 8- In particular,

g/ = (R+p) 28" + 0,

componentwise.
We next calculate the Christoffel symbols of I';. Since

ap
i = (R+p)ti + —n,

api
ap ap 9%p
i = (R Tj+—T+—T+——n,
tij ( +,0) l]+apj l+8pi j+3p,'8pj
we have
ap ap ap
< nijy e >=(R+p)* <tj, w0 > +(R+p) <8_p(£ij +gie£ +gjea—p
J ]
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?p p
dpidp; ope’

where £;; =< T7;;, n >, and so

k ke
Atz] _gt <Tlijﬂrl€ >

(<R+p) —2gkt 4 02><<R+p)2 < Tj, T >

ap ap p dp
+(R+)O)( sz + gie— a

3 +g]/é —)+

dpi~  0pidp;j dpe
0 3

op -+ sk P P by
3 ! op;

=Af;+(R+p)7" “( Kl,

o e O 3%p
+((R+p) 2" == + 0y)
apl 3P13

+ 0s.
Thus,

Ar,f =g/ 39; f — A0 f)
= (R+p) 28" @8;f — Af;ocf) + (A (Yo, VE0)Ok f + 02® (V2 f)

where V2 f is an (N — 1)> 4+ N)-vector of the form: V2 f = (3;8; f, 3 f, f | i, j =
1o N = 10,8, = 8/3pi, V2= @d;p | i, j=1,....N — ), and

3 i ap ap ap
Ak V/ 7V/Z — R 3 1) kt Z 8k 8](
(Voo Vo) (R+p)7g"g ope ij + “ap; + i o

9%p

dpidp;’

9 y
—(R+p)? <(R+p) 2l gt 20 +g'f02>
ape
and so

H(T')n; = Ar,[(R + p)n + £(1)]
= (R+p) 28" (3:0; — AL ((R + p)n) + (AFV2p) (R + p)m)
+ 028 V(R + p)n)
= (R+p)"'g" (3i0jn — Af;%m) + (R + p)¢" (3;pdjn + 9;pd;m)

+ (R+p) 28" (39,0 — Al;oep)n + AX (V0. V77 p) (B p)m

+ A5V V20)(R + p)kn + 02 & AR + p)
Combining this formula with (3.21), using < d;n,n >=0, < n, 7y >=0, Agn =
—(N — 1)n, and (3.15) gives

< H{T)n;, ny >
=—R+p) "N =D+ R+p) *Asp+(01+ 0) @ Vyp+ 02,
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where O; denotes a symbol defined by setting

IA

with some coefficients ag and b/, defined on B, satisfying the estimate: |(a;, b))y, 1)
C and |V(ag, b)) (y, )| < C|V2H,(y, 1)| provided that 1Hp | Lo (0.270). HL (BR)) = O
Since

(R+p) ' =R =pR>+ 0(p?,
(R+p)As0=R*Asp+2RpAsip+ 02 ® V;p,

we have
<HTon,m >=———+Bp+(01+ 02) @ V0 + 0. (3:33)
Setting pg = —(N — 1)/R, from (3.27) we have
< uD(V)n,n > —q—oBp =hy(v, p)
on Sg x (0, 2m). Here, in view of (3.3) and (3.33), we have defined & y (v, p) by letting
hn(v, p) =V N(VH,)VH, ® Vv + oV (VH,)VH, ® V> H,, (3.34)

where V;_n (k) and \7} (k) are functions defined on Bg x {k | |k| < 8} possessing
the estimate:

]S(UP(S (Vi G K, VNG D gL 8y = C,
[kl<

sup IOVECK), 0k VEC R g1 gy < €
|<

for some constant C.

3.2. Two-phase problem case
Let Q4 = Bg and Q_ = Q\(Br U Sg). In the two-phase case, we let

W (y,1) = R Hy(y, )y + (1), W_(y,1) = o) (R H,(y, 1)y +£(1)).

Let J4(¢) be the Jacobian of the map: x = y+ W4 (y, t) for y € Q4, which are defined
by setting

{ J(t) = det(I + R™'V, (H,(y, 1)y)) fory e Q, 339)

J-(1) = det(I + Vy (9N (R~ (Hp(y, Dy +£@1)))  fory e Q.
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Notice that
t
£(1) = / / Vi (y, s)Jo(s)dyds + ¢
0 JBg

where c is the unique constant for which the following equality holds:
2
£(1) =0.

‘We assume that

sup [|Hy(, Dllg1 ) =98, sup [E()] =<4 (3.36)
1€(0,27) 1€(0,27)

with suitably small constant § > 0. Since

0] =C sup [[VC, Dl Br) sup [J+@)IIBrl,
1€(0,2) 1€(0,27)

there exists a constant §; > 0 such that if

sup [V, DL, Bg) < 31 (3.37)
1€(0,277)

then the condition for £(¢) in (3.36) holds. Thus, in the proof of Theorem 5, we assume
that the conditions (3.36) and (3.37) hold.
Set Jo+(t) = J+(t) — 1. By the chain rule, we have

N

) a
Ve= I+ Vag(Re)Vy, ——+) Vo (k) 5o
1 j=1 J

where Vio(k+) is given by

A+ Vy (R Hy(y,0))) ' =1 fory e Qy,

Vioky) = =
A+VyW_ ,(y,0) —1 forye Q_.

Here and in the following, k1 and k_ denote the variables corresponding to (H,, VH,)
and (W_ ,, VU_ ).
Employing the same argument as for obtaining the formulas in (3.6), we have
g+(v, p) = —(Jox (k1)div vy + (1 + Jo+ (K+))Vor (ki) : Vvy),

T (3.38)
g+ (v, p) = —(1+ Jox(ks)) Vor(ki)vy.

And also, from (3.13) we have

Gy, 1) = A+ VWi(y, NE(y + Wiy, 1), 1),
Fi(v,p) = (Fi1£(V, 0), ..., FN£(v, p)) (3.39)
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with

Fis(v, p) = Z (W) — —1);

Jj.k=1

ov v ov
- Za Wi@( 3ﬂ + Z (v — 7)(5% + Viojr (ks)) ﬂ)
=1 k=1

N N
a
+ M(Z gy, Do) Vv + kzl vo,k(ki)—(n(vi),, + (Dp(ks)Vva)ij)
Jj=1 Js

N
+ Z i Wae(Sjk + V:E(ij(k)) (D(Vi)zj + (DD(k:E)VV:E)Z/))
ok e=

Here and in the following, we have set Wi(y, ) = | (Wii(y, 1), ..., Vin(y, 1)),
Vi = (vs1,...,veN), and

N

V4 v
Dpky)V = Vioit(Ky)—— 4+ Vigir (k) ——= ).
(Dp(k+)Vvy);j kX_;( +0jk (K+) ™ + Vioir(kt) o )

To define the right hand side of the transmission condition, we use (3.31) and (3.34).
We first introduce a symbol ((-)). For fi, let [ f1] be a suitable extension of fy to Q4
such that

”[fi]”H{;‘(Q:F) = Ck||fi||qu(gzi)7 ”at[fi]“Hg(Q;) = Ck||3tfi||H§(Qi)
with some constant C. Here, if the right-hand side is finite, then [ f ] and ;[ f] exist
and the estimates above hold. In particular, we set H[?(Qi) = L,(2+). We set

f+(. 0 fory € Q4,
[f£l(y,t) fory e Q.

And then, ((f)) is defined by setting
((f) = ex[f+]—ex[f-].

Using this symbol, we can proceed as for the derivation of (3.31) and (3.34) and define
W (v, p) and iy (v, p) by setting

ex[f£1(y, 1) =

b (v, p) = = (D)) Va(VH,)VH,
+ u{< (DW)Vn(VH)VH, 0+ Vo(VH,)VH, > (n+ Vo(VH,)VH,)
+ < (DW)N, Vo (VH,)VH, > n+ Vo (VH,)VH,)
+ < ((OE))n.n > Vo (VH)VH,} — u(Dpk)Vv)(n + Va(VH,)V Hp)
— < (DpK)VV)( + Vo (VH)VHy). 0+ Vo(VH,)VH, > (n+ Vo(VH,)VH,)

hy (v, p) = Vin(VH,)VH, ® (VV)) + oVR(VH,)VH, ® V2 H,.
(3.40)
And then, we set h(v, p) = (0 (v, p), iy (v, p)).
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4. On periodic solutions of the linearized equations

In this section, we shall prove the L ,—L, maximal regularity of 27 -periodic solu-
tions of the linearized equations.

4.1. On linearized problem of one-phase problem

In this subsection, we consider the L ,-L, maximal regularity of periodic solutions
to linearized equations:

d;u + Lug — Div (uD(u) — pI) = F in Bg x (0, 27),

divu =G =divG  in Bg x (0,27),

op+Mp—(Au) -n=D on Sg x (0, 27m),

(uD(a) —pDn — (Brp)n =H  on Sg x (0, 27),

A.1)

where £, M, and A are the linear operators defined in (2.17). We shall prove the
unique existence theorem of 2 -periodic solutions of equations (4.1). Our main result
is this section is stated as follows.

Theorem 6. Let 1 < p,q < oo. Then, for any F, D, G, G and H with

F e Lpyper((0,27), Ly(BR)Y), D € Lpper((0,27), Wy /(Sk))

G € Ly per((0.27). H) (Br)) N Hylper ((0.27), Ly (Bg)). G € H} o ((0.27). Ly (Bp)").
1/2

He L]?,per((07 2m), qu (BR)N) N Hp.per(((), 27), Lq(BR)N)7
problem (4.1) admits unique solutions u, p and p with
u € Lpper((0,27), Hy (BR)N) N H L, ((0,27), Ly (BR)Y),
p € Ly per((0, 2), qu (BR)),
3_
pE Lp,per((O, 2m), Wq l/q(SR)) N H;

sper

per(0.20), W9 (Sp))

possessing the estimate:

||UI|L1,((0,2n),H3(BR)) + 10:ull L, 0.27).L,(Br)) + IVPIL,((0.27).L,(BR))

+ 119l

el 0.2m). w214 (5) Ly((0.21).W, 4 (Sp))

= CUIFIL,02m).2,Br) + DU, (0.2m), w24 (55)) F 19 GIlL, (0.27).L4 (Br)

+1G Wl 0.20). 1) Bry + G- 1120 50) 1 (8}
4.2)
for some constant C > Q.

To prove Theorem 6, our approach is to use the R-solver, Weis’ operator-valued
Fourier multiplier theorem [22] and a transference theorem, which is created in Eiter,
Kyed and Shibata [2]. To introduce the notion of R-solver, we introduce the R-
boundedness of operator families.
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Definition 7. Let X and Y be two Banach spaces. A family of operators 7 C L(X, Y)
is called R-bounded on L(X, Y), if there exist a constant C > 0 and p € [1, co) such
that for each n € N, {T };’.:1 € 7", and {fj};?zl € X", we have

n n
1Y mTi fell, 0.0 < CIEY | ricfillLy0.1).%)-
k=1 k=1

Here, the Rademacher functions r;, k € N, are given by ¢ : [0,1] — {—1,1},
t > sign (sin 2k 771). The smallest such C is called R-bound of 7 on £(X, Y), which
is denoted by Rz (x,v)7 .

We quote Weis’ operator-valued Fourier multiplier theorem and the transference
theorem for operator-valued Fourier multipliers.

Theorem 8. [Weis] Let X and Y be two UMD Banach spaces. Let m € C 1
(R\{0}, L(X, Y)) satisfies the multiplier condition:

Rexenl(td) m() | T € R\{0}) < rp

for £ = 0,1 with some constant rp. Let T,, be a multiplier defined by T,[f] =
FYUmFIf1]. Then, T,, € LL,R,X),L,(R,Y)) with

ITnlf L, ®y) < Cprpll flIL,m® x)
Sforany p € (1, 00) with some constant C), depending on p but independent of r.

The transference theorem for operator-valued Fourier multipliers obtained in [2] is
stated as follows.

Theorem 9. Let X and Y be two Banach spaces and p € (1, 00). Assume that Y is
reflexive. Let

me Lo, L(X,Y)NCR, L(X,Y)),

and let m|T denote the restriction of m on T. We define multipliers on R and T
associated with m by setting

Turlf10) = F ' mFIfN, Tualfl = Fy'ImlrFrlf11.
IfTur € L(L,(R, X), L,(R,Y)) possessing the estimate:
1 Tn LN, ®y) < MIfIL,®x)

forany f € L,(R, X) with some constant M, then Ty, T € L(L,(T, X), L,(T, Y))
and

I Tn xS N,y < CpMIflL,mx)

forany f € L,(T, X) with some constant C, depending solely on p and independent
of M.
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Remark 10. In the usual scalar-valued multiplier case, the transference theorem was
proved by de Leeuw [1], and so this theorem is an extension to the operator-valued
case.

We now consider the R-solver of the generalized resolvent problem:

ikv — Div (uD(v) —gqI) =1 in Bg,
divv=g=divg in Bg,

ikn+ Mn—(Av) -n=d on Sy,
(uD(v) —gDn — (Bgp)n=h  on Sg

4.3)

for k € R. From Theorem 4.8 in Shibata [18] (cf. also Shibata [15,16]) we know the
following theorem concerned with the existence of an R-solver of problem (4.1).

Theorem 11. Let 1 < g < 0o and let Ry, = R\(—ko, ko). Let

X(Br) = {(f.d.h.g.8) | f € LyBp)Y. d e W, (Sp),
he Hy(Bg)", g € Hy(Br). g€ Ly(Br)"}.
Xy(Br) ={F = (F\. Fa,.... Fy) | F1, F3, F; € Ly(Bp)" .
Fr e Wy~ (Sp), Fae Hy(BR)",
Fs € Ly(Bg). Fs € Hy(Bg)}.
Then, there exist a constant ko > 0 and operator families A(ik), P(ik), and H(ik)
with
Aik) € C' Ry, L(Xy(Br). Hy (BR)™)),
Pik) € C' Ry L(Xy(Br). H, (Bg))).
H(ik) € C'Ryg. L(X, (Br). W, /(Sr)))

such that for any (f,d,h, g, g) and k € Ry, v = A(ik)Fy, 9 = P(ik)Fy and
n = H(ik)F, where

Fi=E.d, (ik)'*h . (k) g, g, ikg),
are unique solutions of equations (4.3), and

Rz, .12 sy (KOO (G AGK) [ k € Ryg)) < 7,
R, B,y (8™ (K VPk) | k € Ry} < 1, (4.4)
O,/ .
Ry w1 sy A KB (GRYHK)) | K € Reg}) < 1

fort =0,1,m =0,1,2andn = 0, 1 with some constant rp,.
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Remark 12. (1) Here and in the following, for 8 € (0, 1) we set

e ™02 k|0 for k > 0,

(ik)! = .
e M2k fork < O.

(2) The functions Fy, F», F3, F4, F5, Fg, and F7 are variables corresponding to f,
d, (ik)l/zh, h, (ik)l/zg, g, and ik g, respectively.
(3) We define the norm || - || x, (Bg) by setting

ICFY, -y FD) L, Bry = I1(F1, F3, Fs, F7)llL, (Bg)
+||F2||W‘12—1/q(SR) + ||(F4’ Fﬁ)”qu(BR)

Let ¢(ik) be a function in C*°(R) which equals one for k € Ry,+2 and zero for
k & Ryy+1,and let ¥ (ik) be a function in C*°(R) which equals one for k € Ry,+4 and
zero for k & Ry,43. Notice that ¢ (ik)y (ik) = ¢(ik). Let A(ik), P(ik) and H(ik) be
the R-solvers given in Theorem 11. Then, we have

Rz, .12 8y (KOO (TR 2 (9 (R AGRD) | k € Rig)) < Clgll gy ey
R, .1, 8™ (K V(@UOPR) | k € Reg)) < Clloll g1 wyrss

YR . .
R gty (5 w1 50y LKD) (R (@ RIHLRD) | & € Rig)) < Cllpll g, yrs
4.5)
for{ =0,1,m =0,1,2and n = 0, 1. To prove (4.5), we use the following lemma
concerning the fundamental properties of the R-bound and scalar-valued Fourier mul-
tipliers.

Lemma 13. (a) Let X and Y be Banach spaces, and let T and S be R-bounded
families in L(X,Y). Then, T +S={T+ S| T €7, S e S}isalsoan R-bounded
Sfamily in L(X,Y) and

Reaxry(T +8) < Rex,vy(T) +Rex,n)(S).

(b) Let X, Y and Z be Banach spaces, and let T and S be R-bounded families in
L(X,Y) and L(Y, Z), respectively. Then, ST = {ST | T € T, S € S} is also an
R-bounded family in L(X, Z) and

Rex,.2)(ST) < Rex,vy (T Ry, z)(S).

(c) Let 1 < p,q < oo and let D be a domain in RN. Let m = m()) be a
bounded function defined on a subset U of C and let M,,(X) be a map defined by
MyuA) f = m@)f for any f € Lg(D). Then, Rew,oy){Mm(2) | 2 € U}) <
CNg.pllml Lo )-

(d) Let n = n(t) be a C'-function defined on R\{0} that satisfies the conditions
|n(t)| < vy and |tn'(t)| < y with some constant ¢ > 0 for any T € R\{0}. Let T,
be an operator-valued Fourier multiplier defined by T, f = F~'[nF[f]1] for any f
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with Ff]1 € DR, Ly(D)). Then, T, is extended to a bounded linear operator from
L,(R, Ly(D)) into itself. Moreover, denoting this extension also by T,, we have

1Tl 2z, ® Ly D)) < Cp.g.DV-

Here, we only prove the R-boundedness of ¢(ik)ik A(ik). The R-boundedness of
the other terms can be proved by the same argument. Let n € N, {k¢}j_, € R",
{Fe}Y;_, € X;(Bgr)". Changing the labeling of indices if necessary, we may assume
that p(ky) # Ofork = 1,...,m and ¢(ky) = O for £ = m + 1, ..., n. And then,
using Lemma 13, we have

n
1> re(ike) (ike) AGike) Foll Ly 0.1). Ly (Bg))
=1

m
=11 D reg(ike) (ike) AGike) Fell L, (0.1).L, (Br))
=1

m
< )l Y re@(ike) Fell Ly 0.1).Ly(Br))
(=1

n
=r1pll Zrw(ike)Fz||Lq((0,1),Lq(BR))
=1

n
< Co.rl9lms oyl Y reFellLy0.1).y(Br)
e=1

which shows that
RL(Xq(BR),Lq(BR)N)({ik(P(ik)A(ik) | k€ Ry} < Cq,R”‘p”HolQ(R)rb-
For f € {F, G, G, D, H}, let

fo = Fr' W Felf1.
We consider the high frequency part of the equations (4.1):
ouy — Div (uD(uy) — pyD) = Fy in Bg x (0, 27),
divuy = Gy =divGy in Bg x (0, 27),
0 py + Mpy — (Auy) -n = Dy on Sg x (0,2m),
(uD(uy) — pyDn — (Brpy)n = Hy on Sg x (0, 2m).

(4.6)

By Theorem 8, Theorem 9, and (4.5), we have immediately the following theorem.

Theorem 14. Let 1 < p, g < oo. Then, for any functions F, G, G, D, and H with

F € Ly per((0,27), Ly(BR)Y), D € Lpper((0,27), Wy /9 (Bg)),

H € Hpper((0,27), Lg(BR)™) N Ly per (0, 270), H} (Br)V).
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G € Hylper((0,277), Lg(BR)) N L per (0, 277), HY (Br),

Ge H;’per((o, 27), Ly(Bp)™),
We let
uy = Fr '[9k AGK) Fie(Fy, Dy, Hy, Gy, Gy)IC, 1),
py = T [p(R PR Fi(Fy, Dy, Hy, Gy, Gy, 1),
py = Fp p(k) AGK) Fi(Fy, Dy, Hy, Gy, Gy, 1),
where we have set
Fi(By, D, Hy, Gy, Gy) =y (k) (Fr[F1ik), FrDik), (i)' Fr[H] k), FrH] k),
(ik)'? Fr[G(ik), FrlG1(ik), ik Fr[Gl(ik)).
Then, uy, py and py are the unique solutions of equations (4.6), which possess the
following estimate:
My L, 0,27, 2By + 190y 1L, (027,24 (BR) + IVPY L, 0,2m), Ly (BR))
vl 0.2m) w3 a5y T10Pv gy 0.2 w2450
= C{lIFyllL,(©0.27),,(BR))
F 1Dl 0.0y w2 o s + 1A (G HIL 020, By
+1Gy B 0,20, 1) By + 19:Gy 1L, (0.27). L, (B}

for some constant C > 0. Here, we have set
AV2(Gy, Hy) = Fr ' 1G02Y (i) (FrlG1(ik), FrHIK))].

We now consider the lower frequency part of solutions of equations (4.1). Namely,
we consider equations (4.3) for k € R with 1 < |k| < ko + 4. We shall show the
following theorem.

Theorem 15. Letr 1 < g < oo and k € Z with 1 < |k| < ko + 3. Then,
forany £ € LyBp)V, g € H)(Br). d € W, %(Sg). h e H)(Bp)", and
g € Ly(BR)", problem (4.3) admits unique solutions v € H7(Bg)", q € H, (Bg),
andn € W; ~l/4 (SRr) possessing the estimate:

IVl 52 BR) + IVl (BR) + ”nnwj‘”"(sk)

(4.7)
= CUIfllzy Br) + Idlly2-17a gy + 1(8- W 511 8 + 18I, (BR))

for some constant C > 0.
Proof. From Theorem 11, problem (4.3) with k = ko + 4 admits unique solutions

Vi € qu(BR)N, dke € qu (Br), and ny, € W;’_]/q(SR) possessing the estimate:

Vil 250 + 1V k0 2, B0 + kgl 3100,

4.8)
< C(lfllL, B + IIdIIWqZ—l/q(SR) + (. Wl ) gy + N8l Br)
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for some constant C. Thus, for any k € R with |k| < ko + 4, we consider the unique
solvability of the equations:
ikw — Div (uD(w) —tI) =f, divw =0 in Bg,
ikt + M — (Aw) -n=d on Sg, (4.9)
(uD(w) —tIhn — o (BrZ)n =0 on Sg,
where we have setf = i (k—ko) vk, and d = i (ko —k)ni,. Infact, if we set v = vy, +w,
q = qk, + ¢, and n = ng, + ¢, then v, q and n are unique solutions of equations (4.3).
In what follows, we study the unique solvability of equations (4.9) in the case where
feL,;(Br)andd € qu_l/q (Sg) are arbitrary. To solve (4.9), it is convenient to study
the functional analytic form of (4.9), and so we eliminate the pressure term v and the
divergence condition divw = 0 in Bg. Given v € qu(BR)N and ¢ € W;_l/q (SR),
let K =K(v,0) e H ql (BRr) be the unique solution of the weak Dirichlet problem:

(VK,Vo)p, = (Div (uD(v)) — Vdivv, Vg)p, forany ¢ € I:Iql,,O(BR) (4.10)

subject to
K =< uD(v)n,n > —oB¢ —divv on Sg, 4.11)

where we have set
H) o(Br) ={p € Lyoc(Br) | Vo € Ly(BR)", ¢ls, =0}

and g’ = q/(q —1). In view of Poincaré’s inequality, I:Iql,,O(BR) = qu,’O(BR) ={pe
H;,(BR) | ¢lsp, = 0}. Instead of (4.9), we consider the equations:

ikw — Div (uD(w) — K(w, O)I) =f in Bg,
ikt + M — (Aw) -n=d on Sg, (4.12)
(uD(w) — K(w,0)Dn — o (BrZ)n =0 on Sg.

In view of the boundary condition (4.11) for K (w, ¢), that w and ¢ satisfy the third
equation of equations (4.12) is equivalent to

(uD(w)n); =0 and divw =0 on Sg, (4.13)

where d; = d— < d,n > n for any N-vector d. Let J;(Bg) be a solenoidal space
defined by setting

Jg(BR) ={v € Ly(Br) | (v, V@), =0 forany ¢ € Hy, ((Bg)}.

Obviously, forv € H ql (BR),inorder thatdivv = 0 in Bg, it is necessary and sufficient
that v € J,(Bg). Forany f € Lq(BR)N, lety € qu’O(BR) be a unique solution of
the weak Dirichlet problem:

(V. Vo), = (F, Vp)p, forany ¢ € H), ((Bg).
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Let g =f — V4 and inserting this formula into equations (4.9), we have

ikw — Div (uD(w) — (t —¢y)I) =g, divw=0  in Bg,
ikt + M — (Aw) -n=d  on Sg,
(uD(W) = (x = y)Dn — o (Brg)n =0 on Sg.
where we have used the fact that v|s, = 0. Therefore, we shall solve equations (4.9)
for f € J,(Bg) and d € W, "/4(Sg). When f € J,(Bg), the equations (4.9) and
(4.12) are equivalent. In fact, if w € HqZ(BR)N and ¢ € W;il/q (SR) satisfy equations
(4.9) with some t € qu (BR). Then, for any ¢ € ﬁ;,’O(BR), we have

0= (f, Vo)z = (ikw — Div (uD(W)), V@) + (Vr, V@) e
= (V= KW, )., Vo),

where we have used the fact that div w = 0. Moreover, from the boundary conditions
in equations (4.9) and (4.11), it follows that

t— KW, ) =< uDWw)n,n > —oBr¢ — K(w,¢) =divw =0

on Sk because divw = 0. Thus, the uniqueness of the solutions to his weak Dirichlet
problem yields that t = K (w, ¢), and so w and ¢ satisfy equations (4.12). Conversely,
letw € qu(BR)N and ¢ € W;_l/q(SR) be solutions of equations (4.12). For any
(RS I:Iql,’O(BR), we have

0= (fv V(p)BR = lk(W, V‘P)BR - (DIV (/’LD(W))v VQD)BR + (VK(Wv §)7 V(p)BR
= —ik(divw, ¢)p, — (Vdivw, Vo),

Moreover, from the boundary condition (4.13) it follows that divw = 0 on Sg. The
uniqueness implies that divw = 0 in Bg. Thus, w, t = K(w, ¢) and ¢ are solutions
of equations (4.9). In particular, for solutions w and ¢ of equations (4.12), we see that
w satisfies the divergence condition: divw = 0 in Br automatically.

From now on, we study the unique existence theorem for equations (4.12) for any
feJ,(Bg)andd € qu ~la (Sgr). To formulate problem (4.12) in a functional analytic
setting, we define the spaces H,, D, and the operator A by setting

My = (. d) | T € Jy(Br), deW; "(Sp),
Dy ={w.0) e Hy |we HXBr)", ¢eWy "(Sp), (uDW)):ls, =0},
AU = (Div (uD(w) — K(w, O)I), (—M¢ + (Aw) -n)|s,) forU = (w,¢) € Dy,

where we have used (4.13) and divw = 0 in the definition of D,. We write equations
(4.12) as
ikU—-AU =F inH,. 4.14)

In view of Theorem 11, we see that k = ko + 4 is an element of the resolvent set
of the operator A, and so (i(kg + 4)I — A)~ ! exists in L(Hy4,Dy). Since Bg is a
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compact set, it follows from the Rellich compactness theorem that (i (kg +4)I — A) -1
is a compact operator from H, into itself. Thus, in view of Riesz—Schauder theory,
in particular, Fredholm alternative principle, that k belongs to the resolvent set if and
only if uniqueness holds for k. Thus, our task is to prove the uniqueness of solutions
to equations (4.14). Let U = (w, ¢) € D satisfy the homogeneous equations:

ikU—-AU =0 inH,. (4.15)
Namely, (w, ¢) € D, satisfies equations:

ikw — Div (uD(w) — K(w,0)I) =0 in Bpg,
ik + M — (Aw) -n=0  on Sg, (4.16)
(uD(w) — K(w,0)Dn — o (BrZ)n =0 on Sg.

We first prove that
(¢, Dsg =0, (,xj)sg=0 forj=1,...,N. 4.17)

Integrating the second equation of equations (4.16) and applying the divergence the-
orem of Gauss gives that

0 =ik(Z, Dsg + (£, D sg ISR —/ div Aw dx = (ik + [SrRD(, Disg,

Bpr

where we have set |Sg| = f Sk dw and we have used the fact that divw = 0 in Bg.
Thus, we have (¢, 1)s, = 0. Multiplying the second equation of equations (4.16)
with x;, integrating the resultant formula over Sg and using the divergence theorem
of Gauss gives that

0 =ik(Z, xe)sp + (£ x0)sp (xe, Xe)sg —/ div (x¢.Aw) dx, (4.18)

Bg

because (x, x¢)s, = 0 for j # £. Since

/ div (x; Aw) dx = (we — wydx)dx =0,
Br

Br |BRr| JBg

we have (¢, x¢)s, = 0, because (x¢, x¢)s, = (R%/N)|Sg| > 0. Thus, we have proved
(4.17). In particular, M¢ = 0 in (4.16).

We now prove that w = 0. For this purpose, we first consider the case where
2 < q < oo. Since Bp is bounded, D, C D,. Multiplying the first equation of (4.16)
with w and integrating the resultant formula over Bg and using the divergence theorem
of Gauss gives that

. 1<
0 = ikIIWIZ, ) — 0 (BrE, - Wiy + 2 IDOWIIL, (5,
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because divw = 0 in Bg. By the second equation of (4.16) with M¢ = 0, we have

N
1
o(Bre.n-W)sy = 0 (BrE. ikl)sp + ) w;jdt(Brg, R 'x}) s,
k=1

_ |BR| Br

where we have usedn = R~ 'x = R‘l(xl, ..., xn) for x € Sg. Thus,
N—1
(Br¢, xj)sg = (&, (Asp + T)Xj)sk =0.

Moreover, since ¢ satisfies (4.17), we know that

_(BRQ" g)SR z C||C||%2(SR)

for some positive constant ¢, and therefore (4.18) implies w = 0.

Now the first equation of (4.16) yields VK (w, {) = 0, so that K (w, ¢) is constant.
Integration of the third equation of (4.16) over Sg combined with (4.17) shows that
this constant is 0, that is, K (w, {) = 0.

Finally, the third equation of (4.16) yields that Bg¢ = 0 on Sg, and so by (4.17) we
have ¢ = 0. This completes the proof of the uniqueness in the case where 2 < g < oo.
In particular, we have the unique existence theorem of solutions to equation (4.14).

We now consider the case where 1 < g < 2. Let f be any element in J,/(Bg) and
let V.= (v, n) € Dy be a solution of the equation:

—ikV — AV = (£,0) inH,.

The existence of such V has already been proved above. Since d = 0, we see that n
satisfies the relations:

(1, Dsg =0, (n,xj)s, =0 forj=1,...,N,
and so Mn = 0. Using the divergence theorem of Gauss, we have
(w,f)p, = (W, —ikv — Div (uD(v) — K (v, m)D) s,
= (lkW, V)BR - (W, ([LD(V) - K(V7 n)I)n)SR + %(D(W)7 D(V))BR

= (Div (uDW) = KW, D), V)p, —o(W-n, Brn)s, + %(D(W), D(v)) 5,

=0 (Br¢,n-V)s, —o(W-n, Brn)s,

1
=0 (Br¢, —ikn + —— | vdy-m)s, —o(ik¢
|BR| Bgr
+—— | wdy-n, Bgng,.
|Br| JBg

Using the fact that (Br¢, x;)s, = (x;, Brn)s, = 0, we have

W, B)p, = 0ik(Bre, n)s, — oik(¢, Brn) sy
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=0ik{
N -1
RZ

N —1
R2 (§3 r))SR - (VSR§3 VSRYI)SR

(. M5 + (Vsil. vsRn)sR} —0.

Forany g € L,/(B N, lety € I:Iql, o(Br) be a unique solution of the weak Dirichlet
problem:

(V. Vo), = (8, Vo), forany ¢ € H} o(Bg).

Letf = g — Vi, and then f € J,/(Bg), and so using the fact that w € J,(BR), we
have (w, g)p, = (w,f)p, + (W, V{)p, = 0. The arbitrariness of g € Lqr(BR)N
implies that w = 0. Thus, the second equation of (4.16) and (4.17) leads to ¢ = O.
This completes the proof of the uniqueness in the case where 1 < ¢ < 2, and therefore
the proof of Theorem 15. U

We now consider the linearized stationary problem:
Lv — Div (uD(v) — pI) =f in Bg,
divv=g=divg in Bg,
Mp —(Av) -n=d on Sg,
(uD(v) —pDhn —o(Brp)n =h on Sg.

(4.19)

We shall prove the following theorem.

Theorem 16. Let 1 < g < oo. Then, for any f € Lq(BR)N, d e W;_l/q(SR),

g € qu (Br), g € Lq(BR)N, and h € Hq1 (Bp)V, problem (4.19) admits unique

solutions v € qu(BR)N, pe qu (Bgr), and p € W;_l/q (SR) possessing the estimate:
||V||H3(BR) + ||P||qu(BR) + ”p”W,f*l/q(SR)

(4.20)
= C(ifllL,Br) + ||d||qufl/q(SR) +11Cg W) gy + lgllz, (Br)

for some constant C > Q.

Proof. The strategy of the proof is the same as that of Theorem 15. Since Lv, Mp,
and | Bg|™! / B Y dy are lower order perturbations, choosing kg > 0 large enough, the
generalized resolvent problem:

ikov + Lv — Div (uD(v) — pI) =f  in Bg,
divv=g=divg in B,

ikop + Mp — (Av) -n=d on Sg,
(uD(¥) —pDhn — o (Brp)n =h on Sg.

421

admits unique solutions: v € qu(BR)N, p e Hy(Bg),and p € W;_l/q(SR) possess-
ing the estimate (4.20). Of course, the constant C in (4.20) depends on kg in this case,
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but &y is fixed, and so we can say that C in (4.20) is some fixed constant. The essential
part of the proof is to show the unique existence of solutions to equations (4.19) with
g=g=h=0,thatis
Lv —Div(uD(v) —pI) =f  in Bg,
divv=0 in Bg,
Mp —(Av) -n=d on Sg,
(uD(v) —pDn — o (Brp)n =0 on Sg.

(4.22)

And then, the uniqueness of the reduced problem in the L, framework implies the
unique existence of solutions as was studied in the proof Theorem 15. Thus, we
define the reduced problem corresponding to equations (4.19). Forv € H, q2 (Bg)N and

p E W;_l/q (Sg), let K = K(v, p) € qu (Bg) be the unique solution of the weak
Dirichlet problem:

(VK,V)p, = Div (uD(v) — Lv — Vdivv, Vg)p, forany ¢y e I;Vql,’o(BR),
(4.23)
subject to the boundary condition:

K =< uD()n,n > —oBrp —divv on Bg. (4.24)

Then, the reduced problem corresponding to problem (4.19) with g =g =h = 01is
given by the following equations:
Lv — Div (uD(v) — K(v, p)I) =f in Bg,
Mp—(Av) -n=d  on S, (4.25)
(uD(v) = K(v, p)D)n —o(Brp)n =0 on Sk.

Then, forf € J,(Bg)andd € W, /9 (Sg), problems (4.22) and (4.25) are equivalent.
In fact, if problem (4.22) admits unique solutions v € HqZ(BR)N ,p € qu (Bg) and

pE W;il/q (Sgr), then for any ¢ € I:Iql,’O(BR), we have
0=(f,Vo)pp = (Lv — Div (uD(v)), Vo) g, + (Vp, V@) ps
= (V(p - K(V9 )0)), V(p)BR

because div v = 0 in Bg. Moreover, from the boundary conditions in (4.22) and (4.24)
it follows that

p—K(v,p) =< uD¥)n,n > —cBrp — K(v,p) =divv=0

on Sg. The uniqueness of the weak Dirichlet problem leads to p = K(v, p), and
therefore v and p satisfy equations (4.25). Conversely, if v € qu(BR)N and p €

W;_l/q(SR) satisfy the equations (4.25), then for any ¢ € I:Iq]’ o(Br) we have

0=(f, Vo)pg = (Lv — Div (uD(V), V@) g + (VK (v, p), V@) = (Vdivy, Vo).
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Moreover, the boundary conditions of (4.25) and (4.24) gives that
divv =< uD(v)n,n > —oBgrp — K(v, p) =0.

The uniqueness of the weak Dirichlet problem yields that div v = 0, and therefore, v,
p = K (v, p) and p are solutions of equations (4.22).

Finally, we show the uniqueness of equations (4.21) in the L,-framework, which
yields Theorem 16. Let v € H22(BR)N and p € W25 / 2(S r) satisfy the homogeneous

equations:
Lv — Div(uD(v) — K(v, p)I) =0 in Bg,

Mp—(Av)-n=0  on Sg, (4.26)
(uD(v) — K(v, p)I)n — o (Brp)n =0 on Sg.

Note that divv = 0 in Bg. Employing the same argument as in the proof of Theorem
15, we have
(0, Dsg =0, (p,x))sp =0 forj=1,...,N. (4.27)

In particular, M p = 0. Multiplying the first equation with v, integrating the resultant
formula on Bg and using the divergence theorem of Gauss gives that

w
0= (LY, V)i + 0 Bro,m - V)sg + 5 IDWIT, 5y

because (K (v, p), divv) = 0 as follows from divv = 0 in Bg. From (2.17) it follows
that

M
(LY, V)Be = Y|V, po) el
k=1

From the second equation of (4.26) with Mp = 0 it follows that

N
1
(Brp,m-V)s, = E R_I(BRp,xj)SR_[ vjdy =0.
e |Br| JBg

Combining these formulas yields that

M
u
0= 1V, P + ZIDMIL, 5y
k=1
which leads to D(v) = 0 and (v, px)p, =0fork =1,..., M. Thus, we have v = 0.
From the first equation of (4.26), we have VK (v, p) = 0, and so K (v, p) = ¢ with
some constant ¢. From the boundary condition of (4.26), we have 0 Bp = —c on Bg.

Integrating this formula on Sz and using the fact (p, 1)s, = 0 in (4.27) gives that
¢ = 0. Thus, Brp = 0 on Sg, but we know (4.27), and so

0=—Brp. p)sg = cllpli, s,

for some constant ¢ > 0, which shows that p = 0. This completes the proof of the
uniqueness in the L, framework, the proof of Theorem 16. 0
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Proof of Theorem 6. We now prove Theorem 6. Let uy, py and py be functions
given in Theorem 14 which are solutions of equations (4.6). Notice that ¥ (ik) = 1
for |k| > ko +4 and vy (ik) = O for |k| < ko + 3. Fork € Z with 1 < |k| < kg + 3, let
f = FrlFlGk), g=FrlGlik), g=Fr(Glik),
d = Fr[D](ik), h = Fr[H](k)
in equations (4.3), and we write solutions v, g and n as vy =V, qx = q and nx = 7.
Let

k

ikt ikt ikt
we=¢e"vi, pr=eaqr, pr=¢""m,

and then, ug, px and py satisfy the equations:
Oy — Div (uD(uy) — pid) = ¥ Fr[FI(ik)  in B,
divug = ¥ Fr[G](ik) = div (¥ Fr[G](ik))  in Bg,
dpx + Mpr — (Aw) -n = e’ Fr[D](ik)  on Sg,
(uD(w) — pen — (Broon = ' Fr[H](ik)  on Sg.

(4.28)

Letf =Fs5,d = Ds, g = Gs, g = Gs and h = Hg in equations (4.19), and let v, p
and p be unique solutions of equations (4.19). We write us = v, ps = p and ps = p.
Under these preparations, we set

u=ug + Z u; + Uy,

1<|k|<ko+3
p=ps+ Z Pr+ by,

1<|k|<ko+3
p=ps+ Y. ptpy

1<|k|<ko+3

and then u, p and p are unique solutions of equations (4.1). Moreover, by Theorem
14, Theorem 15, and Theorem 16, we see that u, p and p satisfy the estimate (4.2). In
fact, for f = fs 4+ 3 <jj<kos3 € fk + fy» we have the following estimates:
I F L, 0.270).%) < 1 fsllL,.27).%) + Z 1™ fiell 020, %) + I fy L, (0.20).30
1<|k|<ko+3

<@0)'Plfslx +@0YP Y lfillx + I fllz, 020).x),
I=<|k|<ko+3

10: flIL,0.27). %) < Z G fillL,0.2m. %) + 13 fy L, (0.20).%0
1<|k|<ko+3

<@0)'Pko+3) Y Ifelx + 19 fyllL,0.2m).0)-
1<|k|<ko+3

By Holder’s inequality, we have

I fsllL,0.27).%) < 27 fllL,0.27). %)
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||eikt-7:11‘[f](ik)||L,,((O,2n),X) =27 fllL,«0.27).%)

and for any UMD Banach space X, using Lemma 13 and transference theorem, The-
orem 9, we have

I fyllL,0.27).%), = Cl¥ g I1fIlL,(0.27), %)
119: fy Iz, (0.2),%) = CllY g 19: flIL, 0,27, %)
IAY2 iyl 020,50 < 1F5 TR /A + DY Hy R+ k)
Frlf1GN L, 0.27), %)
< C(ZZ01 sup |(x%)e<(m>”2/<1 + 1)y i)

”f||H,',/2<(o,2n),X)'

O
4.2. On linearized problem of two-phase problem
In this subsection, we consider the linear equations:
opugr — Div (uD(uy) — poI) = Fy in Q4 x (0, 27),
divur = G4 =divG4 in Q4 x (0,2m),
90+ Mp—(Au) -n=D  on Sy x (0,27),
(4.29)

[[uD@) —pD]IIn — (Bgp)n=H  on Sg x (0, 27),
[[u]] =0 on Sg x (0, 2m),
u_ =0 on S x (0,2m).

where Q4 = Bg, Q_ = Q\(Bgr U Sg), and M, A and By are the linear operators
definedin (2.17). We shall prove the unique existence theorem of 27 -periodic solutions
of equations (4.29). Our main result in this section is stated as follows.

Theorem 17. Let 1 < p, g < oo. Then, for any ¥y, D, G1, G+ and H with

Fi € Lpper((0.27), Lg(Q0)™), D € Ly per((0.2). Wy /9 (Sp))
G € Lpper((0,270), HH(Q)) N Hp/per (0, 27), L (),
Gz € H) 0 ((0,27), Ly(Q0)™),
H € Ly per((0.2), HHQ)Y) N Hpper (0, 27), Lo()™),
problem (4.1) admits unique solutions uL, p1 and p with

Wi € Lpper((0,27), Hy (Q)V) N Hy L ((0,27), Ly (1)),

ba € Lpper(0,27), HI( @), 3 /Q b, dx =0 fort € (0,27),
T +
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p € Lpper((0,27), Wy /9(Sg) N HL o (€0, 2), W~ (Sp))

,per

possessing the estimate:

Z{”u:t”Lp((O,Zn),qu(Qi)) + 10rut L, (0.27). Ly @) + IVP£IL,0.27). L, 250}
I

+ ”’O||Lp((0,271),W;71/q(SR)) + ”atp”LP((O,27T),W(]271/61(SR))

S C{; ||Fi||Lp((0,27T),Lq(Qi)) + ”D”Lp((o,zﬂ'),qu_l/q(SR))

+ D 8GNl (0.27),1 (220
+

+ ; ”Gi”Lp((O,h),Hq' @)t ”Gi”H,',/z((o,zn),Lqmi))

+ ”H”LP((O,ZT[),qu () + ||H||H1|,/2((0,27T),Lq(§2))}
(4.30)

for some constant C > Q.

To prove Theorem 17, the strategy is the same as in the proof of Theorem 6. There-
fore, we first consider the R-solver of the generalized resolvent problem:

ikvy — Div (uD(vy) — qa) = f1 in Q4,
divvy = g4 =divgy in Q4,

ikn+ Mn—(Avy) -n=d  on Sg,
((uD(v) — qllln — (Bgnp)n =h  on Sg,
[([vIl=0  on Sg,

v_ =0 on S

431

for k € R. From Theorem 2.1.4 in Shibata and Saito [19] we know the following
theorem concerned with the existence of an R-solver of problem (4.29).

Theorem 18. Let 1 < g < 0o and let Ry, = R\(—ko, ko). Let

Xg(2) = {(f.d.h,g.g) [feLy). dew, (S
he Hy(@", g Hj(Q), ge Ly ("},

Xy () ={F = (F1, Fa,...,F7) | Fi.Fy € Ly@)Y, Fy e W, 9(Sp).
Fye Ly(@", Fye Hj(Q)",
Fs € Ly(Q). Fs € H)(Q)).

Then, there exist a constant kg > 0 and operator families A(ik), P(ik), and H(ik)
with

A(ik) € C' (Ryy, L(Xy (), Hy (M),
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Pik) € C' (R, L(Xy (), Hy (),
H(ik) € C'Reg, LX), W, 4 (Sk)))
such that for any (f,d,h, g, 8) and k € Ry, v = A(ik)Fy, 9 = P(ik)Fy and
n = H(ik)F, where
Fr = (£,d, (ik)'*h h, (ik)'?g, g, ikg),
are unique solutions of equations (4.31), and
R 2y, 12 ) (KB (TR AGK)) | k € Rig)) < 75,
R, 6.1, 0 (K VPK) | k € Ryg)) < 7, (4.32)

R ({kdR) (R M) | k € Rey}) < rp

L(X(2.W, " (5p))
fort =0,1,m=0,1,2andn = 0, 1 with some constant rp.

Remark 19. (1) Here f € Ly(S2) means that fi € Ly(Qx),and f € H,(S2) means
that fi € qu (R24), and we set

1y = ; I felzg@o. 1 lmy = ; I fell i -
Moreover, we define
AL Q) = {9 e HI Q) | / 0dx = 0}.
&

(2) For f defined on €2, we set f = flq, andfor fi defined on Q24+, weset f = fi
on 4. The functions Fi, F>, F3, Fu, F5, Fg, and F7 are variables corresponding
tof, d, (ik)'/?h, h, (ik)'/?g, g, and ik g, respectively.

(3) We define the norm || - || X,(Q) by setting

IFreo Pl @) = ICEL Fs, FDl, @) + 1F2llyzva s, + 1 Foll gy
+HIF3lL, @ + ||F4||qu(g2))-
Let ¢(ik) be a function in C*°(R) which equals one for k € Ry,42 and zero for
k & Ryy+1, and let ¢ (ik) be a function in C*°(R) which equals one for k € Ry 44
and zero for k & Ry 3. For f € {F4, G4+, G+, D, H}, we set
fy = Fr W Frl ).
We consider the high frequency part of the equations (4.29):
ity — Div(uD(uty) — pryD) =F1y  in Qi x (0, 27),
divury = Gy =divGyy in Q4 x (0,2m),
0oy + Mpy — (Aupy) -n= Dy on Sg x (0, 2m),
[[uD(y) — pyDn — (Brpy)n =Hy  on Sg x (0, 27),
[[uy]]=0  onSg x (0,2n),
u_y =0 on S x (0,2m).

(4.33)
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By Theorem 8, Theorem 9, and the analogue of (4.5) resulting from (4.35), we have
immediately the following theorem.

Theorem 20. Let 1 < p,q < oo. Then, for any functions ¥, G, G, D, and H with

F e Lyper((0,27), Ly(N), D € Ly per((0,27), Wy 4(Sg)),
H € Hp/per((0,277), Lg(™) N L per (0, 27), HY()Y),
G € Hp/per((0,27), Ly () N L per (0, 270), H} (2)),

GeHy . ((0.27), Ly()"),

We let

uy = Fr (@) AGKO)F(Fy, Dy, Hy, Gy, Gy)1(, 1),
Py = Fr [9(k) PR Fi(Fy, Dy, Hy, Gy, G 1),
py = Fr ' lpl) AR Fi(Fy, Dy, Hy, Gy, Gy, 1),

where we have set

Fi(Fy, Dy, Hy, Gy, Gy) = ¥ (ik)(Fr[F1(ik), Fr[D1Gik),
(ik) 2 Fr[HI(ik), Fr[HI(k),
(ik) 2 Fr[G1(ik), FrlG(ik), ik Fr[G1(ik)).

Then, wy, py and py are the unique solutions of equations (4.33), which possess the
following estimate:
||u1//||Lp((0,2n),Hq2(Q)) + ||3t“¢”Lp((o,zn),Lq(s'z)) + ”Vpl//”L,,((O,2n),Lq(§2))
FUow Ny, 0200, w2 sy T 190Pv g1 0,00, w2 (520
= CUFY L, 0.2m). g0 T 1PV L0 2 w2V 50y T 191Gy L, 0.27). 1920
+ ||A1/2G¢f||L,,((o,2n),Lq(s'2)) + ||Gi/f||L,,((o,2n),Hql ©)
+ ||A1/2Hw||L,,((o,2n),L,,(sz)) + I Hy L, (0.2m), 1) 20}
for some constant C > 0. Here, we have set

AY2(Gy, Hy) = Fr 1GR9 (k) (FrlG1(ik), FrlHI))].

‘We now consider the lower frequency part of solutions of equations (4.29). Namely,
we consider equations (4.31) for k € R with 1 < |k| < ko + 4. We shall show the
following theorem.

Theorem 21. Let 1| < g < oo and k € 7Z with |k| < ko + 3. Then, for any
fo € Ly, g+ € HJ(Qw), d € WS (Sp), h € HI(QY, and g+ €
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L, (QN, problem (4.31) admits unique solutions vy € H;(Qi)N, q+ € qu (21)
with fQ qdx =0, andn € W;il/q(SR) possessing the estimate:
IVl 280 + 1Vl + Il -0 s

(4.34)
< CUIEl 1y @y + MLy 2100 5+ 181y + 1B, )+ Tl 2)

for some constant C > 0.

Proof. The strategy of the proof is the same as that in Theorem 15. The only difference
is the reduced problem. First, we can reduce equations (4.31) to equations:

ikv —Div(uD(v) —pI) =f  in Q,
divv=0 ing,
ikp+ Mp —(Avy) -n=d on Sg,
[[uD(v) — pI]ln — (Brp)n =0 on Sg,
[[vIl=0  on Sg,

v_=0 on S.

(4.35)

For any v+ € H;(Qi)N and p € W;_l/q(SR), let K = K(v,p) € qu (€2) be the
unique solution of the weak Neumann problem:

(VK, Vp)y = (Div (uD(v)) — Vdivv, Vo) forany ¢ € Hq‘,(sz) (4.36)
subject to the transmission condition:

[([K]] =< [[uDW)]In,n > —o (Br¢)n — [[divv]] on Sk, (4.37)

where p is piecewise constant defined by u|q, = w+. Here and in the following,

* 1 . .
H, () is defined by setting

HN@) = {go € H)(®) | / odx = 0}.
Q
The reduced problem corresponding to equations (4.35) is

ikv —Div(uD(V) — K(v,p)h =f ing,
ikp+ Mp — (Avy) -n=d on Sg,
[[uD(v) — K (v, p)I]In — o (Brp)n =0  on Sg, (4.38)
[[v]l=0  on Sg,

v-=0 onS.
Let J, () be the solenoidal space defined by setting

Jg(Q) ={ue Ly(Q) | (u,Vp)y =0 forany ¢ € H)(Q)}.
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For any f € Jq(Q) andd € qu*l/q(SR), problems (4.35) and (4.38) are equivalent.
In fact, if problem (4.35) admits unique solutions v € qu(Q)N, p e qu (Q) and p €

W; ~/a (SRr), then using the divergence theorem of Gauss and noting that [[¢]] = 0
on Sk gives that for any ¢ € H ql,(Q),

0==& Voo =ik(v,Vo)y — (Vdivy, Vo)
+ (V= K(v.0)). Vo)g = (V(p = K(v, 0)), Vo),

because divv = 0 on 2. Moreover, the transmission conditions in (4.35) and (4.37)
gives that

(lp— K(v, )]l =[[divv]] =0 on Sg.

Thus, the uniqueness of the weak Neumann problem in qu () yields that p —
K (v, p) =0in Q. Thus, v and p satisfy the equations (4.38).

Conversely, if v € qu(Q)N and p € Wq3 ~4(sp) s?ttisfy equations (4.38), then the
divergence theorem of Gauss gives that for any ¢ € Hq],(Q) we have

0=, Vo)g =ik(v,Vp)g — (Vdivy, V@) = —{ik(divy, p)g + (Vdivy, Vo).
Moreover, the transmission conditions in (4.38) and (4.37) give that
[[divVv]] =< [[uDW)]In,n > —o (Br¢) — [[K]] =0 on Sg.

Thus, the uniqueness of this weak Neumann problem yields that divv = ¢ in Q
for some global constant c. Now the divergence theorem of Gauss and the boundary
conditions in (4.38) yield ¢ = 0, that is, div v = 0, which shows that v, p = K (v, p)
and p satisfy equations (4.35).

Employing the same argument as that in the proof of Theorem 15, we see that to
prove Theorem 21, it is sufficient to prove the uniqueness of solutions to equations
(4.38) in the L, framework. Thus, we choose v € H22(§2)N and p € W25/2(SR) be
solutions of the homogeneous equations:

ikv —Div(uD(V) — K(v,p)) =0  in€,
ikp+ Mp —(Avy) -n=0  on Sg,

[[uD(¥) — K(v, p)I]In —o(Brp)n =0  on Sk, (4.39)
[[v]l=0  on Sg,
v =0 on S,

and we shall show that v = 0 and p = 0. Notice that divv = 0 on Q. Moreover, by
[[v]] = 0, we have v € qu ()N qu(Q). Integrating the second equation in (4.39)
over Sg and using the divergence theorem of Gauss on 2 = Bg gives that

0= ik(p. Ds, +/ p do| S|

Sr
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1
—/ div (vy — — v+dy)dx=(ik+|SR|)/ o dw|Sg|
BR |BR| BR SR

because divvy = 0 on Bg, and so (p, 1)s, = 0. Moreover, multiplying the second
equation in (4.39) by x; and integrating over Sg, similar arguments lead to

. . 1
0=ik(p, xj)sg +f pxjdw(xj, x;)sp —f div {x; (v4(x) — 7/ vy dy)}dx
Sk Br |Br| JBg

=ik(p, x;j)sg +/ pxjdw(xj, x;)sg —/

1
(U+j(x)—7/ vy dy)dx
Sk Br |BR| JBg

=ik(p,x})sz +/ pxjdw(xj, x;)sg,
S

R

because (1,x;)s, = 0, and (xx, xj)s, = 0 for j # k. Since (xj,xj)s, =
(R%/N)|Sg| > 0, we have (p, xj) = 0. Summing up, we have proved
(0. Dsg =0, (p,xj)sp =0 (j=1...,N). (4.40)

In particular, Mp = 0.

We now prove that v = 0. Multiplying the first equation of (4.39) with v and
integrating the resultant formula over €2 and using the divergence theorem of Gauss
gives that

. 1z
0= ikIIVII7, ) — o Bro,m - Visg + ZIDMI, .

because divv = 0 in 2. By the second equation of (4.39) with Mp = 0, we have
N
. 1 1
o(Brp.m - V), = 0 (Brp, ikp)sy + Y @f w; dt(Brp, R™'x)) s
k=1 Br

where we have usedn = R~ !x = R’l(xl, ..., xy) for x € Sg. This also yields

N-—-1
(Brp,xj)sg = (p, (Asp + T)x'/)sk =0.
Moreover, since p satisfies (4.40), we know that

—(Brp. P)sg = cllpl,sp)

for some positive constant ¢, and therefore we have D(v) = 0. Since v € qu (2) and
v=0o0nS_, wehave v =0.

Finally, the first equation of (4.39) yields that VK (v, p) = 0, which shows that
K (v, p) is constant in €. Thus, [[K (v, p)]] is constant. Integrating the third equation
of (4.39) yields that

N -1
(K (v, p)]]/s dow =0 (Asgp, Dsp + T(p, Dsz =0

where we have used (4.40). In particular, K (v, p) is a constant globally in €2. Finally,
we have Bgp = 0on Sg, which, combined with (4.40) leads to p = 0. This completes
the proof of uniqueness for equations (4.38) in the L, framework. Therefore, we have
proved Theorem 21. U
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Proof of Theorem 17. Employing the same argument as in the proof of Theorem 6
and using Theorem 20 and Theorem 21, we can prove Theorem 17. We may omit the
detailed proof. 0

5. Proofs of main results

In this section, we shall prove Theorem 4. The proof of Theorem 5 is parallel to
that of Theorem 4, and so we may omit it. We prove Theorem 4 with the help of the
usual Banach fixed-point argument, and we define an underlying space Z, with some
small constant € > 0 determined later by setting

T ={V, ) | v € Lpper((0,27), Hy (BR)") N H,y 10, ((0,270), Ly (BR)™),
h € Lppe((0,27), Wy
Wy~ (Sg)).

sup N Hp( Ollgl gy <8, E(v,h) <€}, (5.1
te(0,2m)

V(SR N H (0, 270), W™ /9(SR)) 0 HL, e (0, 27,

where we have set

E(v,h) = ||V||Lp((0,2n),HqZ(BR)) + ||V||H;((0,2n),L?1(BR))

F AN 0,20y, w21/ gy + 1111
+ [10:h]]

HY(0.2m). W5~V (Bg))
Loo((0,27). Wy~ /4 (Sg)"

In view of (2.9), we define £(¢) by setting

t t
Et) = / £(s)ds +c = L/ / v(x,s)(1+ Jo(x,s))dxds + ¢ 5.2)
0 |Brl Jo JBg

where c is a constant for which

2w
E(s)ds =0, thatis,
0

1

2 t
C=_2n|BR|/0 (/O BR(v(x,s)(l—i—Jo(x,s))dxds) dr.  (5.3)

We choose § > 0 so small that the map x = ®(y, 1) = y + V(y, 1) with U(y, ) =
Wy, (y,1) = R7'Hj,(y, 1)y + £(1) is one to one. In particular, we may assume that
& > 0 and the inverse map: y = E(y, t) is well-defined and has the same regularity
property as ®(y, t). In particular, we may assume that

(D) C Bp. 5.4

Since € > 0 will be chosen small eventually, we may assume that 0 < € < 1, and
so for example, we estimate €2 < cif necessary. Let (v, h) € Z. and let u and p be
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solutions of linearized equations:

d;u + Lug — Div (u(D(u) — pI) = G + F(v, h) in Bg x (0, 27),

diva = g(v, h) =divg(v, h) in Bg x (0, 27),

- 5.5
orp+Mp—Aa-n=d(v,h) on Sk x (0, 2m), (5:5)
(uD(u) — pDn — (Brp)n = h(v, h) on Sg x (0, 2m).

In view of Theorem 6, we shall show that
IEV, WL, 0.27).L,(Br))

+ ll(g(v, h), h(v, h)llL,,((o,zn),qu(BR)) +10:8(v. WL, 0.27),L,(Br)) = cée?,
(5.6)
for some constant C > 0 independent of € > 0. In the following, C denotes generic
constants independent of € > 0, the value of which may change from line to line.
Before starting with the estimates of the nonlinear terms, we summarize some inequal-
ities which are useful for our estimations. The following inequalities follow from
Sobolev’s inequality and the estimate of the boundary trace:

I flLoBr) = C||f||Hq'(BR),

17glksry = CUI Nt o l8 I H (BR)»

17gl28r) = CUS N m2 B0 I8N HL BR) + IS W) BR8N H2(B))-
”fg”qu‘”"(sR) < C||f||qu—1/q(SR)||g||qu—1/q(SR),

1782175y = CAS N y2m17a gy 181y 1170 gy + IS yyi-1va g 18 gy 2-170 )
(5.7
for N < g < oo with some constant C. The following inequalities follow from real
interpolation theorem and the periodicity of functions, which will be used to estimate
the L~ norm with respect to the time variable of lower order regularity terms with
respect to the space variable x:

”V”LOO((O.Zn),Bf_(}"/’”(BR)) = C(||V||L,,((o,2n),1-15(BR)) + ||3tV||Lp((O,Zn).Lq(BR))),
”h”Lm((o,zn),Bjj,‘//’*‘/‘f(sR)> < C(”h”L,,((o,zn),w,f*‘/‘f(s,q)) + ”afh”L,,((o,zn),W‘f*‘/"(sk)))'
(5.8
In fact, to obtain (5.8) we use the following well-known result: Let X and
Y be two Banach spaces such that Y is continuously embedded into X, and
then C([0, 00), (X, Y)1-1/p,p) is continuously embedded into H;((O, 00), X) N
L,((0, 00), Y) and

AN oo 0,00, X V01170 = 1L, (0,000,0) + 1 L1 (0,000, 5) -

For its proof, we refer to [9,21].
We start with the estimate of F(v, /). From (3.11), we have

IF1(v, ML, Br) < CUIVILoB)IVVIL,(BR) + 10t Wil Loo BRIV VL, (BR)
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F IV Lo B 1V Ly (Br) + IV Lo B IVAVI Ly (BR)
VWL, B 1V VI Lo (B2))-
By (5.7) and (2.5), we have
11V, WL, 0,27), L4 Br) = CUIVIL e 0,2), HE B VL, (0,2). H) (B
H19h L 0.2y, w4 (50 1V | Lo 0.2 ) (B)
F AN (0.2m), w22 (50 N0Vl (0.27). Ly (Br)
+ IVl 0.2m), H2(BR)))»
which, combined with (5.8) and (5.1), leads to
IF1 (v, WL, 0.27),L,(Br) = ce?, (5.9
because 1 <2(1 —1/p)and2 —1/g <3 —1/p — 1/q. From (3.12), it follows that
IF2(v, ), DL, (Br)
2
< C/(; VG DNz, Br) o DL (Br)

F+ IV Do)+ 1JoC, Dl Lo Br))) di

2
+/0 IV, DIz, Bry L+ W Ol Lo Br) L+ 10, DllLog(Br)) ANV, DI, (Br)

2w
+ V¥, t)lqu(BR)‘/(; VG OllL, ey (L + TV DI Lo Br)) L+ I1JoCy Dl Lo (Bg)) dyde
X (1 4+ WG D Lo (Br))-

To estimate F» (v, i), we recall

_ 0
Jo(r. 1) = det(3 + R~ 5 Hy(v, o) = 1
J

and that W (y, t) = R! Hp(y,t)y + &(t), where &(¢) is given by

|
E(t)=f — [ (v(y,s)(I + Jo(y,s)) dyds +c,
o IBRr| JBpg

5 (5.10)
b4 13 1
c= —/ / —_— v(y,s)(1 + Jo(y,s))dydsdz.
o Jo |BRl /B
By (5.7) and (2.5) we obtain
1 Hi G Do) = CIAC,Dllyoviags, < Ce
(5.11)

IVHR G DllLooBr) = ClAC, D210 g,y = Ce,
By (5.7), (2.5), (5.8), the fact that2 — 1/g <3 — 1/p — 1/q, and (5.1), we have
10 Ol LooBr) < CIVHR GO g8y (L4 IVHR G, O g8 !
N—1
S C”h('? t)||W(1271/q(SR)(1 + ||h(" t)||W¢1271/q(SR)) (5']2)

< Ce.
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From (5.10) and (5.1), it follows that
@] < ClIVIIL,©.27),L,(Br) = Ce. (5.13)
In particular, by (5.11) and (5.13), we have
WG OllLwBr) = Ce, IV, DLy ) = Ce. (5.14)
Combining (5.1) and (5.14) gives that
IF2(v, W)L, (0.2m).L,Br)) < CENVIIL,(0.2m).L,(Br)) < CE™
which, combined with (5.9), leads to
IFV. W)L, 0.27).L, (Br)) < Ce€™. (5.15)
By (5.4) and (5.14), we have
IGIL,©0.27).L,Br) < CIEIL,©0.27),L,(D))- (5.16)
We next estimate J(V, h). By (3.25) and (5.1),

In; —n] < CIHLC Dl s = Cé,

1—-1
w, 9 (Sp)

[n; —n| W2 (5p) = CUHRC O3By + 1HRC D523y 10 G DN 2, (8g))-

Since we assume that 2/p + N/q < 1, we can choose k > 0 so small that2+ N /q +
k—1/g<3—1/p—1/gand 1+ N/q + « < 2(1 — 1/p), and then by Sobolev’s
inequality and (5.8) we have

sup [[v(, I)“HOIO(BR) =C sup |v(, t)”B,f(,l,_l/P)(BR) < Ce;

1€(0,27) 1€(0,27) 5.17)
sup | Hy(, Dl g2 gy <C sup A, D)l p3-1/p-1/q, | < Ce, '
1€(0,27) (B 1€(0,27) Bq.p (S&)

where we have used (2.5) in the last inequality. Then, in particular, using again (2.5),
we have

”nt - n”qu_]/q(SR) S C”Hh(" t)”H;(BR) S C”h('y t)”W;_]/q(SR)'
Thus, applying (5.12) to the formula in (2.11) and using (5.1) and (5.7) gives that

1IN, (0.2, w2 s = CEUVIL (0,200, 12 B IV 20,20, B2 B
+ 1[04
+ 10:A]

Loo((0,27),W, /4 (Sg))

L,,<<0,2n>,W3’”"<SR>>)
< Ce.
(5.18)
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On the other hand, by (5.11),
17C, Ol Lo sp) < CIHRC, O llLo(Br) < Cé,

and so
‘/ K dw‘ <ce, V hkwda)‘ <Ce fork > 2,
SR Sr

which, combined with (5.18), leads to

Id(v, bl ce2. (5.19)

L,((0,2m), W21 () =
We next consider g(v, k) given in (3.6), where p is replaced by 4. We may write
g(v,h) = Vg(K)(Hp, VHp) @ v.

where k denotes variables corresponding to (Hj, VHy,) and Vg is a C* function
defined on |k| < §. We write

9g(v, h) = Vy(K)d;(Hp, VHy) @ (Hy, VHy) ® V+ Vg(K)3;(Hp, VHp) @ v
+Vg(K)(Hp, VHp) ® 0;v,
and so, by (5.11), (2.5), we have
18:&(v, )12, 0,2m). LgBr)) = CUVIL (0,27, 1) (BR)) T ”h”Loo((o,zn),wj‘”’/(sm))
x (IIhIIHﬁ((O’zﬂ)’qufl/q(SR)) + 110Vl 0,27), L4 (Br))

< Cée2.
(5.20)
We next estimate g(v, 1) and h(v, h) = (W(v, k), hy (v, h)) given in (3.6), (3.31)
and (3.34), where p is replaced by &. We may write

g, h) =V, (K)(Hp,, VHp) @ Vv,

where k are variables corresponding to (Hj,, V Hj,) and Vi (k) is some matrix of C*
functions defined on |k| < 4. To estimate g, we use the following two lemmas.

Lemma 22. Let 1 < p <ocoand N < g < 0o. Let

f € HY per((0.270), Ly (BR)) N Lo per (0, 270), HY(BR)),

00,pe

1/2
8§ € Hp,/per(((), 2m), Lq(BR)) N Lp,per((o, 2m), qu (BRr)).
Then, we have

||fg||H11/2((0’2n)’Lq(BR)) + IS8l 0.2m). 1) (B
1/2 1/2
= CUS Ny 0270, 14BrY + 1 N Lsc(0.2m), 1) (BR)) ||f||Loo((0’2ﬂ),H‘}(BR))
< (gl 120,27y, 1, By T 18112, 0.20). H} (BR))
(5.21)
for some constant C > 0.
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Proof. By (5.7), we have

178, 0.2m). 1 Bry) = 1 | Looi0.2m), 1} BRI L, (02700, 1) (B - (5.22)

To estimate the H'/? norm, we use the complex interpolation relation:

Hp/per (0, 27), Ly (Br)) N L, per«o 27), Hy'*(Bg))

= (Lpper((0,27), Ly(Bg)), H,, per((0 27), Lq(Br)) N Lp per((0, 277), H, (BR)))1/2
(5.23)
where (-, -)1/2 denotes a complex interpolation of order 1/2. By (5.7), we have

£ 8l (0.2m). L4 (Bry = €U fllLoc(0,27),4(BR) + 1 L oo0,2), 1) (BR)Y)

X (||g||Lp((o,2n),H,}(BR)) + 110:8ll2,(0,27), L, (Br)))
178l 0.2m),LBr) = CUF L0270, 11} (Br) I8N L, (027,14 (BR))-

Thus, by (5.23), we have

”fg” ((0 21),Ly(BR)) — C(”f”H] 50 ((0,27), L4 (BR))
1/2 172
1 N oc0.2my. 13 00 N1, (0.2 H) (B))

X (IIgIIHl/z((O 2. LyBr) T8I L 0.2m). 1 (Br))
(5.24)

Lp((O,ZJT),H (B y = C”g”L »((0,277), HI(BR))’ Comblnlng (5 22) and (5 24)
leads to (5.21), which completes the proof of Lemma 22. U

Since || g||

Lemma 23. Let 1 < p,q < oo. Then, there exists a constant C such that for any u
with

u € Hy o (0,27), Ly (Br)) N Ly per (0, 270), H, (BR)),
we have
”u”H;/z((O,Zn),qu(BR)) = Cllull ) 0,270, 4Bry) + 14l 0.2m). H2(BR))  (5:25)

for some constant C > Q.

Proof. As was proved in the proof of Proposition 1 in Shibata [17], there exist two
operators @1 and &, with

@) € C'(R\{0}, L(Ly(Br). Lg(BR)")), @2 € C'(R\{0}, L(H, (Bg). Lq(Br)")
such that for any g € qu(BR), we have

(14204 ve = 0101 +23)!2g + da(h)g,
and

R, (BryLy o™ (Q0:) @10 | & € R\{O}) < rp,
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R L2811y 3o (100 @1G) | 1 € RO} < 1,

for £ = 0, 1 with some constant rp. Thus, by Weis’ operator-valued Fourier multiplier
theorem, Theorem 8, and transference theorem, Theorem 9, we have (5.25), which
completes the proof of Lemma 23. g

By (5.1), (2.5), (5.7) and (5.17), we have

10: Ve () (Hpp, V Hp) I Lo ((0,27), Ly (BR)) = Cllh||H]1)((0’27T)’qufl/q(BR)) < Ce,
Ve () CHp, VH o 0,270, 1) (Bry) = CIHR Lo (0,27, 2 (BR)) = CE-
Thus, by Lemma 22, Lemma 23, and (5.1), we have

”g(V, h)||HI£/2((O,27T),Lq(BR)) + ||g(v1 h)”Lp((O,ZJI),qu (BR))
= CelVllL, 270, H2(Br)) F 190 VIlL,(0,27),14(BR))
< Ce.
Analogously, recalling the definition of h(v, h) = (h'(v, h), hy (v, h)) given in
(3.31) and (3.34), where p is replaced by &, and using Lemma 22, we have
DG W 12 (0,2, Ly Bryy T TRV L 0,200, 1) BR))

=< CE(HVV||H]17/2((0’2n)’Lq(BR)) +IVVIL, 0270, H) (Br)

=2 =2
+ ”V Hh”le/z((O,27'[),Lq(BR)) + ”V Hh”Lp((O,Zn'),qu(BR)))'
Since H,'?((0,27), Ly (Bg)) D H}((0,27), Ly(Bg)), we have

—2 =2
v Hh”H,E/Z((o,zn),Lq(BR)) = ClIIV Hill 5 (0.2m). Ly (BR))
and so using Lemma 23, (2.5), and (5.1), we have

DY I 120 2, 1 By T TRV L (0.27). 1 BR))

= Ce(lVlla)0.2m).L, Bry T IVIlL,(0.27), H2(BR)) 527
+ 10 HrllL,(0,2m), H2(Br)y T IR L, 0.27), 1 (BR)))

< Ce?.

Combining (5.15), (5.19), (5.20), (5.26), and (5.27) gives (5.6). Applying Theorem 6
to equations (5.5) and using (5.6) and (5.16) gives that

”u”Lp((O,Zn),qu(BR)) + 19:ullz,0.27).L, (Br))

+ 19 pl

el 0,20, w24 (5) Lp((0,2m), W2~ (sp)) (5.28)

< MIfllL,(0.2m),L, (D)) + Ma€?
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for some constants Mj and M, independent of ¢ € (0, 1). Finally, we estimate
I 8t,o||Lw((0,2n)’W;_1/q(SR)). From the third equation in equations (5.5), we have
”alp”Wle*I/‘I(SR) S ”MPHW;*I/‘I(SR) + ”Au”W‘II*I/‘I(SR) + ||d(V, h)”qu*l/‘I(SR)'

Therefore, by (5.1), (5.7), (5.8), (5.11), (5.12), and (5.13), we have

||8tp||LQO((0,27T),Wq171/q(SR)) S C(”u”Lp((O,QJT),HqZ(BR)) + ”atu”Lp((O,ZTI),Lq(BR))

+ “'0||Lp((0,2ﬂ),W;7|/q(SR))

2
+ ||8tp||Lp((0,2]‘[),W(1271/q(SR)) + € )a
which, combined with (5.28), leads to
E(u, p) < M{|IfllL,0.2m).L, (D)) + Mje® (5.29)

for some constants M| and M} independent of € € (0, 1). We choose € > 0 so small
that Mye < 1/2 and we assume that M{[[f||L,(0.27).L,(D)) < €/2. Then, we have

E(u, p) <e. (5.30)
Moreover, by (2.5) and (5.8), we have

Sup ”HPHHOIO(BR)) S C”p||Lm((0,2ﬂ),W;7l/q(SR)) E MSE(us p) E M36'

1€(0,27)
Choosing € > 0 smaller if necessary, we may assume that 0 < M3e < §, and so
(u, p) € Z,. If we define a map @ acting on (v, h) € Z, by setting (v, h) = (u, p),
and then ® is a map from Z. into itself. Employing a similar argument as for proving
(5.30), we see that for any (v;, h;) € Z. (i = 1, 2),

E(® vy, 1) — @ (v2, h2)) < Mae E((v1, h1) — (v2, h2)).

Choosing € > 0 smaller if necessary, we may assume that M4e < 1/2,and so ® is a
contraction map on Z.. The Banach fixed-point theorem yields the unique existence of
a fixed point (v, p) € Z, of the map &, thatis (v, p) = D (v, p), which is the required
solution of equations (2.16). This completes the proof of Theorem 4.
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