
Available online at www.sciencedirect.com
ScienceDirect

Journal of Differential Equations 325 (2022) 150–205
www.elsevier.com/locate/jde

The Lp-Lq decay estimate for the multidimensional 

compressible flow with free surface in the exterior 

domain

Yoshihiro Shibata a,b, Xin Zhang c,∗

a Department of Mathematics, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
b Department of Mechanical Engineering and Materials Science, University of Pittsburgh, USA

c School of Mathematical Sciences, Tongji University, No. 1239, Siping Road, Shanghai (200092), China

Received 3 July 2021; revised 30 January 2022; accepted 7 April 2022

Abstract

The aim of this paper is to develop the general Lp theory for the barotropic compressible Navier-Stokes 
equations with the free boundary condition in the exterior domain in RN (N ≥ 3). By the spectral analysis, 
we obtain the classical Lp-Lq decay estimate for the linearized model problem (with variable coefficients) 
in view of the partial Lagrangian transformation.
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1. Introduction

1.1. Model

The motion of viscous gases in some moving exterior domain �t ⊂ RN (N ≥ 3) is described 
by the following barotropic compressible Navier-Stokes equations with the free boundary condi-
tion:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + div
(
(ρe + ρ)v) = 0 in

⋃
0<t<T

�t × {t},

(ρe + ρ)(∂tv + v · ∇v)− Div
(
S(v)− P(ρe + ρ)I) = 0 in

⋃
0<t<T

�t × {t},
(
S(v)− P(ρe + ρ)I)n�t = −P(ρe)n�t , V�t = v · n�t on

⋃
0<t<T

�t × {t}.

(1.1)

Given the reference mass density ρe > 0 and the initial condition

(ρ,v,�t )|t=0 = (ρ0,v0,�), (1.2)
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we need to determine the unknown mass density ρ + ρe, velocity field v = (v1, . . . , vN)�, and 
the moving exterior domain �t . In (1.1), the Cauchy stress tensor

S(v)= μD(v)+ (ν −μ)div vI for constants μ,ν > 0,

and the doubled deformation tensor D(v) = ∇v + (∇v)�. Here, the (i, j)th entry of the matrix 
∇v is ∂ivj , I is the N × N identity matrix, and M� is the transposed matrix of M = [Mij ]. 
In addition, Div M denotes an N -vector of functions whose i-th component is 

∑N
j=1 ∂jMij , 

div v = ∑N
j=1 ∂j vj , and v · ∇ = ∑N

j=1 vj ∂j with ∂j = ∂/∂xj .
For the last equation in (1.1), n�t is the outer unit normal vector to the boundary �t of �t , and 

V�t stands for the normal velocity of the moving surface �t . Moreover, the pressure law P(·) is 
a smooth function defined on R+. In fact, P(ρe) coincides with the pressure of the atmosphere.

The long time issue for the compressible Navier-Stokes equations in R3 is first studied by 
Matsumura and Nishida in [23] provided the initial data with the H 3(R3) regularity. Moreover, 
the authors in [22] obtained the decay properties of the solutions. For instance, they proved the 
following L2-L1 type estimates for the perturbation (ρ, v) near the equilibrium (ρe, 0),

‖(ρ,v)‖L2(R3) ≤ C0(1 + t)−3/4, (1.3)

for some constant C0 depending on the small quantity ‖(ρ0, u0)‖L1(R3)∩H 3(R3). The decay rate 
in (1.3) was recently improved in [19] by assuming negative Besov regularity for the initial data. 
Beyond the classical works [22,23], Danchin [4] constructed the global solution with the hybrid
Besov regularity in the L2 framework. Furthermore, the extension to the general Lp framework 
was done in the works [1,2,10]. Very recently, the decay property of the solution of the com-
pressible Navier-Stokes equations in the Besov norms was investigated by [5,24].

A natural question to (1.3) is whether the general Lp-Lq type estimates hold, especially for 
the boundary value problem in the exterior domain. Namely, the Lp norm of the solution decays 
provided the initial states in some Lq space. For example, recalling the Cauchy problem of the 
heat flow in RN (N ≥ 2), we have

‖∂αx et	u0‖Lp(RN) ≤ Ct−N(1/q−1/p)/2−|α|/2‖u0‖Lq(RN) (1.4)

for any 1 ≤ q ≤ p ≤ ∞, α ∈ NN
0 and t > 0. Here N0 denotes the set of all nonnegative integers. 

The extension of (1.4) for the incompressible flow in the exterior domain was first done by 
Iwashita [14]. In [14], as well as the later contribution [21] by Maremonti and Solonnikov within 
the framework of the potential theory, the Lp-Lq decay property of the Stokes operator A

S

associated to the Dirichlet boundary condition in the smooth exterior domain � ⊂RN (N ≥ 3) 
is established:

‖etAS u0‖Lp(�) ≤ Ct−N(1/q−1/p)/2‖u0‖Lq(�),
‖∇etAS u0‖Lp(�) ≤ Ct−σ1(p,q,N)‖u0‖Lq(�),

(1.5)

for t > 1, 1 < q ≤ p <∞ and

σ1(p, q,N)=
{
(N/q −N/p)/2 + 1/2 for 1<p ≤N,
N/(2q) for N < p <∞.
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Moreover, [21] proves that the gradient estimate of etAS in (1.5) is also sharp for p > N . If one 
considers the Stokes operator A

S
in the 2-D exterior domain, the theory in [3,21] implies that 

the Lp-Lq decay rate becomes worse in the plane than the higher dimensional case. For other 
discussion on the decay property of the semigroup generated by the Stokes operator, we refer to 
[11,18,26,30] and the references therein.

However, concerning the compressible system, one can not expect such Lp-Lq estimates 
for all indices (p, q) as in (1.4) or (1.5) even for the Cauchy problem in view of the results 
[12,13,25,17]. Roughly speaking, the linearized equations of (1.1) are no longer purely parabolic 
(see (1.12)1 for instance). For the compressible system with the Dirichlet boundary condition, 
the Lp-Lq type estimate was studied in [7,16] in the exterior domain, and the optimal decay 
rate like (1.3) in the half space R3+ was verified in [15]. More recently, the global wellposedness 
issue of the compressible Navier-Stokes equations in the exterior domain with non-slip boundary 
condition has been revisited in [8,28] in view of the Lp-Lq type estimate. The aim of this paper 
is to prove the Lp-Lq type estimate for the linearized model of (1.1) with the free boundary 
condition whenever � is a smooth exterior domain in RN (N ≥ 3).

1.2. Main result

To analysis (1.1), it is necessary to transfer (1.1) to the model in some fixed reference domain. 
For the local well-posedness issue of (1.1), it is sufficient to use the (full) Lagrangian trans-
formation by choosing the initial domain � as the reference domain (see [6] for more details). 
However, to construct the long time solution of (1.1) via the technique from [23], the so-called 
partial Lagrangian coordinates are more helpful due to the hyperbolicity of the mass equation 
and the free boundary condition (1.1)3. For the seek of the generality of our mathematical theory, 
we will treat some system (i.e. (1.8) below) with the slightly variable coefficients, while our main 
result also applies for the system with constant coefficients (see the comment after Theorem 1.1).

To define the partial Lagrangian coordinates, we assume that � ⊂RN with the boundary � is 
an exterior domain such that O = RN \� is a subset of the ball BR , centred at origin with radius 
R > 1. Let κ be a C∞ function which equals to one for x ∈ BR and vanishes outside of B2R . For 
such κ and some fixed T > 0, we define the partial Lagrangian mapping

x =Xw(y, T )= y +
T∫

0

κ(y)w(y, s) ds (∀y ∈�), (1.6)

with w = w(·, s) defined in �. Moreover, we may take w in some maximal regularity class

w ∈H 1
p̄

(
0, T ;Lq̄(�)N

) ∩Lp̄
(
0, T ;H 2

q̄ (�)
N

)
for 1 < p̄ <∞ and N < q̄ <∞. To guarantee the invertibility of Xw, we assume that

T∫
‖κ(·)w(·, s)‖H 1∞(�) ds ≤ δ < 1 (1.7)
0
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for some small constant δ. By (1.6), (1.1) can be reduced to the following linearized model 
problem with ignoring all nonlinear terms,1⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tρ + γ1 div v = 0 in �×R+,

γ1∂tv − Div
(
S(v)− γ2ρI

) = 0 in �×R+,(
S(v)− γ2ρI

)
n� = 0 on �×R+,

(ρ,v)|t=0 = (ρ0,v0) in �,

(1.8)

where we have set that

γ1 = ρe, γ2 = P ′(ρe), I + V = (∇yXw
)−1
(·, T ), J = (

det(I + V)
)−1
,

div v = (I + V) : ∇yv = J−1div y
(
J (I + V)�v

)
,

Div M = J−1Div y
(
JM(I + V)

) = Div yM + (V∇y |M), (1.9)

D(v)= (I + V)∇yv + (∇yv)�
(
I + V

)�
,

S(v)= μD(v)+ (ν −μ)(div v)I, n� = (I + V)n�.

Above, for any matrices A = [Ajk] and B = [Bjk], A : B denotes the trace of the product AB, 
that is,

A : B =
N∑

j,k=1

AjkBkj ,

and (B∇y |A) stands for an N -vector with the ith component 
∑
j,k Bjk∂kAij . In particular, it is 

easy to see that

Div (f I)= ∇yf + (V∇y | f I)= (I + V)∇yf,

for any smooth function f . For simplicity, we denote ∇ = (I + V)∇y in what follows. Hereafter, 
we assume that

‖(J±1 − 1,V)‖L∞(�) + ‖∇y(J±1,V)‖Lr(�) ≤ σ(<< 1) (1.10)

with some small constant σ = σ(δ) and N < r <∞. By the assumption (1.10), (1.8) can be 
regarded as the perturbation of the standard Lamé operator, which is the motivation of our main 
result.

Following [6], it is not hard to see that there exists a C0-semigroup {T (t)}t≥0 generated by 
the operator

1 The details of the linearization of (1.1) will be present in Appendix A. Although the convection term v · ∇ρ in the 
mass conservation law can not be simply regarded as a perturbation term for the global well-posedness issue of (1.1), it 
is fundamental to derive the decay properties of (1.8).
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A�(ρ,v)=
(
γ1div v,−γ−1

1 Div
(
S(v)− γ2ρI

))
in the space H 1,0

p (�) =H 1
p(�) ×Lp(�)N for 1 < p <∞ (see Theorem 5.3 in section 5). Some-

times, we also denote the solution of (1.8) by (ρ, v) = T (t)(ρ0, v0) and v =PvT (t)(ρ0, v0). Now 
our main result for the Lp-Lq decay estimate of {T (t)}t≥0 reads as follows.

Theorem 1.1. (Lp-Lq decay estimate) Let � be a C3 exterior domain in RN with N ≥ 3, and 
let (1.10) be satisfied for some N < r <∞. Assume that (ρ0, v0) ∈ Lq(�)1+N ∩H 1,0

p (�) with 
H

1,0
p (�) = H 1

p(�) × Lp(�)
N for 1 ≤ q ≤ 2 ≤ p ≤ r < ∞, and {T (t)}t≥0 is the semigroup 

associated to (1.8) in H 1,0
p (�). For convenience, we set

‖|(ρ0,v0)‖|p,q = ‖(ρ0,v0)‖Lq(�) + ‖(ρ0,v0)‖H 1,0
p (�)

.

Then for t ≥ 1, there exists a positive constant C such that

‖T (t)(ρ0,v0)‖Lp(�) ≤ Ct−(N/q−N/p)/2‖|(ρ0,v0)‖|p,q,
‖∇T (t)(ρ0,v0)‖Lp(�) ≤ Ct−σ1(p,q,N)‖|(ρ0,v0)‖|p,q,

‖∇2PvT (t)(ρ0,v0)‖Lp(�) ≤ Ct−σ2(p,q,N)‖|(ρ0,v0)‖|p,q,
where the indices σ1(p, q, N) and σ2(p, q, N) are given by

σ1(p, q,N)=
{
(N/q −N/p)/2 + 1/2 for 2 ≤ p ≤N,
N/(2q) for N < p <∞,

σ2(p, q,N)=

⎧⎪⎨⎪⎩
3/(2q) for N = 3,

(N/q −N/p)/2 + 1 for N ≥ 4 and 2 ≤ p ≤N/2,
N/(2q) for N ≥ 4 and N/2<p <∞.

Remark. Let us give some comments on Theorem 1.1 above.

(1) (1.8) is a system with variable coefficients only near the boundary �. Notice that

V = 0, J = 1, div v = div v, D(v)= D(v), S(v)= S(v) (1.11)

outside of the ball B2R by the choice of κ in (1.6).
(2) Taking V = 0 and J = 1 in Theorem 1.1, we have in particular the same decay properties for 

the system with constant coefficients,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tρ + γ1 div v = 0 in �×R+,

γ1∂tv − Div
(
S(v)− γ2ρI

) = 0 in �×R+,(
S(v)− γ2ρI

)
n� = 0 on �×R+,

(ρ,v)|t=0 = (ρ0,v0) in �.

(1.12)

Of course, the assumption (1.10) is not necessary for (1.12) any longer.
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(3) For simplicity, we will not seek for the optimal assumption on the regularity of �. The 
assumption of � in C3 class is for the technical reason, as the property of the Bogovskii 
operator will be used in the later proof.

To establish the Lp-Lq estimates in Theorem 1.1, we use the so-called local energy approach. 
More precisely, we shall establish the following theorem.

Theorem 1.2. (local energy estimate) Let � be a C3 exterior domain in RN for N ≥ 3, N < r <
∞, 1 <p ≤ r , and L > 2R. Denote that2

�L =�∩BL, H 1,2
p (�L)=H 1

p(�L)×H 2
p(�L)

N ,

Xp,L(�)= {(d, f) ∈H 1,0
p (�) : suppd, supp f ⊂�L }.

Then for any (ρ0, v0) ∈Xp,L(�) and k ∈ N0 = N ∪ {0}, there exists a positive constant Cp,k,L
such that

‖∂kt T (t)(ρ0,v0)‖H 1,2
p (�L)

≤ Cp,k,L t−N/2−k‖(ρ0,v0)‖H 1,0
p (�)

, ∀ t ≥ 1.

To prove Theorem 1.2, we consider the resolvent problem of (1.8):⎧⎪⎪⎨⎪⎪⎩
λη+ γ1div u = d in �,

γ1λu − Div
(
S(u)− γ2ηI

) = f in �,(
S(u)− γ2ηI

)
n� = 0 on �.

(1.13)

In fact, it is easy to study (1.13) whenever λ is sufficient large (see Theorem 5.1). The case λ
is uniformly bounded from above is more involved, which is the core concern of this paper. Es-
pecially, one difficulty appears when we handle (1.13) for λ = 0. Namely, there always exists 
non-trivial stationary solution for the stationary Lamé system (see [20, chapter 6] for more de-
tails). Here, one can first consider the following simplified model problem in the whole space 
R3:

−	u − ∇div u + ∇η= f. (1.14)

Obviously, (u, η) = (0, F) always solves (1.14) as long as f = ∇F for some F ∈ C∞
0 (R

3), which 
is quite annoying for our study of (1.13) with λ = 0. To handle such trouble, we introduce some 
weighted inner product structure for the rigid motion space (see subsection 3.2) to eliminate the 
homogeneity effect from the stationary Lamé system.

This paper is folded as follows. In sections 2 and 3, we will discuss the case where λ in (1.13)
is closed to zero. Afterwards, via the sections 4 and 5, we study (1.13) when λ is uniformly 
bounded from below and also from above. Finally, we combine the previous results and prove 
Theorems 1.2 and 1.1 in the last section. In Appendix A, we give the derivation of (1.8) from 
(1.1).

2 E stands for the closesure of E for any subset E ⊂RN .
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Notation. For convenience, we introduce some useful notation. For any domain G in RN , 
1 ≤ p ≤ ∞ and k ∈ N , Lp(G) (Lp,loc (G)) stands for the (local) Lebesgue space, and Hkp(G)
(Hkp,loc (G)) for the (local) Sobolev space. Moreover, we write

Hk,�p (G)=Hkp(G)×H�p(G)N, H
k,�
p,loc (G)=Hkp,loc (G)×H�p,loc (G)

N .

In addition, the Besov space Bsq,p(G) for k − 1 < s ≤ k and 1 <p, q <∞ is defined by the real 
interpolation functor

Bsq,p(G)=
(
Lq(G),H

k
q (G)

)
s/k,p

.

Sometimes, we write Ws
q(G) = Bsq,q(G) for simplicity.

For any Banach spaces X, Y , the total of bounded linear transformations from X to Y is 
denoted by L(X; Y). We also write L(X) for short if X = Y . In addition, Hol (�; X) denotes the 
set of X-valued analytic mappings defined on the domain � ⊂C.

To study the resolvent problem (1.13), we introduce that

�ε = {λ ∈C\{0} : | argλ| ≤ π − ε}, �ε,b = {λ ∈�ε : |λ| ≥ b},
K =

{
λ ∈ C : (�λ+ γ1γ2

μ+ ν
)2 + �λ2 >

( γ1γ2

μ+ ν
)2

}
, (1.15)

Vε,b =�ε,b ∩K, U̇b = {λ ∈C\(−∞,0] : |λ|< b}

for any 0 < ε < π/2 and b > 0.

2. Important propositions for local energy decay

In this section, we will consider several model problems in the bounded domain �5R =� ∩
B5R , which play a vital role in the construction of the solution of (1.13) in the next section.

2.1. The divergence equation with variable coefficients

First, we consider the modified divergence operator in (1.9), that is,

div u = div u +
N∑

j,k=1

Vjk
∂uj

∂yk
= f in �5R =�∩B5R, (2.1)

with V = [Vjk] satisfying (1.10) for some 0 < σ < 1 and N < r <∞.

Proposition 2.1. Let 1 < p ≤ r . Then, there exist positive constants σ0 = σ0(p, r) and M =
M(p, R) such that the equation (2.1) admits a solution u ∈H 2

p(�5R)
N possessing the estimate:

‖u‖H 2
p(�5R)

≤M‖f ‖H 1
p(�5R)

for any 0 < σ ≤ σ0.
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Hereafter, the following estimate in any uniform C1 domain G will be constantly used,

‖gh‖Lp(G) ≤ C‖g‖Lr(G)‖h‖H 1
p(G)

(2.2)

for any r >N and 1 <p ≤ r. In fact, when p= r >N , we have

‖gh‖Lp(G) ≤ C‖g‖Lp(G)‖h‖L∞(G) ≤ C‖g‖Lr(G)‖h‖H 1
p(G)

.

For 1 <p < r, the Hölder’s inequality for 1/r + 1/s = 1/p and the Sobolev embedding theorem 
yield that

‖gh‖Lp(G) ≤ C‖g‖Lr(G)‖h‖Ls(G) ≤ C‖g‖Lr(G)‖h‖H 1
p(G)

.

Proof. To construct the solution u of (2.1), we solve the following equation with Dirichlet 
boundary condition

	θ +
N∑

j,k=1

Vjk
∂2θ

∂yj ∂yk
= f in �5R, θ |∂�5R = 0, (2.3)

where ∂�5R = � ∪ S5R denotes the boundary of �5R . As V satisfies (1.10), the left-hand side 
of (2.3) can be regarded as the perturbation of the Laplace operator. Thus we use the standard 
Banach fixed point argument to find θ .

Given ω ∈H 3
p(�5R) with ω|∂�5R = 0, we consider the following equation

	θ = f −
N∑

j,k=1

Vjk
∂2ω

∂yj ∂yk
in �5R, θ |∂�5R = 0. (2.4)

Then it is not hard to see from (2.2) that

∥∥∥Vjk ∂2ω

∂yj ∂yk

∥∥∥
H 1
p(�5R)

≤ C(‖V‖L∞(�5R) + ‖∇V‖Lr(�5R)

)‖ω‖H 3
p(�5R)

,

with the constant C depending solely on p, r and �5R .
Next, in view of (1.10), there exists a solution θ ∈H 3

p(�5R) of (2.4) fulfilling

‖θ‖H 3
p(�5R)

≤ M

2

(‖f ‖H 1
p(�5R)

+Cσ‖ω‖H 3
p(�5R)

)
, (2.5)

where M is a positive constant depending on �5R and p. Thus, if ω satisfies the estimate

‖ω‖H 3
p(�5R)

≤M‖f ‖H 1
p(�5R)

,

then (2.5) yields that

‖θ‖H 3(� ) ≤ (M/2)‖f ‖H 1(� ) + (CσM2/2)‖f ‖H 1(� ).
p 5R p 5R p 5R
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Choosing σ0 > 0 small enough such that CMσ0 ≤ 1, we have

‖θ‖H 3
p(�5R)

≤M‖f ‖H 1
p(�5R)

.

For simplicity, we write the solution mapping of (2.4) by θ = �(ω) for ω ∈ H 3
p(�5R) with 

ω|∂�5R = 0.
To verify the contraction property of �, we take θi = �(ωi) ∈ H 3

p(�5R) for i = 1, 2. Then 
the difference θ1 − θ2 satisfies the following Poisson’s equation

	(θ1 − θ2)= −
N∑

j,k=1

Vjk
∂2(ω1 −ω2)

∂yj ∂yk
in �5R, (θ1 − θ2)|∂�5R = 0.

Thus, by (2.5) we have

‖θ1 − θ2‖H 3
p(�5R)

≤ (M/2)Cσ‖ω1 −ω2‖H 3
p(�5R)

≤ (1/2)‖ω1 −ω2‖H 3
p(�5R)

,

for CMσ0 ≤ 1. Therefore, the Banach’s fixed point theorem implies that there exists a unique 
solution θ ∈H 3

p(�5R) of (2.3) with ‖θ‖H 3
p(�5R)

≤M‖f ‖H 1
p(�)

.
At last, setting u = ∇θ , we have the desired result. This completes the proof of Proposi-

tion 2.1. �
2.2. Modified Stokes and reduced Stokes operators

Recall the notion in (1.9) and the assumption (1.10), we first consider the resolvent problem 
of the modified Stokes equations as follows⎧⎪⎪⎨⎪⎪⎩

γ1λv − Div
(
μD(v)− γ2ωI

) = f in �5R,

div v = 0 in �5R,(
μD(v)− γ2ωI

)
n
∂�5R

= 0 on ∂�5R,

(2.6)

where n
∂�5R

= (I + V)n
∂�5R

and n
∂�5R

denotes the unit outward normal vector to ∂�5R = � ∪
S5R .

2.2.1. Analysis of (2.6) for λ �= 0
We will establish the following theorem by assuming λ �= 0 in (2.6).

Theorem 2.2. Assume that � is a C2 exterior domain. Let 1 <p ≤ r , 0 < ε < π/2, and λ0 > 0. 
Then, there exists a σ1 depending on μ, ε, λ0, p, r and �5R such that if 0 < σ ≤ σ1, then for 
any λ ∈ �ε,λ0 , f ∈ Lp(�5R)

N , problem (2.6) admits a unique solution (v, ω) ∈ H 2
p(�5R)

N ×
H 1
p(�5R) possessing the estimate:

|λ|‖v‖Lp(�5R) + |λ|1/2‖v‖H 1
p(�5R)

+ ‖v‖H 2
p(�5R)

+ ‖ω‖H 1
p(�5R)

≤ C‖f‖Lp(�5R),

with some constant C depending on μ, ε, λ0, p, r and �5R .
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The proof of Theorem 2.2 is similar to Proposition 2.1. By the notion in (1.9), (2.6) is rewritten 
as ⎧⎪⎪⎨⎪⎪⎩

γ1λv − Div
(
μD(v)− γ2ωI

) = f + F(u,ω) in �5R,

div v = g(v)= div g(v) in �5R,(
μD(v)− γ2ωI

)
n
∂�5R

= H(v,ω) on ∂�5R,

(2.7)

with

F(v,ω)= Div
(
μV∇v +μ(V∇v)�

) + (
V∇ | μD(v)− γ2ωI

)
,

g(v)= −V : ∇yu, g(v)= −V�v − (J − 1)(I + V)�v,

H(v,ω)= −μ(
V∇v + (V∇v)�

)
n
∂�5R

− (
μD(v)− γ2ωI

)
Vn

∂�5R
.

Thanks to (1.10), (2.6) can be regarded as the perturbation of the following linear equations:⎧⎪⎪⎨⎪⎪⎩
γ1λv − Div

(
μD(v)− γ2ωI

) = f in �5R,

div v = g = div g in �5R,

(μD(v)− γ2ωI)n
∂�5R

= h on ∂�5R.

(2.8)

For (2.8), we know the following theorem from [27, Sec. 4].

Theorem 2.3. Assume that � is a C2 exterior domain. Let 1 <p <∞, 0 < ε < π/2, and λ0 > 0. 
Then, for any λ ∈ �ε,λ0 , f ∈ Lp(�5R)

N , g ∈ H 1
p(�5R), g ∈ Lp(�5R)

N and h ∈ H 1
p(�5R)

N , 
problem (2.8) admits a unique solution (v, ω) ∈H 2

p(�5R)
N ×H 1

p(�5R) possessing the estimate:

|λ|‖v‖Lp(�5R) + |λ|1/2(‖v‖H 1
p(�5R)

+ ‖ω‖Lp(�5R)

) + ‖v‖H 2
p(�5R)

+ ‖ω‖H 1
p(�5R)

≤ C(‖f‖Lp(�5R) + |λ|1/2‖(g,h)‖Lp(�5R) + ‖(g,h)‖H 1
p(�5R)

+ |λ|‖g‖Lp(�5R))

with some constant C depending on μ, ε, λ0, p and �5R .

Now, let us give the proof of Theorem 2.2 by the standard Banach fixed point theorem and 
Theorem 2.3.

Proof of Theorem 2.2. Given (u, θ) ∈H 2
p(�5R)

N ×H 1
p(�5R), we consider

⎧⎪⎪⎨⎪⎪⎩
γ1λv − Div

(
μD(v)− γ2ωI

) = f + F(u, θ) in �5R,

div v = g(u)= div g(u) in �5R,(
μD(v)− γ2ωI

)
n
∂�5R

= H(u, θ) on ∂�5R.

(2.9)

By (1.10) and (2.2), it is not hard to find that
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‖F(u, θ)‖Lp(�5R) ≤ Cσ
(‖u‖H 2

p(�5R)
+ ‖θ‖H 1

p(�5R)

)
,

‖g(u)‖Hkp(�5R)
≤ Cσ‖u‖

Hk+1
p (�5R)

, ∀ k = 0,1,

‖g(u)‖Lp(�5R) ≤ Cσ‖u‖Lp(�5R),

‖H(u, θ)‖Hkp(�5R)
≤ Cσ (‖u‖

Hk+1
p (�5R)

+ ‖θ‖Hkp(�5R)

)
, ∀ k = 0,1,

(2.10)

for some constant C > 0. For simplicity, we set

Nλ(u, θ;�5R)= |λ|‖u‖Lp(�5R)+|λ|1/2(‖u‖H 1
p(�5R)

+‖ω‖Lp(�5R)

)+‖u‖H 2
p(�5R)

+‖θ‖H 1
p(�5R)

.

Then, for any fixed λ ∈�ε,λ0 , we obtain from (2.10) that

‖F(u, θ)‖Lp(�5R) + |λ|1/2∥∥(
g(u),H(u, θ)

)∥∥
Lp(�5R)

+ ∥∥(
g(u),H(u, θ)

)∥∥
H 1
p(�5R)

+ |λ|‖g(u)‖Lp(�5R)) ≤ CσNλ(w, θ;�5R). (2.11)

Thus, by Theorem 2.3 and (2.11), there exists a solution (v, ω) of (2.9) in H 2
p(�5R)

N ×H 1
p(�5R)

satisfying

Nλ(v,ω;�5R)≤ (M/2)
(‖f‖Lp(�5R) +CσNλ(u, θ;�5R)

)
. (2.12)

Thus, if Nλ(u, θ; �5R) ≤M‖f‖Lp(�5R), then choosing σ > 0 so small that CσM ≤ 1 in (2.12)
we have

Nλ(v,ω;�5R)≤M‖f‖Lp(�5R). (2.13)

Next, for (ui , θi) ∈H 2
p(�5R)

N ×H 1
p(�5R) (i = 1, 2), let (vi , ωi) be the solution of (2.9) with 

respect to (ui , θi). Noting that the functionals F, g, g and H are linear, we have⎧⎪⎪⎨⎪⎪⎩
γ1λ(v1 − v2)− Div

(
μD(v1 − v2)− γ2(ω1 −ω2)I

) = F(u1 − u2, θ1 − θ2) in �5R,

div (v1 − v2)= g(u1 − u2)= div g(u1 − u2) in �5R,(
μD(v1 − v2)− γ2(ω1 −ω2)I

)
n
∂�5R

= H(u1 − u2, θ1 − θ2) on ∂�5R.

Applying Theorem 2.3 and using (2.10) yield that

Nλ(v1 − v2,ω1 −ω2;�5R)≤ C(M/2)σNλ(u1 − u2, θ1 − θ2;�5R). (2.14)

Since the quantity Nλ(v, ω; �5R) gives an equivalent norm of H 2
p(�5R)

N ×H 1
p(�5R) for λ �= 0, 

the solution mapping of (2.9): (u, θ) → (v, η) is contraction by choosing CMσ ≤ 1. Thus, there 
exists a unique (v, ω) ∈H 2

p(�5R)
N ×H 1

p(�5R) satisfying equations (2.6). Moreover, by (2.12), 
this (v, ω) satisfies (2.13). This completes the proof of Theorem 2.2. �

In fact, the proof of Theorem 2.2 also implies the following result.
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Corollary 2.4. Let h ∈W 1−1/p
p (∂�5R). Under the assumptions in Theorem 2.2, the system⎧⎪⎪⎨⎪⎪⎩

γ1λv − Div
(
μD(v)− γ2ωI

) = f in �5R,

div v = 0 in �5R,(
μD(v)− γ2ωI

)
n
∂�5R

= h on ∂�5R,

admits a unique solution (v, ω) ∈H 2
p(�5R)

N ×H 1
p(�5R) possessing the estimate:

|λ|‖v‖Lp(�5R) + |λ|1/2‖v‖H 1
p(�5R)

+ ‖v‖H 2
p(�5R)

+ ‖ω‖H 1
p(�5R)

≤ C(‖f‖Lp(�5R) + ‖h‖
W

1−1/p
p (∂�5R)

)
,

with some constant C depending on μ, ε, λ0, p and �5R .

2.2.2. Reduced Stokes problem from (2.6)
To solve (2.6) with λ = 0, we introduce some reduced Stokes problem associated to (2.6). 

First, we review the reduced problem for the standard Stokes system. By the transformation 
(1.6), we set that

�R,T = {x =Xw(y, T ) | y ∈�5R}, �R,T = {x =Xw(y, T ) | y ∈ ∂�5R},
u(x)= v

(
X−1

w (x, T )
)
, ζ(x)= ω(

X−1
w (x, T )

)
, f̃(x)= f

(
X−1

w (x, T )
)
.

Write ̃n for the unit outward normal to �R,T . Then (2.6) turns to the resolvent problem of the 
standard Stokes operator in �R,T ,⎧⎪⎪⎨⎪⎪⎩

γ1λu − Div x
(
μD(u)− γ2ζ I

) = f̃ in �R,T ,

div xu = 0 in �R,T ,(
μD(u)− γ2ζ I

)̃
n = 0 on �R,T .

(2.15)

For (2.15), we introduce the weak Dirichlet problem:

(∇xũ,∇xϕ)�R,T = (̃f,∇xϕ)�R,T for any ϕ ∈ Ĥ 1
p′,0(�R,T ), (2.16)

where ̃f ∈ Lp(�R,T )N , 1 <p, p′ = p/(p− 1) <∞, and

Ĥ 1
p,0(�R,T )= {ψ ∈ Lp,loc(�R,T ) : ∇ψ ∈ Lp(�R,T )N , ψ |�R,T = 0}.

Note that in view of Poincaré’s inequality,

Ĥ 1
p,0(�R,T )=H 1

p,0(�R,T )= {ψ ∈H 1
p(�R,T ) :ψ |�R,T = 0}.

Given u ∈H 2
p(�R,T )

N , let K(u) ∈H 1
p(�R,T ) +Ĥ 1

p,0(�R,T ) be a unique solution of the weak 
Dirichlet problem
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(∇xK(u),∇xϕ)
�R,T

=
(

Div x
(
μD(u)

) − ∇xdiv xu,∇xϕ
)
�R,T

for any ϕ ∈ Ĥ 1
p′,0(�R,T )

(2.17)
subject to

K(u)=<μD(u)̃n, ñ>−div xu on �R,T . (2.18)

And then, the reduced Stokes equations corresponding to equations (2.15) is the following:{
γ1λu − Div x

(
μD(u)−K(u)I) = f̃ in �R,T ,(

μD(u)−K(u)I)̃n = 0 on �R,T .
(2.19)

For more discussion on (2.19), we refer to the lecture note [27].
It is not hard to see that the weak Dirichlet problem (2.16) is transformed to the following 

variational equation:

(∇u,J∇ϕ)�5R = (f, J∇ϕ)�5R for any ϕ ∈ Ĥ 1
p′,0(�5R), (2.20)

with ∇ = (I + V)∇y , J = (
det(I + V)

)−1, and

Ĥ 1
p,0(�5R)= {ψ ∈ Lp,loc(�5R) : ∇ψ ∈ Lp(�5R)

N , ψ |∂�5R = 0}.

(2.20) can be solved uniquely for any f ∈ Lp(�5R)
N (1 < p ≤ r <∞). In fact, employing the 

standard Banach fixed point theorem as in the proof of Theorem 2.2 and the unique solvability 
of the weak Dirichlet problem in �5R , we can show the unique existence of the solution to equa-
tions (2.20). Thus, for any u ∈H 2

p(�5R)
N , let K̄(u) be a unique solution of the weak Dirichlet 

problem:

(∇ K̄(u), J ∇ϕ)
�5R

=
(

Div
(
μD(u)

) − ∇ div u, J∇ϕ
)
�5R

for any ϕ ∈ Ĥ 1
p′,0(�5R), (2.21)

subject to

K̄(u)= d−1 <μD(u)n
∂�5R

,n
∂�5R

>−div u on ∂�5R, (2.22)

where we have set d = |n
∂�5R

|2 = |(I + V)n
∂�5R

|2. By (1.6), the reduced Stokes equations (2.19)
are transformed to the following equations:

{
γ1λv − Div

(
μD(v)− K̄(v)I) = f in �5R,(

μD(v)− K̄(v)I)n
∂�5R

= 0 on ∂�5R.
(2.23)

Let J̄p(�5R) be a modified solenoidal space defined by

J̄p(�5R)= {g ∈ Lp(�5R)
N | (g, J∇ϕ)� = 0 for any ϕ ∈ Ĥ 1′ (�5R)}. (2.24)
5R p ,0
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Assume that (v, ω) ∈ H 2
p(�5R)

N × H 1
p(�5R) is a solution of equations (2.6) for some f ∈

J̄p(�5R) by Theorem 2.2. Then v also satisfies (2.23). In fact, it suffices to verify K̄(v) = γ2ω. 
For any ϕ ∈ Ĥ 1

p′,0(�5R), by (2.6) and the solenoidality of f, we have

0 = (f, J∇ϕ)�5R =γ1λ(v, J ∇ϕ)�5R −
(

Div
(
μD(v)

) − ∇ div v, J ∇ϕ)�5R

− (∇ div v, J ∇ϕ)�5R + (∇(γ2ω),J ∇ϕ)
�5R

=γ1λ(v, J ∇ϕ)�5R +
(
∇(
γ2ω− K̄(v)), J ∇ϕ

)
�5R
.

By integration by parts, ϕ|∂�5R = 0 and div v = 0, we obtain that

(v, J ∇ϕ)�5R = −
(

div
(
(I + V)�v

)
, ϕ

)
�5R

= (Jdiv v, ϕ)�5R = 0. (2.25)

Then we have (
∇(
γ2ω− K̄(v)), J ∇ϕ

)
�5R

= 0 for any ϕ ∈ Ĥ 1
p′,0(�5R).

From the boundary condition in (2.6), it follows that

γ2ω= d−1 <D(v)n
∂�5R

,n
∂�5R

>−div v = K̄(v) on ∂�5R,

where we have used div v = 0. Thus, the uniqueness of the weak Dirichlet problem yields that 
γ2ω = K̄(v), which shows that v ∈ H 2

p(�5R)
N solves equations (2.23). Moreover, thanks to 

(2.25), div v = 0 yields that v ∈ J̄p(�5R).
From these observations and Theorem 2.2, we have the following theorem.

Theorem 2.5. Let 1 < p ≤ r , 0 < ε < π/2, and λ0 > 0. Then, there exists a σ1 depending on μ, 
ε, λ0, p, r and �5R such that if 0 < σ ≤ σ1, then for any λ ∈�ε,λ0 , f ∈ J̄p(�5R), problem (2.23)
admits a unique solution v ∈H 2

p(�5R)
N ∩ J̄p(�5R) possessing the estimate:

|λ|‖v‖Lp(�5R) + |λ|1/2‖v‖H 1
p(�5R)

+ ‖v‖H 2
p(�5R)

≤ C‖f‖Lp(�5R)

with some constant C depending on μ, ε, λ0, p, r and �5R .

2.2.3. Analysis of (2.6) for λ = 0
To study (2.6) for the parameter λ = 0, we consider the following reduced model:

{ − Div
(
μD(v)− K̄(v)I) = f in �5R,(

μD(v)− K̄(v)I)n
∂�5R

= 0 on ∂�5R.
(2.26)

First, we introduce the rigid motion associated to (2.15). Set
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rj (x)=
⎧⎨⎩

ej = (0, . . . , 1︸︷︷︸
jth component

, . . . ,0) for j = 1, . . . ,N,

xke� − x�ek (k, �= 1, . . . ,N) for j =N + 1, . . . ,M.
(2.27)

Above, M is a constant only depending on the dimension N . For any vector u satisfying D(u) =
0, u is represented by a linear combination of {rj }Mj=1, namely u = ∑M

j=1 ajrj with some aj ∈
R. For convenience, we denote {pj }Mj=1 for the orthonormalization of {rj }Mj=1, that is, {pj }Mj=1
satisfies

(pj ,pk)�R,T = δjk for j, k = 1, . . . ,M. (2.28)

By the transformation (1.6), we define p̄j (y) = pj (x) for j = 1, . . . , M , which, thanks to (2.28), 
satisfy the orthogonal conditions:

(p̄j , J p̄k)�5R = δjk for j, k = 1, . . . ,M. (2.29)

In addition, D(p̄j ) = D(pj ) = 0 and div p̄j = div pj = 0. For convenience, we introduce the 
spaces

R̄d(�5R)= Span {p̄1, . . . , p̄M},
R̄d(�5R)

⊥ = {v ∈ L1(�5R)
N | (v, J p̄j )�5R = 0 for j = 1, . . . ,M}. (2.30)

Now, let v ∈H 2
p(�5R)

N ∩ J̄p(�5R) be a solution of (2.23) for some f ∈ J̄p(�5R) ∩R̄d(�5R)
⊥

and λ ∈�ε,λ0 by Theorem 2.5. Then, v ∈ R̄d(�5R)
⊥ as well. In fact,

0 = (f, J p̄j )�5R = γ1λ(v, J p̄j )�5R −
(

Div
(
μD(v)− K̄(v)I), J p̄j

)
�5R

= γ1λ(v, J p̄j )�5R −
((
μD(v)− K̄(v)I)n

∂�5R
, J p̄j

)
∂�5R

+
∫
�5R

(
μD(v)− K̄(v)I)(I + V) : ∇y p̄j J dy

= γ1λ(v, J p̄j )�5R + μ

2

∫
�5R

D(v) : D(p̄j ) J dy − (J K̄(v),div p̄j )�5R

= γ1λ(v, J p̄j )�5R .

(2.31)

Under these preparations, we have the following theorem.

Theorem 2.6. Let 1 < p ≤ r . Then, for any f ∈ J̄p(�5R) ∩ R̄d(�5R)
⊥, problem (2.26) admits a 

unique solution v ∈H 2
p(�5R)

N ∩ J̄p(�5R) ∩ R̄d(�5R)
⊥ possessing the estimate:

‖v‖H 2(� ) ≤ C‖f‖Lp(� ).

p 5R 5R
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Proof. In view of Theorem 2.5 and the Fredholm alternative principle, to prove Theorem 2.6, 
it is enough to verify the uniqueness in the L2(�5R)

N framework. Namely, if v ∈H 2
2 (�5R)

N ∩
J2(�5R) ∩ R̄d(�5R)

⊥ satisfies the homogeneous equations:{ − Div
(
μD(v)− K̄(v)I) = 0 in �5R,(

μD(v)− K̄(v)I)n
∂�5R

= 0 on ∂�5R,

then we shall show that v = 0. By the similar argument to (2.31), we have

0 =
(

− Div
(
μD(v)− K̄(v)I), Jv

)
�5R

= μ

2

∫
�5R

D(v) : D(v) Jdy.

Therefore, D(v) = 0 in �5R , and then v is a linear combination of {p̄j }Mj=1. Since v ∈ R̄d(�5R)
⊥, 

we have v = 0. This completes the proof of Theorem 2.6. �
We now consider the Stokes equation:⎧⎪⎪⎨⎪⎪⎩

− Div
(
μD(v)− γ2ωI

) = f in �5R,

div v = 0 in �5R,(
μD(v)− γ2ωI

)
n
∂�5R

= 0 on ∂�5R.

(2.32)

From Theorem 2.6, we have the following corollary.

Corollary 2.7. Let 1 < p ≤ r . Then, for any f ∈ J̄p(�5R) ∩ R̄d(�5R)
⊥, problem (2.32) admits 

a unique solution v ∈ H 2
p(�5R)

N ∩ J̄p(�5R) ∩ R̄d(�5R)
⊥ and ω ∈ H 1

p(�5R) possessing the 
estimate:

‖v‖H 2
p(�5R)

+ ‖ω‖H 1
p(�5R)

≤ C‖f‖Lp(�5R).

Proof. Let v ∈ H 2
p(�5R)

N ∩ J̄p(�5R) ∩ R̄d(�5R)
⊥ be a solution of equations (2.26), whose 

existence is guaranteed by Theorem 2.6. For any ϕ ∈ Ĥ 1
p′,0(�5R),

0 = (f, J ∇ϕ)�5R = −
(

Div
(
μD(v)

)
, J ∇ϕ

)
�5R

+ (∇K̄(v), J ∇ϕ)
�5R

= −(∇ div v, J ∇ϕ)�5R .

Moreover, by the boundary condition in (2.26), we have

div v = d−1 <μD(v)n
∂�5R

,n
∂�5R

>−K̄(v)
= d−1 <

(
μD(v)− K̄(v))n

∂�5R
,n

∂�5R
>= 0 on ∂�5R.

Then, the uniqueness of the weak Dirichlet problem yields that div v = 0 in �5R . Thus, v auto-
matically satisfies equations (2.32) with imposing ω = γ−1

2 K̄(v), which completes the proof of 
Corollary 2.7. �
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2.3. Modified compressible model problem

In this subsection, we consider the following problem:⎧⎪⎪⎨⎪⎪⎩
γ1div v = d in �5R,

− Div
(
S(v)− γ2ωI

) = f in �5R,(
S(v)− γ2ωI

)
n
∂�5R

= h on ∂�5R,

(2.33)

with S(v) = μD(v) + (ν −μ)(div v)I. Concerning (2.33), we have the following theorem.

Theorem 2.8. Let 1 < p ≤ r . Then, for any d ∈ H 1
p(�5R), f ∈ Lp(�5R)

N and h ∈ H 1
p(�5R)

N

satisfying the orthogonal condition:

(f, J p̄j )�5R + (h, J p̄j )∂�5R = 0 (j = 1, . . . ,M), (2.34)

problem (2.33) admits a unique solution v ∈ H 2
p(�5R)

N ∩ R̄d(�5R)
⊥ and ω ∈ H 1

p(�5R) pos-
sessing the estimate:

‖v‖H 2
p(�5R)

+ ‖ω‖H 1
p(�5R)

≤ C(‖f‖Lp(�5R) + ‖(d,h)‖H 1
p(�5R)

)
.

Proof. Let v1 ∈H 2
p(�5R)

N be a solution of the divergence equation: γ1div v1 = d in �5R pos-
sessing the estimate:

‖v1‖H 2
p(�5R)

≤ C‖d‖H 1
p(�5R)

.

The existence of such v1 is guaranteed by Proposition 2.1. Therefore, to construct the solution of 
(2.33), it suffices to solve the following system:⎧⎪⎪⎨⎪⎪⎩

div u = 0 in �5R,

− Div
(
μD(u)− γ2ωI

) = f + F1 in �5R,(
μD(u)− γ2ωI

)
n
∂�5R

= h +H1 on ∂�5R,

(2.35)

with F1 = Div
(
S(v1)

)
, and H1 = −S(v1)n∂�5R

. Then v = v1 + u and ω satisfy the equations 
(2.33). Moreover, the divergence theorem of Gauß yields that

(F1, J p̄j )�5R + (H1, J p̄j )∂�5R = −1

2

∫
�5R

S(v1) : D(p̄j )J dy = 0. (2.36)

To obtain the solution of (2.35), we consider the following two linear systems:⎧⎪⎪⎨⎪⎪⎩
div v2 = 0 in �5R,

γ1λ0v2 − Div
(
μD(v2)− γ2ω2I

) = f + F1 in �5R,(
μD(v )− γ ω I

)
n = h +H on ∂� ,

(2.37)
2 2 2 ∂�5R 1 5R
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⎧⎪⎪⎨⎪⎪⎩
div v3 = 0 in �5R,

− Div
(
μD(v3)− γ2ω3I

) = γ1λ0v2 in �5R,(
μD(v3)− γ2ω3I

)
n
∂�5R

= 0 on ∂�5R,

(2.38)

where λ0 > 0 is fixed large number. At least formally, (u, ω) = (v2, ω2) + (v3, ω3) gives a solu-
tion of (2.33). Thanks to Corollary 2.4, there exists a solution of (2.37) such that

‖v2‖H 2
p(�5R)

+ ‖ω2‖H 1
p(�5R)

≤ C(‖f + F1‖Lp(�5R) + ‖h +H1‖H 1
p(�5R)

)

≤ C(‖f‖Lp(�5R) + ‖(d,h)‖H 1
p(�5R)

).

Additionally, v2 ∈ R̄d(�5R)
⊥. In fact, (2.34) and (2.36) yield that

γ1λ0(v2, J p̄j )�5R =
(

Div
(
μD(v2)− γ2ω2I

)
, J p̄j

)
�5R

+ (f + F1, J p̄j )�5R

= (h +H1, J p̄j )∂�5R + (f + F1, J p̄j )�5R = 0.

On the other hand, to solve (2.38), we notice that γ1λ0v2 ∈ J̄p(�5R) from the divergence 
equation, as

(v2, J ∇ϕ)�5R = (Jϕv2,n∂�5R )∂�5R − (div v2, Jϕ)�5R = 0.

Then, by Corollary 2.7, there exists a solution v3 ∈H 2
p(�5R)

N ∩ R̄d(�5R)
⊥ and ω3 ∈H 1

p(�5R)

of the system (2.38) satisfying

‖v3‖H 2
p(�5R)

+ ‖ω3‖H 1
p(�5R)

≤ C‖γ1λ0v2‖Lp(�5R) ≤ C(‖f‖Lp(�5R) + ‖(d,h)‖H 1
p(�5R)

).

Combining the discussion above, we find one solution (v, ω) of (2.33) by defining

(v,ω)= (v1 + v2 + v3,ω2 +ω3) ∈H 2
p(�5R)

N ×H 1
p(�5R).

Moreover, we have

‖v‖H 2
p(�5R)

+ ‖ω‖H 1
p(�5R)

≤ C(‖(f,h)‖H 1
p(�5R)

+ ‖g‖Lp(�5R)

)
.

To meet the orthogonal condition, i.e. v ∈Rd(�5R)
⊥, we refine the definition of the velocity 

field by

ṽ = v −
M∑
j=1

(v, J p̄j )�5R p̄j ∈ R̄d(�5R)
⊥.

Since D(p̄j ) = 0 and div p̄j = 0, we see that ̃v and ω satisfy equations (2.33) with the desired 
estimate.

We now prove the uniqueness. Let v ∈H 2
p(�5R)

N ∩ R̄d(�5R)
⊥ and ω ∈ H 1

p(�5R) for 2 ≤
p ≤ r satisfy the homogeneous equations:
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⎧⎪⎪⎨⎪⎪⎩
div v = 0 in �5R,

− Div
(
μD(v)− γ2ωI

) = 0 in �5R,(
μD(v)− γ2ωI

)
n
∂�5R

= 0 on ∂�5R.

(2.39)

By the previous discussion on the existence issue of (2.33), given any g ∈ L2(�5R)
N ∩

R̄d(�5R)
⊥, there exists (u, θ) ∈ (

H 2
2 (�5R)

N ∩ R̄d(�5R)
⊥)×H 1

2 (�5R) fulfilling the equations:⎧⎪⎪⎨⎪⎪⎩
div u = 0 in �5R,

− Div
(
μD(u)− γ2θI

) = g in �5R,(
μD(u)− γ2θI

)
n
∂�5R

= 0 on ∂�5R.

(2.40)

By the divergence theorem of Gauß, (2.39) and (2.40), we have

0 =
(

Div
(
μD(v)− γ2ωI

)
, Ju

)
�5R

=
((
μD(v)− γ2ωI

)
n
�5R
, Ju

)
∂�5R

+ μ

2

∫
�5R

D(v) : D(u)Jdy + (Jγ2ω,div u)�5R

= μ

2

∫
�5R

D(v) : D(u)Jdy

=
(
Jv,Div

(
μD(u)− γ2θI

))
�5R

= (Jv,g)�5R .

For any f ∈L2(�5R)
N , we set

f⊥ = f −
M∑
j=1

(f, J p̄j )�5R p̄j ∈ L2(�5R)
N ∩ R̄d(�5R)

⊥.

Then we obtain from v ∈ R̄d(�5R)
⊥ that

(Jv, f)�5R = (Jv, f⊥)�5R +
M∑
j=1

(f, J p̄j )�5R (Jv, p̄j )�5R = (Jv, f⊥)�5R = 0.

The arbitrary choice of f yields that Jv = 0, and thus v = 0.
Now, the equations (2.39) are reduced to the form:{∇ω= (I + V)∇yω= 0 in �5R,

ωn
∂�5R

= ω(I + V)n
∂�5R

= 0 on ∂�5R.

Therefore, ∇yω= 0 in �5R , and then ω= 0 by the boundary condition.
Next, we assume that (v, ω) ∈ (

H 2
p(�5R)

N ∩ R̄d(�5R)
⊥) × H 1

p(�5R) for some 1 < p < 2

satisfies the equations (2.39). Notice that the embedding H 1(�5R) ↪→ Lq(�5R) with 0 <
p
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N(1/p − 1/q) < 1. Then, by Theorem 2.2, there exists (u, θ) ∈ H 2
q (�5R)

N × H 1
q (�5R) sat-

isfying ⎧⎪⎪⎨⎪⎪⎩
γ1λu − Div

(
μD(u)− γ2θI

) = γ1λv in �5R,

div u = 0 in �5R,(
μD(u)− γ2θI

)
n
∂�5R

= 0 on ∂�5R,

for some λ > 0. In fact, we have (u, θ) = (v, ω) ∈H 2
q (�5R)

N ×H 1
q (�5R) by the uniqueness in 

Theorem 2.2. If q ≥ 2, we have (v, ω) ∈ H 2
2 (�5R)

N ×H 1
2 (�5R) and the uniqueness of (2.39)

from the previous discussion on the case p ≥ 2. Otherwise, we repeat such argument in finite 
times. This completes the proof of Theorem 2.8. �
3. Resolvent problem for λ near zero

In this section, we will study the behaviour of the solution of the system (1.13) whenever λ
lies near the origin. The main result reads as follows.

Theorem 3.1. Let (d, f) ∈Xp,L(�) for 1 < p ≤ r and L > 2R > 0. Then there exist a constant 
λ1 > 0 and two families of the operators (Mλ, Vλ) for any λ ∈ U̇λ1 = {λ ∈ C\(−∞, 0] : |λ| <
λ1} with

Mλ ∈ Hol
(
U̇λ1;L

(
Xp,L(�);H 1

p,loc (�)
))
, Vλ ∈ Hol

(
U̇λ1;L

(
Xp,L(�);H 2

p,loc (�)
N

))
,

such that (η, u) = (Mλ, Vλ)(d, f) solves (1.13). Moreover, there exist families of the operators

Mi
λ ∈ Hol

(
U̇λ1;L

(
Xp,L(�);H 1

p,loc (�)
))
(i = 1,2),

V jλ ∈ Hol
(
U̇λ1;L

(
Xp,L(�);H 2

p,loc (�)
N

))
(j = 0,1,2),

such that

Mλ = (λN−2 logλ)M1
λ +M2

λ,

Vλ = (
λN/2−1(logλ)σ(N)

)
V 0
λ + (λN−2 logλ)V 1

λ +V 2
λ ,

for any λ ∈ U̇λ1 and σ(N) = (
(−1)N + 1

)
/2.

3.1. Resolvent problem in RN

In this subsection, we review the result of some model problem in RN :{
λη+ γ1div u = d in RN,

γ1λu − Div
(
S(u)− γ2ηI

) = f in RN,
(3.1)

with the parameters in (3.1) satisfying μ, ν, γ1, γ2 > 0. Now, we recall the notion in (1.15) and 
the results in [29, Subsec. 3.1].
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Theorem 3.2. Let 1 <p <∞, 0 < ε < π/2, and λ0 > 0. Then there exist two families of opera-
tors

(
P(λ),V(λ)

) ∈ Hol
(
�ε ∩K;L(

H 1,0
p (RN);H 1,2

p (RN)
))
,

such that (η, u) = (
P(λ), V(λ)

)
(d, f) is a solution of (3.1). Moreover, there exists a constant 

Cε,λ0 so that

|λ|‖η‖H 1
p(R

N) +
2∑
j=0

|λ|j/2‖u‖
H

2−j
p (RN)

≤ Cε,λ0‖(d, f)‖H 1,0
p (RN)

for any λ ∈ Vε,λ0 .

Theorem 3.3. Let 1 <p <∞, 0 < ε < π/2, L ≥R > 0, and N ≥ 3. Set

Xp,L(R
N)= {(d, f) ∈H 1,0

p (RN) : suppd, supp f ⊂ BL }.

Then the following assertions hold:

(1) There exist a constant λ0 > 0 and two families of operators

Mλ ∈ Hol
(
U̇λ0;L

(
Xp,L(R

N);H 1
p,loc (R

N)
))
,

Vλ ∈ Hol
(
U̇λ0;L

(
Xp,L(R

N);H 2
p,loc (R

N)N
))
,

such that for any (d, f) ∈Xp,L(RN) and λ ∈K ∩ U̇λ0

(Mλ,Vλ)(d, f)=
(
P(λ),V(λ)

)
(d, f).

Moreover, there exist families of operators

Mi
λ ∈ Hol

(
Uλ0;L

(
Xp,L(R

N);H 1
p(BL)

))
(i = 1,2),

Vjλ ∈ Hol
(
Uλ0;L

(
Xp,L(R

N);H 2
p(BL)

N
))
(j = 0,1,2),

such that

Mλ = (λN−2 logλ)M1
λ +M2

λ,

Vλ = (
λN/2−1(logλ)σ(N)

)
V0
λ + (λN−2 logλ)V1

λ + V2
λ

for any λ ∈ U̇λ and σ(N) = (
(−1)N + 1

)
/2.
0
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(2) There exist operators

M0 ∈ L
(
Xp,L(R

N);H 1
p,loc (R

N)
)
, V0 ∈ L

(
Xp,L(R

N);H 2
p,loc (R

N)N
)

such that for any (d, f) ∈Xp,L(RN), (η0, u0) = (M0, V0)(d, f) is a solution of{
γ1div u = d in RN,

− Div
(
S(u)− γ2ηI

) = f in RN,

satisfying the estimates:

‖∇η0‖Lp(RN) +
∑
|α|=2

‖∂αx u0‖Lp(RN) ≤ CL,p,N‖(d, f)‖
H

1,0
p (RN),

sup
|x|≥2L

|x|N−1|η0(x)| +
1∑

|α|=0

sup
|x|≥2L

|x|N−2+|α||∂αx u0(x)| ≤ CL,p,N‖(d, f)‖Lp(RN),

for some constant CL,p,N > 0. Furthermore, we have

lim|λ|→0
| argλ|≤π/4

(
‖Mλ(d, f)− η0‖H 1

p(BL)
+ ‖Vλ(d, f)− u0‖H 2

p(BL)

)
= 0.

3.2. Construction of the parametrix

Without loss of generality, we shall prove Theorem 1.2 for L = 5R. We first consider the 
auxiliary problem: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

γ1div u = d in �5R,

− Div
(
S(u)− γ2ηI

) = f in �5R,(
S(u)− γ2ηI

)
n� = 0 on �,(

S(u)− γ2ηI
)
n
S5R

= 0 on S5R.

(3.2)

Here, n
S5R

denotes the unit outer normal to S5R = {x ∈ RN | |x| = 5R}. Let 3R < b0 < b1 <

b2 < b3 < 4R and set

Db1,b2 = {x ∈RN | b1 < |x|< b2}, D+
b1,b2

= {x ∈Db1,b2 | xj > 0 (j = 1, . . . ,N)}.

Let ψ ∈ C∞
0 (R

N) such that suppψ ⊂ Db1,b2 , and ψ = 1 on some ball B ⊂ D+
b1,b2

. Recall the 
basis {rj }Mj=1 of the rigid motion in (2.27). We introduce a family of vectors Qψ = {qj }Mj=1, 

another normalization of {rj }Mj=1 in such a way that

(qj ,qk)ψ = (ψqj ,qk)RN =
∫
N

ψ(x)qj (x) · qk(x) dx = δjk. (3.3)
R
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Here and in the following, given function a(x), ā(y) is defined by a(x) = ā(y) in view of (1.6). 
Since x =Xw(y, T ) = y for y /∈ B2R , we obtain from (3.3) that

δjk = (ψqj ,qk)RN = (ψqj ,qk)� = (ψ̄ q̄j , J q̄k)� = (ψ q̃j , J q̃k)�5R , (3.4)

for ̃qj ∈ {qj , q̄j } with j, k = 1, . . . , M . Moreover, for simplicity we write

• f ⊥ QR if (f, J q̄j )�5R = 0 for any qj ∈Qψ ;
• f ⊥ Qψ if (f, qj )ψ = 0 for any qj ∈ Qψ .

In fact, f ⊥ QR is equivalent to f ∈ Rd(�5R)
⊥ by (2.30) in the previous section. Thus Theo-

rem 2.8 yields the following result for (3.2).

Theorem 3.4. Let 1 <p ≤ r . Let (d, f) ∈H 1,0
p (�5R) with f ⊥ QR . Then there exist operators

(J ,W) ∈ L(H 1,0
p

(
�5R),H

1,2
p (�5R)

)
such that (η, u) = (J , W)(d, f) is a unique solution of (3.2) with u ⊥ QR . Moreover, the follow-
ing estimate holds,

‖η‖H 1
p(�5R)

+ ‖u‖H 2
p(�5R)

≤ C(‖d‖H 1
p(�5R)

+ ‖f‖Lp(�5R)

)
,

for some constant C > 0.

To prove Theorem 3.1, we introduce cut-off functions ϕ, ψ0, and ψ∞ such that 0 ≤
ϕ, ψ0, ψ∞ ≤ 1, ϕ, ψ0, ψ∞ ∈ C∞(RN), and

ϕ(x)=
{

1 for |x| ≤ b1,

0 for |x| ≥ b2,
ψ0(x)=

{
1 for |x| ≤ b2,

0 for |x| ≥ b3,
ψ∞(x)=

{
1 for |x| ≥ b1,

0 for |x| ≤ b0.
(3.5)

For any (d, f) ∈H 1,0
p (�5R), we have

‖ψ∞d‖H 1
p(R

N) + ‖ψ∞f‖Lp(RN) ≤ C(‖d‖H 1
p(�)

+ ‖f‖Lp(�)). (3.6)

Then, by Theorem 3.3 and (3.6), there exists a λ0 > 0 such that (ηλ, uλ) = (Mλ, Vλ)(ψ∞d, ψ∞f)
solves the following equations for any λ ∈K ∩ U̇λ0 (see (1.15) for the definition of K):{

ληλ + γ1div uλ =ψ∞d in RN,

γ1λuλ − Div
(
S(uλ)− γ2ηλI

) =ψ∞f in RN,
(3.7)

and satisfies the estimate:

‖ηλ‖H 1
p(B6R)

+ ‖uλ‖H 2
p(B6R)

≤ C(‖d‖H 1
p(�)

+ ‖f‖Lp(�)). (3.8)

Moreover, we set (η0, u0) = (M0, V0)(ψ∞d, ψ∞f) ∈H 1,2
(RN) fulfilling that
p,loc
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{
γ1div u0 =ψ∞d in RN,

− Div
(
S(u0)− γ2η0I

) =ψ∞f in RN,
(3.9)

and

lim
λ∈U̇λ0|λ|→0

(‖ηλ − η0‖H 1
p(B6R)

+ ‖uλ − u0‖H 2
p(B6R)

)= 0. (3.10)

On the other hand, let us set

fRd
=

M∑
j=1

(ψ0f, J q̄j )�5Rψqj , f⊥ =ψ0f − fRd
∈ Lp(�5R)

N .

Obviously, f⊥ ⊥ QR . In fact, (3.4) implies that

(f⊥, J q̄�)�5R = (ψ0f, J q̄�)�5R −
M∑
j=1

(ψ0f, J q̄j )�5R (ψqj , J q̄�)�5R = 0,

for any � = 1, . . . , M . Then, Theorem 3.4 yields that there exists a (unique) solution (η�, u�) ∈
H

1,2
p (�5R) with u� ⊥ QR of the following equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

γ1div u� =ψ0d in �5R,

− Div
(
S(u�)− γ2η�I

) = f⊥ in �5R,(
S(u�)− γ2η�I

)
n� = 0 on �,(

S(u�)− γ2η�I
)
n
S5R

= 0 on S5R,

(3.11)

possessing the estimate

‖η�‖H 1
p(�5R)

+ ‖u�‖H 2
p(�5R)

≤ C(‖d‖H 1
p(�)

+ ‖f‖Lp(�)). (3.12)

We now introduce parametrices:

η̃λ =�λ(d, f)= (1 − ϕ)ηλ + ϕη�, ũλ =�λ(d, f)= (1 − ϕ)uλ + ϕu�

for λ ∈ U̇λ0 ∪ {0}. Notice that

S(̃uλ)− γ2η̃λI = (1 − ϕ)(S(uλ)− γ2ηλI
) + ϕ(S(u�)− γ2η�I)+ Vλ(d, f),

with

Vλ(d, f)= μ
(
(u� − uλ)⊗ ∇ϕ + ∇ϕ ⊗ (u� − uλ)

) + (ν −μ)((u� − uλ) · ∇ϕ
)
I, (3.13)

and supp Vλ(d, f) ⊂Db ,b . Then it holds that
1 2
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⎧⎪⎪⎨⎪⎪⎩
λη̃λ + γ1div ũλ = d +Dλ(d, f) in �,

γ1λ̃uλ − Div
(
S(̃uλ)− γ2η̃λI

) = f +Fλ(d, f) in �,(
S(̃uλ)− γ2η̃λI

)
n� = 0 on �,

(3.14)

where Dλ(d, f) and Fλ(d, f) with λ ∈ U̇λ0 ∪ {0} are defined as

Dλ(d, f)= λϕη� + γ1∇ϕ · (u� − uλ),

Fλ(d, f)= −ϕfRd
+ γ1λϕu� +

((
S(uλ)− γ2ηλI

) − (
S(u�)− γ2η�I

))∇ϕ − Div Vλ(d, f).

Moreover, by (3.8), (3.10), and (3.12), we have

Qλ(d, f)=(Dλ,Fλ)(d, f) ∈Xp,5R(�) for any λ ∈ U̇λ0 ∪ {0},
lim
λ∈U̇λ0|λ|→0

‖Qλ −Q0‖L(Xp,5R(�)) = 0. (3.15)

In particular, by Rellich’s compactness theorem, Q0 is a compact operator on Xp,5R(�). More-
over, I +Q0 is invertible due to the following lemma.

Lemma 3.5. Given Q0 = (F0, G0) as above, I + Q0 has a bounded inverse in L(Xp,5R(�)), 
which is denoted by (I +Q0)

−1.

The proof of Lemma 3.5 is postponed to the next subsection, and we continue the proof of 
Theorem 3.1. Notice that

I +Qλ = (I +Q0)
(
I + (I +Q0)

−1(Qλ −Q0)
)
.

Then by (3.15) and Lemma 3.5, we can choose λ1 ≤ λ0 such that

‖(I +Q0)
−1(Qλ −Q0)‖L(Xp,5R(�)) ≤ 1/2,

for any λ ∈ U̇λ1 . Moreover, the inverse of I +Qλ exists for any λ ∈ U̇λ1 formulated by

(I +Qλ)−1 =
∞∑
j=0

( − (I +Q0)
−1(Qλ −Q0)

)j
(I +Q0)

−1.

Thus we can define the operators (Mλ, Vλ) as

(η,u)= (Mλ,Vλ)(d, f)= (�λ,�λ) ◦ (I +Qλ)−1(d, f),

for any (d, f) ∈ Xp,5R(�) and λ ∈ U̇λ1 . In fact, (η, u) clearly satisfies (1.13) by (3.14). Fur-

thermore, the existence of operators Mi
λ (i = 1, 2) and V jλ (j = 0, 1, 2) is immediate from 

Theorems 3.3 and 3.4. So the details are omitted here.
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3.3. Proof of Lemma 3.5

Before proving Lemma 3.5, we start with the following lemma, which plays an essential role 
in the later proof.

Lemma 3.6. Let 1 < p ≤ r and N ≥ 3. Assume that � is a C3 exterior domain in RN . Let 
(u, η) ∈H 1,2

p,loc(�) satisfy the homogeneous equations:

⎧⎪⎪⎨⎪⎪⎩
div u = 0 in �,

− Div
(
μD(u)− γ2ηI

) = 0 in �,(
μD(u)− γ2ηI

)
n� = 0 on �.

(3.16)

Assume in addition that η(y) = C∞ + O(|y|−(N−1)), u(y) = O(|y|−(N−2)), and ∇u(y) =
O(|y|−(N−1)) as |y| → ∞, where C∞ is some constant. Then, u = 0 and η = 0 for almost 
all y ∈�. In particular, C∞ = 0.

Proof. Case p ≥ 2. It suffices to consider (η, u) ∈ H 1,2
2,loc(�) in this situation. Let φ be a 

C∞(RN) function which equals 1 for y ∈ B1 and 0 for y /∈ B2. Let φL(y) = φ(y/L) for any 
large L > 6R. Set C̃ = γ2C∞ and η̃= γ2(η−C∞). Then, (η̃, u) ∈H 1,2

2,loc(�) solves equations:⎧⎪⎪⎨⎪⎪⎩
div u = 0 in �,

− Div
(
μD(u)− η̃ I

) = 0 in �,(
μD(u)− η̃ I

)
n� = C̃ n� on �.

(3.17)

Then, by the divergence theorem of Gauß, (3.17), and (1.11), we have

0 = −
(

Div
(
μD(u)− η̃I

)
, JφLu

)
�

= −(C̃ n�, JφLu)� + μ

2

∫
�

D(u) : D(φLu) Jdy − (
J η̃,div (φLu)

)
�

= −C̃
∫
�

div (φLu) Jdy + μ

2

∫
�

D(u) : φLD(u) Jdy + IL,

with

IL = μ

2

∫
L≤|y|≤2L

D(u) : (∇φL ⊗ u + u ⊗ ∇φL)dy +
∫

L≤|y|≤2L

η̃(∇φL · u) dy.

Using the radiation condition, we have

|IL| ≤ CL−1
∫

|y|−(N−1)|y|−(N−2) dy ≤ CL−(N−2) → 0
L≤|y|≤2L
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as L → ∞, because N ≥ 3. Moreover, (1.11) implies that

∫
�

div (φLu)J dy =
∫

L≤|y|≤2L

(∇φL) · udy.

Since div u = 0 for y ∈ RN \ B2R , by [26, Lemma 6] there exists a v ∈H 1
2 (R

N)N supported in 
DR2,R3 for some 2R <R2 <L/2 < 3L <R3 such that div v = 0 in RN and (∇φL) ·u = (∇φL) ·v
in RN . Hence,

∫
L≤|y|≤2L

(∇φL) · udy =
∫

|y|<R3

(∇φL) · vdy =
∫

|y|<R3

div (φLv) dy = 0.

Thus, letting L → ∞ yields that

∫
�

D(u) : D(u) Jdy = 0,

which implies that D(u) = 0 in �, or equivalently, u ∈ Span {q̄1, . . . , q̄M} (see subsection 3.2). 
But, u(y) =O(|y|−(N−2)) → 0 as |y| → ∞, and so u = 0. By (3.16), ∇η= 0 in � and η= 0 on 
�. This shows that η= 0. Since η−C∞ → 0 as |y| → ∞, C∞ = 0.

Case 1 < p < 2. For (η, u) ∈ H 1,2
p,loc(�) with 1 < p < 2, we use the hypoellipticity of the 

Stokes operator. Let ω be a C∞(RN) function which equals 1 for x ∈ RN \ B4R and 0 for 
x ∈ B2R . Let B be the Bogovskii operator, and set

(v, ζ )= (
ωu − B[(∇ω) · u], γ2ω(η−C∞)

)
.

We see that (ζ, v) ∈H 1,2
p,loc(R

N) satisfies the Stokes equations:

v −μ	v + ∇ζ = f, div v = 0 in RN

with

f = − 2μ
(
(∇ω) · ∇)

u −μ(	ω)u +μ	B[(∇ω) · u]
+ γ2(η−C∞)∇ω+ωu − B[(∇ω) · u] ∈H 1

p(R
N)N .

Notice that supp f ⊂ B4R . By the Sobolev imbedding theorem, f ∈ Lq(RN)N , where q is an 
exponent such that 0 <N(1/p − 1/q) < 1. By the standard result for the Stokes equations, we 
have (ζ, v) ∈H 1,2

(RN), which yields that (η, u) ∈H 1,2
(RN \B4R).
q,loc q,loc
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We next consider the interior problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

div u = 0 in �5R,

γ1λu − Div
(
μD(u)− γ2ηI

) = γ1λu in �5R,(
μD(u)− γ2ηI

)
n� = 0 on �,(

μD(u)− γ2ηI
)
n
S5R

= h on S5R,

(3.18)

with h = (
μD(u) − γ2ηI

)
n
S5R

∈W 1−1/q
q (S5R) by the discussion above. Since u ∈H 2

p(�5R)
N ⊂

Lq(�5R)
N , choosing λ > 0 so large if necessary, by Corollary 2.4 (η, u) ∈ H 1,2

q (�5R), and so 
we have (η, u) ∈H 1,2

q,loc(�). If p < q < 2, then repeated use of this argument finally implies that 

(η, u) ∈H 1,2
2,loc(�). This completes the proof of Lemma 3.6. �

Proof of Lemma 3.5. According to the compactness of Q0 and the Fredholm alternative the-
orem, it is sufficient to verify the injectivity of I + Q0. Let (d, f) ∈ Ker (I + Q0), that is, 
(d, f) + Q0(d, f) = (0, 0). Since suppQ0(d, f) ⊂Db1,b2 , supp (d, f) ⊂Db1,b2 . As ψ0 = ψ∞ = 1
in Db1,b2 , we have

(d, f)= (ψ∞d,ψ∞f)= (ψ0d,ψ0f). (3.19)

In particular, f⊥ =ψ0f − fRd
= f − fRd

with

fRd
=

M∑
j=1

(f,qj )�5Rψqj . (3.20)

Then, in view of (3.14), (̃η0, ̃u0) = (1 − ϕ)(η0, u0) + ϕ(η�, u�) satisfies the homogeneous equa-
tions: ⎧⎪⎪⎨⎪⎪⎩

γ1div ũ0 = 0 in �,

− Div
(
μD(̃u0)− γ2η̃0I

) = 0 in �,(
μD(̃u0)− γ2η̃0I

)
n� = 0 on �,

and the radiation condition:

η̃0(x)=O(|x|−(N−1)), ũ0(x)=O(|x|−(N−2)), ∇ũ0(x)=O(|x|−(N−1))

as |x| → ∞ by Theorem 3.3. Thus, by Lemma 3.6,

η̃0 = 0, ũ0 = 0. (3.21)

Then the choice of ϕ yields that

η�(x)= 0, u�(x)= 0 for |x| ≤ b1, η0(x)= 0, u0(x)= 0 for |x| ≥ b2. (3.22)
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We now introduce the extensions

(̃η�, ũ�)(x)=
{
(η�,u�)(x) for x ∈�5R \B2R,

0 for x ∈ B2R.

By (3.22), (3.11), (3.19), and (1.11), (̃η�, ̃u�) ∈H 1,2
p (B5R) satisfy equations:⎧⎪⎪⎨⎪⎪⎩

γ1div ũ� = d in B5R,

− Div
(
S(̃u�)− γ2η̃�I

) = f − fRd
in B5R,(

S(̃u�)− γ2η̃�I
)
n
S5R

= 0 on S5R.

On the other hand, by (3.22), and (3.19),⎧⎪⎪⎨⎪⎪⎩
γ1div u0 = d in B5R,

− Div
(
S(u0)− γ2η0I

) = f in B5R,(
S(u0)− γ2η0I

)
n
S5R

= 0 on S5R.

(3.23)

Setting (θ, v) = (̃η� − η0, ̃u� − u0), we have⎧⎪⎪⎨⎪⎪⎩
div v = 0 in B5R,

− Div
(
μD(v)− γ2θI

) = −fRd
in B5R,(

μD(v)− γ2θI
)
n
S5R

= 0 on S5R.

(3.24)

We now take the inner product (·, qj )B5R on the both side of (3.24) and use the divergence 
theorem of Gauß,

−(fRd
,qj )B5R =

(
− Div

(
μD(v)− γ2θI

)
,qj

)
B5R

= μ

2

∫
B5R

D(v) : D(qj ) dy − (γ2θ,div qj )B5R = 0,

which yields that (f, qj )�5R = (fRd
, qj )B5R = 0. Thus, fRd

= 0 due to (3.20). Furthermore, (v, θ)
solves the homogeneous equations:⎧⎪⎪⎨⎪⎪⎩

div v = 0 in B5R,

− Div
(
μD(v)− γ2θI

) = 0 in B5R,(
μD(v)− γ2θI

)
n
S5R

= 0 on S5R.

Therefore, θ = 0 and D(v) = 0 in B5R . In particular, η0 = η� and D(u0 − u�) = 0 in �5R . 
According to (3.21) and (3.22), we have

0 = η0 + ϕ(η� − η0)= η0 in �5R.
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On the other hand, by D(u0 − u�) = 0 on �5R , we assume that u0 = u� + q� for some q� ∈
Span {Qψ }. Since u� ⊥ QR in �5R and (3.22), we have (u�, qj )�5R = 0 for all j = 1, . . . , M , 
which yields that (u�, q�)�5R = 0. Thus, by (3.21), we see that

0 = (̃u0,q�)�5R = (
u� + (1 − ϕ)(u0 − u�),q�

)
�5R

= (
(1 − ϕ)q�,q�

)
�5R

= 0,

which implies that (1 −ϕ)q� ·q� = 0 in �5R . Then q� = 0 by the choice of ϕ. Again using (3.21), 
we have

0 = u0 + ϕ(u� − u0)= u0 − ϕq� = u0 in �5R.

Therefore, (η0, u0) = (0, 0) in �5R , which, combined with equations (3.23), yields that (d, f) =
(0, 0). This completes the proof of Lemma 3.5. �
4. Some auxiliary problem

In this short section, we introduce some model problem which will be useful for our later 
study on the resolvent estimates of the Lamé operators. For any fixed λ ∈�ε and 0 < ε < π/2, 
we consider the following system in the uniform C2 domain G:{

ζu − Div
(
αD(u)+ (β − α+ γ λ−1)div uI

) = f in G,(
αD(u)+ (β − α+ γ λ−1)div uI

)
n∂G = g on ∂G,

(4.1)

with the constants α, β, γ > 0 and the parameter ζ ∈ C. For λ ∈ �ε and ζ0 > 0, we introduce 
that

 1
ε,λ = {z ∈�ε : | arg z− arg(α + β + γ λ−1)| ≤ π − ε},

 2
ε,λ = {z ∈ 1

ε,λ : | arg z− arg(2α + β + γ λ−1)| ≤ π − ε},

 ε,λ =
{
 2
ε,λ for �λ= 0,

{z ∈ 2
ε,λ : �(

(β + γ λ−1)−1z
)�λ > 0} for �λ �= 0,

 ε,λ,ζ0 = {z ∈ ε,λ : |z| ≥ ζ0}.

Then the result on (4.1) reads as follows:

Theorem 4.1. Let 0 < ε < π/2, α, β, γ, b > 0, 1 < p <∞, and λ ∈ �ε,b . Assume that G is a 
uniform C2 domain in RN . Then for any (f, g) ∈ Lp(G)N ×H 1

p(G)
N , there exists ζ0 > 0 such 

that (4.1) admits a unique solution u ∈H 2
p(G)

N for any ζ ∈ ε,λ,ζ0 . Moreover, we have

2∑
j=0

|ζ |(2−j)/2‖∇ju‖Lp(G) ≤ C
(
‖f‖Lp(G) +

1∑
j=0

|ζ |(1−j)/2‖∇jg‖Lp(G)
)

for some constant C depending solely on ε, α, β, γ, b, p, N .
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Proof. The elliptic estimates of (4.1) can be established via the standard localization approach 
(for instance see [6,9]), and so we omit the detail here. �
Remark 4.2. Let us give some comments on Theorem 4.1.

(1) It is not hard to see that  ε,λ,ζ0 �= ∅ for any 0 < ε < π/2, λ ∈ �ε , and ζ0 > 0. In fact, as 
γ λ−1 still lies in �ε with γ > 0, we see that

| arg(sα + β + γ λ−1)| ≤ π − ε

for any s, α, β > 0. In particular, R+ ⊂ 2
ε,λ ⊂ 1

ε,λ. On the other hand, for any ω > 0, we 
have

�(
(β + γ λ−1)−1z

)�λ= γ (|βλ+ γ |−1�λ)2 > 0 (�λ �= 0),

which implies R+ ⊂ ε,λ as well. Thus {ω ∈ R+ : ω ≥ ζ0} ⊂ ε,λ,ζ0 .
(2) In Theorem 4.1, G can be bounded or unbounded. Moreover, Theorem 4.1 can be extended 

to the uniform domain G of the class W 2−1/r
r with r > N and r ≥ max{p, p/(p− 1)} in the 

framework of the R-boundedness theory. We refer to [6] for more details.

5. Resolvent problem for λ away from zero

According to Theorem 3.1, we shall study the (1.13) whenever λ is uniformly bounded from 
below in this section. In next subsection, we first consider the case where λ is far away from the 
origin. Then we study (1.13) whenever λ lies in some ring-shaped region.

5.1. Resolvent problem for large λ

Recall the notion in (1.15). The main result of this subsection reads:

Theorem 5.1. Let 1 < p ≤ r <∞, and 0 < ε < π/2. Assume that � is a C2 exterior domain in 
RN for N ≥ 3. Then there exist λ2 > 0 and two families of operators

(
P∞(λ),V∞(λ)

) ∈ Hol
(
Vε,λ2;L

(
H 1,0
p (�);H 1,2

p (�)
))
,

such that (η, u) = (
P∞(λ), V∞(λ)

)
(d, f) ∈ H 1,2

p (�) is a unique solution of (1.13) for any λ ∈
Vε,λ2 and any (d, f) ∈H 1,0

p (�). Moreover, we have

‖η‖H 1
p(�)

+ ‖u‖H 2
p(�)

≤ C(‖d‖H 1
p(�)

+ ‖f‖Lp(�)
)

(5.1)

for some constant C depending solely on λ2, ε, p, μ, ν, γ1, γ2, N .
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The proof of Theorem 5.1 is similar to Theorem 2.2. In fact, we can rewrite (1.13) by⎧⎪⎪⎨⎪⎪⎩
λη+ γ1div u = d + ρ(u) in �,

γ1λu − Div
(
S(u)− γ2ηI

) = f + F(η,u) in �,(
S(u)− γ2ηI

)
n� = H(η,u) on �,

with

ρ(u)= − γ1V : ∇u,

V1(u)=μ
(
V∇u + (V∇u)�

) + (ν −μ)(V : ∇u)I,

F(η,u)=(
V∇ | S(u)− γ2ηI

) + Div V1(u),

H(η,u)= − (
S(u)− γ2ηI

)
Vn� − V1(u)n�.

Moreover, (1.10) and (2.2) yield that∥∥(
ρ(u),H(η,u)

)∥∥
H 1
p(�)

+ ‖F(η,u)‖Lp(�) ≤ Cσ‖(η,∇u)‖H 1
p(�)

(5.2)

for any 1 <p ≤ r <∞. Then Theorem 5.1 can be proved by taking advantage of (5.2), the fixed 
point theorem, and the following result in [6]. So the details of the proof are left to the reader.

Theorem 5.2. [6, Theorem 2.4] Assume that � is a C2 exterior domain in RN for N ≥ 3. Let 
0 < ε < π/2, and 1 <p <∞. Set

Yp(�)=H 1
p(�)×Lp(�)N ×H 1

p(�)
N .

Then there exist λ2 > 0 and two families of operators

(
P̃∞(λ), Ṽ∞(λ)

) ∈ Hol
(
Vε,λ2;L

(
Yp(�);H 1,2

p (�)
))
,

such that the following system:⎧⎪⎪⎨⎪⎪⎩
λη+ γ1div u = d in �,

γ1λu − Div
(
S(u)− γ2ηI

) = f in �,(
S(u)− γ2ηI

)
n� = h on �,

(5.3)

admits a unique solution (η, u) = (
P̃∞(λ), ̃V∞(λ)

)
(d, f, h) ∈ H 1,2

p (�) for λ ∈ Vε,λ2 and for 
(d, f, h) ∈ Yp(�). Moreover, we have

‖η‖H 1
p(�)

+ ‖u‖H 2
p(�)

≤ C(‖(d,h)‖H 1
p(�)

+ ‖f‖Lp(�)
)

for some constant C depending solely on λ2, ε, p, μ, ν, γ1, γ2, N .
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The existence of the semigroup {T (t)}t≥0 associated to (1.8) is immediate from Theorem 5.1. 
For 1 <p, q <∞, we define

Dp(A�)= {(η,u) ∈H 1,0
p (�) | u ∈H 2

p(�)
N,

(
S(u)− γ2ηI

)
n� = 0},

Dp,q(�)=
(
H 1,0
p (�),Dp(A�)

)
1−1/q,q ⊂H 1

p(�)×B2(1−1/q)
p,q (�)N .

Theorem 5.3. The operator A� generates a C0-semigroup {T (t)}t≥0 in H 1,0
p (�) for any 1 <

p ≤ r <∞, which is analytic as well. Denote the solution of (1.8) by (ρ, v)(t) = T (t)(ρ0, v0). 
Then there exist positive constants γ0 and C such that the following assertions hold.

(1) For (ρ0, v0) ∈H 1,0
p (�), we have

‖(ρ,v)(t)‖
H

1,0
p (�)

+ t(‖∂t (ρ,v)(t)‖H 1,0
p (�)

+ ‖(ρ,v)(t)‖Dp(A�)

) ≤ Ceγ0t‖(ρ0,v0)‖H 1,0
p (�)

.

(2) For (ρ0, v0) ∈ Dp(A�), we have

‖∂t (ρ,v)(t)‖H 1,0
p (�)

+ ‖(ρ,v)(t)‖Dp(A�) ≤ Ceγ0t‖(ρ0,v0)‖Dp(A�).

(3) For (ρ0, v0) ∈ Dp,q(�), we have

‖e−γ0t (∂tρ, ρ)‖Lq(R+;H 1
p(�))

+ ‖e−γ0t ∂tv‖Lq(R+;Lp(�)) + ‖e−γ0tv‖Lq(R+;H 2
p(�))

≤ C(‖ρ0‖H 1
p(�)

+ ‖v0‖B2(1−1/q)
p,q (�)

)
.

5.2. Resolvent problem for λ in some compact subset

Thanks to Theorem 5.1 and Theorem 3.1, it remains to study (1.13) whenever λ is uniformly 
bounded from above and also from below. To this end, let us take some suitable positive constants 
λ′

1 and λ′
2 such that

0< λ1 − λ′
1 � 1, 0< λ′

2 − λ2 � 1,

with λ1 and λ2 given by Theorem 3.1 and Theorem 5.1 respectively. For fixed constants 
μ, ν, γ1, γ2 > 0, we set

Kε =
{
λ ∈C\{0} : (�λ+ γ1γ2

μ+ ν + ε)2 + �λ2 ≥ ( γ1γ2

μ+ ν + ε)2
}
,

D′
ε = {λ ∈�ε ∩Kε : λ′

1 ≤ |λ| ≤ λ′
2}.

(5.4)

In this section, we address the resolvent problem (1.13) whenever λ lies in D′
ε above. The main 

theorem of this section reads as follows:

Theorem 5.4. Suppose that � is a C2 exterior domain in RN for N ≥ 3. Let 0 < ε < π/2, 
N < r <∞, 1 <p ≤ r , and λ ∈D′ . Then there exist two families of operators
ε
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(
Pmid(λ),Vmid(λ)

) ∈ Hol
(
D′
ε;L

(
H 1,0
p (�);H 1,2

p (�)
))
,

such that (η, u) = (
Pmid(λ), Vmid(λ)

)
(d, f) ∈ H 1,2

p (�) is a unique solution of (1.13) for any 
λ ∈D′

ε and for any (d, f) ∈H 1,0
p (�). Moreover, we have

‖η‖H 1
p(�)

+ ‖u‖H 2
p(�)

≤ C(‖d‖H 1
p(�)

+ ‖f‖Lp(�)
)

for some constant C depending solely on λ′
1, λ

′
2, ε, p, r, μ, ν, γ1, γ2, N .

To check the solvability of (1.13) for λ in D′
ε , we will study some model problem in the 

bounded domain �5R in Subsection 5.2.1. Afterwards, we construct the solution operators by 
fixing λ, and then extend the result to the whole region D′

ε by the compactness of D′
ε.

5.2.1. Some model problem in �5R
Recall the notion in (1.15). We consider the following system in �5R for any fixed λ ∈�ε∩K :⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λη+ γ1div u = d in �5R,

γ1λu − Div
(
S(u)− γ2ηI

) = f in �5R,(
S(u)− γ2ηI

)
n� = 0 on �,(

S(u)− γ2ηI
)
n
S5R

= 0 on S5R.

(5.5)

The result for (5.5) can be established as follows.

Theorem 5.5. Let �, ε, p, r be given as in Theorem 5.4. Then there exist continuous linear op-
erators (

P0(λ),V0(λ)
) ∈ L

(
H 1,0
p (�5R);H 1,2

p (�5R)
)

for any fixed λ ∈�ε ∩K such that (η, u) = (
P0(λ), V0(λ)

)
(d, f) ∈H 1,2

p (�5R) is a unique solu-

tion of (5.5) for any (d, f) ∈H 1,0
p (�5R). Moreover, we have

‖η‖H 1
p(�5R)

+ ‖u‖H 2
p(�5R)

≤ Cλ
(‖d‖H 1

p(�5R)
+ ‖f‖Lp(�5R)

)
for some constant Cλ depending solely on λ, ε, p, r, μ, ν, γ1, γ2, N .

To solve (5.5), we consider⎧⎪⎪⎨⎪⎪⎩
λη+ γ1div u = d in �5R,

γ1λu − Div
(
S(u)− γ2ηI

) = f in �5R,(
S(u)− γ2ηI

)
n
∂�5R

= g on ∂�5R.

(5.6)

Applying Theorem 4.1, we have the following theorem for (5.6).
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Theorem 5.6. Let �, ε be given as in Theorem 5.4 and 1 <p <∞. Set that

Yp(�5R)=H 1
p(�5R)×Lp(�5R)

N ×H 1
p(�5R)

N .

Then there exist continuous linear operators(
P̃0(λ), Ṽ0(λ)

) ∈ L
(
Yp(�5R);H 1,2

p (�5R)
)

for any fixed λ ∈ �ε ∩K such that (η, u) = (
P̃0(λ), ̃V0(λ)

)
(d, f, g) ∈ H 1,2

p (�5R) is a (unique) 
solution of (5.6) for any (d, f, g) ∈ Yp(�5R). Moreover, we have

‖η‖H 1
p(�5R)

+ ‖u‖H 2
p(�5R)

≤ Cλ
(‖(d,g)‖H 1

p(�5R)
+ ‖f‖Lp(�5R)

)
for some constant Cλ depending solely on λ, ε, p, μ, ν, γ1, γ2, N .

Proof. Now, let us construct P̃0(λ) and ̃V0(λ). We reduce (5.6) by inserting η= λ−1(d−γ1div u)
into (5.6)2, {

λu − Div
(
αD(u)+ (β − α + γ2λ

−1)div u I
) = F in �5R,(

αD(u)+ (β − α+ γ2λ
−1)div uI

)
n
∂�5R

= G on ∂�5R,
(5.7)

with

(α,β)= γ−1
1 (μ, ν), F = γ−1

1 f − λ−1γ−1
1 γ2∇d, and G = γ−1

1 g + λ−1γ−1
1 γ2d n

∂�5R
. (5.8)

So we shall study the solvability of (5.7) in what follows.
According to Theorem 4.1 and Remark 4.2, there exists ζλ ∈ ε,λ,ζ0 for some ζ0 > 0 such that{

ζλu − Div
(
αD(u)+ (β − α + γ2λ

−1)div uI
) = F in �5R,(

αD(u)+ (β − α+ γ2λ
−1)div uI

)
n
∂�5R

= G on ∂�5R,
(5.9)

admits a solution Rζλ(F, G) = u ∈H 2
p(�5R)

N for any (F, G) ∈ Lp(�5R)
N ×H 1

p(�5R)
N . More-

over, we have

‖u‖H 2
p(�5R)

≤ Cλ(‖F‖Lp(�5R) + ‖G‖H 1
p(�5R)

). (5.10)

Next, we rewrite (5.9) by{
λu − Div

(
αD(u)+ (β − α + γ2λ

−1)div uI
) = F + (λ− ζλ)Rζλ(F,G) in �5R,(

αD(u)+ (β − α + γ2λ
−1)div uI

)
n
∂�5R

= G on ∂�5R,

and then denote

Tλ(F,G)=
(
(λ− ζλ)Rζλ(F,G),0

)
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for any (F, G) ∈ Lp(�5R)
N × H 1

p(�5R)
N . By the Rellich’s Theorem, we know that Tλ is 

compact on Lp(�5R)
N × H 1

p(�5R)
N . Furthermore, we claim that I + Tλ is invertible from 

Lp(�5R)
N ×H 1

p(�5R)
N into itself. By the existence of (I+Tλ)−1, u = Rζλ ◦ (I+Tλ)−1(F, G)

is a solution of (5.7). According to (5.8) and (5.10), we obtain

‖u‖H 2
p(�5R)

≤ Cλ
(‖d‖H 1

p(�5R)
+ ‖f‖Lp(�5R)

)
. (5.11)

Then the bound of η follows from (5.6)1 and (5.11).
At last, we prove the claim above. In fact, the existence of (I + Tλ)−1 is reduced to the 

injectivity of I+Tλ due to the Fredholm alternative theorem. So let us consider the homogeneous 
equation

(I + Tλ)(F0,G0)=
(
F0 + (λ− ζλ)Rζλ(F0,G0),G0

) = 0 (5.12)

for some (F0, G0) ∈ Lp(�5R)
N ×H 1

p(�5R)
N . Immediately, we see from (5.12) that G0 = 0, and 

that

F0 + (λ− ζλ)Rζλ(F0,0)= 0.

Now, set u0 = Rζλ(F0, 0) ∈H 2
p(�5R)

N , which satisfies

{
λu0 − Div

(
αD(u0)+ (β − α + γ2λ

−1)div u0I
) = 0 in �5R,(

αD(u0)+ (β − α + γ2λ
−1)div u0I

)
n
∂�5R

= 0 on ∂�5R.

By the discussion on (5.14) in the proof of Lemma 5.7, we can conclude that u0 = F0 = 0. This 
completes our proof for the injectivity of I + Tλ. �

The existence in Theorem 5.5 is immediate from the fixed point argument and Theorem 5.6. 
To handle the uniqueness issue in Theorem 5.5, we consider some (η, u) ∈ H 1,2

p (G) satisfying 
the following system: ⎧⎪⎪⎨⎪⎪⎩

λη+ γ1div u = 0 in G,

λγ1u − Div
(
S(u)− γ2ηI

) = 0 in G,(
S(u)− γ2ηI

)
n∂G = 0 on ∂G,

(5.13)

where G ∈ {�5R, B5R, �}, n∂G is the unit normal vector on the boundary ∂G, and n∂G = (I +
V)n∂G. Noting that η= −λ−1γ1div u, we obtain from (5.13)2,{

λu − Div
(
αD(u)+ (β − α + λ−1γ2)div uI

) = 0 in G,(
αD(u)+ (β − α + λ−1γ2)div uI

)
n∂G = 0 on ∂G,

(5.14)

with (α, β) = γ−1
1 (μ, ν). For (5.14), we can prove the following lemma, which also yields the 

uniqueness of (5.13).
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Lemma 5.7. Let 0 < ε < π/2, 1 < p <∞, and G ∈ {�5R, B5R, �}. Assume that u ∈H 1,2
p (G)

solves (5.14) for λ ∈�ε ∩K . Then u(y) = 0 for any y ∈G.

Proof. Step 1. We first consider the case p = 2. Taking the inner product (·, Ju)G for (5.14)1
and integration by parts yield that

0 =λ∥∥√
Ju

∥∥2
L2(G)

+ α

2

∫
G

D(u) : D(u) J dy + (β − α + γ2λ
−1)

∥∥√
J div u

∥∥2
L2(G)

(5.15)

=λA0 + αA1 + (α + β + γ2λ
−1)A2,

with

A0 = ∥∥√
Ju

∥∥2
L2(G)

, A1 =
∑

1≤i<j≤N

∥∥√
J D(u)ij

∥∥2
L2(G)

, A2 = ∥∥√
J div u

∥∥2
L2(G)

.

Now we take the real and imaginary parts of (5.15),

�λA0 + αA1 + (α + β + γ2|λ|−2�λ)A2 = 0, �λA0 − γ2|λ|−2�λA2 = 0. (5.16)

To see u = 0 from (5.16), it suffices to show A0 = 0. If �λ = 0, then �λ > 0 as λ ∈�ε . Thus 
the first equality in (5.16) gives us A0 = 0.

On the other hand, for �λ �= 0, we insert A0 = γ2|λ|−2A2 into the first equality in (5.16),

αA1 + (α + β + 2γ2|λ|−2�λ)A2 = 0.

Observe that A0 = 0 is equivalent to A2 = 0 as λ �= 0.

(1) (�λ �= 0 and �λ ≥ 0). If �λ ≥ 0, we have αA1 + (α + β)A2 ≤ 0, which yields that A1 =
A2 = 0.

(2) (�λ �= 0 and �λ < 0). By the definition of K , λ fulfils that

− (α + β)|λ|2
2γ2

<�λ < 0.

Hence α+ β + 2γ2|λ|−2�λ > 0, and then A1 =A2 = 0.

This completes the proof for p= 2.

Step 2. Now we assume that G =�5R or B5R . By Step 1 and the boundedness of G, we have 
the uniqueness for 2 ≤ p <∞. Suppose that 1 <p < 2. We take advantage of the hypoellipticity 
of (5.14). Namely, we rewrite (5.14) by{

λ�u − Div
(
αD(u)+ (β − α + λ−1γ2)div uI

) = (λ� − λ)u in G,(
αD(u)+ (β − α + λ−1γ )div uI

)
n = 0 on ∂G,
2 ∂G

187



Y. Shibata and X. Zhang Journal of Differential Equations 325 (2022) 150–205
for some large number λ� > 0. Notice that the embedding H 1
p(G) ↪→ Lq(G) for 0 < N/p −

N/q < 1. Then we see that u ∈H 2
q (G)

N . By applying this idea in finite times, we can prove that 
u ∈H 2

2 (G)
N .

Step 3. At last, we study (5.14) in �. We will see that u ∈ H 2
2 (�) by the hypoellipticity of 

(5.14). Recall the definition of ϕ in (3.5), and set w = ϕu. Then we have{
λw − Div

(
αD(w)+ (β − α+ λ−1γ2)div wI

) = fu in �5R,(
αD(w)+ (β − α + λ−1γ2)div wI

)
n
∂�5R

= 0 on ∂�5R,
(5.17)

with

fu = −Div U − (
αD(u)+ (β − α + λ−1γ2)div uI

)∇ϕ,
U = α(∇ϕ ⊗ u + u ⊗ ∇ϕ)+ (β − α + λ−1γ2)(∇ϕ · u)I.

Moreover, we have fu ∈ H 1
p(�5R)

N . Then the discussion in Step 2 implies that w = ϕu ∈
H 2

2 (�5R)
N for all 1 <p <∞. That is, u ∈H 2

2 (�b1)
N for 3R < b0 < b1 < 4R.

Next, we consider v =ψ∞u for ψ∞ in (3.5), which satisfies

λv − Div
(
αD(v)+ (β − α + λ−1γ2)div vI

) = gu in RN, (5.18)

with

gu = −Div Ũ − (
αD(u)+ (β − α + λ−1γ2)div uI

)∇ψ∞,

Ũ = α(∇ψ∞ ⊗ u + u ⊗ ∇ψ∞)+ (β − α+ λ−1γ2)(∇ψ∞ · u)I.

Then we have supp gu ⊂ �5R and ‖gu‖H 1
p(�5R)

is finite. Thus we can use Theorem 3.2 and 

the argument in Step 2 to get v = ψ∞u ∈ H 2
2 (R

N)N for all 1 < p < ∞. Then we have u ∈
H 2

2 (�\Bb1)
N by (3.5). This completes our proof. �

5.2.2. Solvability of (1.13) by fixing λ
Here we simplify the strategy in Subsection 3.2 to construct the solution operators of (1.13)

for λ ∈D′
ε .

Theorem 5.8. Let �, ε, p, r be given as in Theorem 5.4, and λ ∈D′
ε . Then there exist continuous 

linear operators (
Pmid(λ),Vmid(λ)

) ∈ L
(
H 1,0
p (�);H 1,2

p (�)
)

for any fixed λ ∈D′
ε such that (η, u) = (

Pmid(λ), Vmid(λ)
)
(d, f) ∈H 1,2

p (�) is a unique solution 
of (1.13) for any (d, f) ∈H 1,0

p (�). Moreover, we have

‖η‖H 1
p(�)

+ ‖u‖H 2
p(�)

≤ Cλ
(‖d‖H 1

p(�)
+ ‖f‖Lp(�)

)
for some constant Cλ depending solely on λ, ε, p, r, μ, ν, γ1, γ2, N .
188



Y. Shibata and X. Zhang Journal of Differential Equations 325 (2022) 150–205
Thanks to Lemma 5.7, we only focus on the constructing Pmid(λ) and Vmid(λ). By Theo-
rem 3.2 and Theorem 5.5, we introduce that for λ ∈D′

ε ,

(ηλ,uλ)=
(
P(λ),V(λ)

)
(ψ∞d,ψ∞f), (η�,u�)=

(
P0(λ)V0(λ)

)
(ψ0d,ψ0f),

η̃λ =�λ(d, f)= (1 − ϕ)ηλ + ϕ η�, ũλ = �λ(d, f)= (1 − ϕ)uλ + ϕ u�,

where ϕ, ψ0 and ψ∞ are given in (3.5). Then ̃ηλ and ̃uλ fulfil⎧⎪⎪⎨⎪⎪⎩
λη̃λ + γ1div ũλ = d +Dλ(d, f) in �,

γ1λ̃uλ − Div
(
S(̃uλ)− γ2η̃λI

) = f +Fλ(d, f) in �,(
S(̃uλ)− γ2η̃λI

)
n� = 0 on �,

where Vλ is defined in (3.13), and

Dλ(d, f)=γ1∇ϕ · (u� − uλ),

Fλ(d, f)=
((

S(uλ)− γ2ηλI
) − (

S(u�)− γ2η�I
))∇ϕ − Div Vλ(d, f).

Moreover, we have

Qλ(d, f)= (Dλ,Fλ)(d, f) ∈H 1,0
p (�), ∀ λ ∈D′

ε,

which is a compact operator on H 1,0
p (�) in view of the Rellich compactness theorem and

suppQλ(d, f)⊂ supp∇ϕ ⊂Db1,b2 = {x ∈� : b1 ≤ |x| ≤ b2}.
In addition, I +Qλ is invertible due to the following lemma.

Lemma 5.9. For any λ ∈D′
ε , I +Qλ has a bounded inverse (I +Qλ)−1 in L

(
H

1,0
p (�)

)
.

Proof. According to the compactness of Qλ and the Fredholm’s alternative theorem, it is 
sufficient to verify the injectivity of I + Qλ. For any (d, f) ∈ Ker (I + Qλ) ⊂ H

1,0
p (�), 

suppd, supp f ⊂Db1,b2 . Thus

(d, f)= (ψ∞d,ψ∞f)= (ψ0d,ψ0f).

By Theorem 3.2 and Theorem 5.5, we denote

(ηλ,uλ)=
(
P(λ),V(λ)

)
(d, f), and (η�,u�)=

(
P0(λ),V0(λ)

)
(d, f)

for all λ ∈D′
ε . Then (̃ηλ, ̃uλ) = (1 − ϕ)(ηλ, uλ) + ϕ(η�, u�) satisfies⎧⎪⎪⎨⎪⎪⎩

λη̃λ + γ1div ũλ = 0 in �,

γ1λ̃uλ − Div
(

S(̃uλ)− γ2η̃λI
) = 0 in �,(

S(̃u )− γ η̃ I
)
n = 0 on �.
λ 2 λ �
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Hence Lemma 5.7 yields that

(̃ηλ, ũλ)= (1 − ϕ)(ηλ,uλ)+ ϕ(η�,u�)= (0,0) in �, (5.19)

and that

η�(x)= 0, u� = 0 for |x| ≤ b1, ηλ(x)= 0, uλ = 0 for |x| ≥ b2.

Next, set that

(̃η�, ũ�)(x)=
{
(η�,u�)(x) for x ∈�5R \B2R,

0 for x ∈ B2R.

Then (ρ, v) = (̃η� − ηλ, ̃u� − uλ) satisfies

⎧⎪⎪⎨⎪⎪⎩
λρ + γ1div v = 0 in B5R,

γ1λv − Div
(
S(v)− γ2ρI

) = 0 in B5R,(
S(v)− γ2ρI

)
n
S5R

= 0 on S5R.

By modifying the proof of Lemma 5.7, we obtain that (ρ, v) = (0, 0) in B5R . In particular,

(η�,u�)= (ηλ,uλ) in Db1,b2 .

Then (5.19) implies that (ηλ, uλ) = (0, 0) in Db1,b2 , and (d, f) = (0, 0) for suppd, supp f ⊂
Db1,b2 . This completes our proof. �
Completing the proof of Theorem 5.4. By Theorem 5.8, we have

∥∥(
Pmid(λ),Vmid(λ)

)
(d, f)

∥∥
H

1,2
p (�)

≤ Cλ‖(d, f)‖H 1,0
p (�)

for any λ ∈D′
ε . Then

∥∥(
Pmid(ζ ),Vmid(ζ )

)
(d, f)

∥∥
H

1,2
p (�)

≤ Cλ‖(d, f)‖H 1,0
p (�)

for any ζ ∈ Brλ(λ) for some rλ > 0. As D′
ε is compact, we can choose finite λ1, . . . , λN0 ∈D′

ε

such that Dε ⊂ ∪N0
k=1Brλk

(λk). Then we have

∥∥(
Pmid(λ),Vmid(λ)

)
(d, f)

∥∥
H

1,2
p (�)

≤ C‖(d, f)‖
H

1,0
p (�)

for any λ ∈D′ . �
ε
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6. Lp-Lq estimates of the linearized problem

In this section, we will prove Lp-Lq estimates of (1.8). In next subsection, we show Theo-
rem 1.2 by using the results in sections 3 and 5. Then we review a preliminary result for some 
model problem in the whole space RN , which plays the key role in the proof of Theorem 1.1. At 
last, we derive the Lp-Lq decay estimates for (1.8) in subsection 6.3.

6.1. Local energy estimates

This short subsection is dedicated to the proof of Theorem 1.2. Without loss of generality, 
we take L = 5R. Recall the definition Kε and Dε , and choose 0 < ε < ε′ < π/2 such that 
λ′

1e
i(π−ε′) ∈Kε . Then we introduce

�= �+,2 ∪ �+,1 ∪ �+,0 ∪D+ ∪D− ∪ �−,0 ∪ �−,1 ∪ �−,2,

where �±,k , k = 0, 1, 2, D± are defined by

�+,2 = {λ= rei(π−ε′), r : ∞ → λ′
2}, �+,1 = {λ= rei(π−ε′), r : λ′

2 → λ′
1},

�+,0 = {λ= λ′
1 cos(π − ε′)+ is, s : λ′

1 sin(π − ε′)→ 0},
D+ = {λ= seiπ , s : λ′

1 cos ε′ → 0}, D− = {λ= se−iπ , s : 0 → λ′
1 cos ε′},

�−,0 = {λ= λ′
1 cos(−π + ε′)+ is, s : 0 → λ′

1 sin(−π + ε′)},
�−,1 = {λ= rei(−π+ε′), r : λ′

1 → λ′
2}, �−,2 = {λ= rei(−π+ε′), r : λ′

2 → ∞}.
Next, we denote that

T (t)(ρ0,v0)= 1

2πi

∫
�

eλt (λI +A�)−1(ρ0,v0) dλ=
2∑
k=0

Ik(t)+ J (t),

with

Ik(t)= 1

2πi

∫
�+,k∪�−,k

eλt (λI +A�)−1(ρ0,v0) dλ, k = 0,1,2,

J (t)= 1

2πi

∫
D+∪D−

eλt (λI +A�)−1(ρ0,v0) dλ.

By Theorem 5.4 and Theorem 5.1, it is not hard to see that

‖Ik′(t)‖H 1,2
p (�)

≤ Cε′e−(λ
′
k′ cos ε′)t‖(ρ0,v0)‖H 1,0

p (�)
, ∀ t ≥ 1, k′ = 1,2.

Thank to Theorem 3.1, I0 is bounded by

‖I0(t)‖H 1,2
p (�5R)

≤ Cε′e−(λ′
1 cos ε′)t‖(ρ0,v0)‖H 1,0

p (�)
, ∀ t ≥ 1.
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Now, let us study J (t). According to Theorem 3.1, we can rewrite J (t) = J0(t) +J1(t) +J2(t)

with

J0(t)= 1

2πi

∫
D+∪D−

eλtλN/2−1(logλ)σ(N)(0,V 0
λ )(ρ0,v0) dλ,

J1(t)= 1

2πi

∫
D+∪D−

eλtλN−2 logλ(M1
λ,V

1
λ )(ρ0,v0) dλ,

J2(t)= 1

2πi

∫
D+∪D−

eλt (M2
λ,V

2
λ )(ρ0,v0) dλ.

By the analyticity of operator (M2
λ, V

2
λ ) near D+ ∪ D−, we have J2(t) = 0. Moreover, direct 

calculations yield

‖J0(t)‖H 1,2
p (�5R)

≤ Cε′ t−N/2‖(ρ0,v0)‖H 1,0
p (�)

,

‖J1(t)‖H 1,2
p (�5R)

≤ Cε′ t−(N−1)‖(ρ0,v0)‖H 1,0
p (�)

, ∀ t ≥ 1.

Summing up all the bounds, we obtain that

‖T (t)(ρ0,v0)‖H 1,2
p (�5R)

≤ Cε′ t−N/2‖(ρ0,v0)‖H 1,0
p (�)

, ∀ t ≥ 1 and N ≥ 3.

At last, note that

∂kt T (t)(ρ0,v0)= 1

2πi

∫
�

eλtλk(λI +A�)−1(ρ0,v0) dλ.

By the similar calculations, we can obtain the desired estimates for the higher derivatives in 
Theorem 1.2.

6.2. Some result for the problem in RN⎧⎪⎪⎨⎪⎪⎩
∂tη+ γ1div u = 0 in RN ×R+,

γ1∂tu − Div
(
S(u)− γ2ηI

) = 0 in RN ×R+,

(η,u)|t=0 = (η0,u0) in RN.

(6.1)

For (6.1), we recall the following result proved in [17].

Theorem 6.1. [17, Theorems 2.3 and 2.4] There exist η0, η∞, u0, and u∞ such that (η, u) =
(η0 + η∞, u0 + u∞) solves (6.1), and the following assertions hold for non-negative integers 
�, m and n.
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(1) For all t ≥ 1, there exists a C = Cm,�,p,q > 0 such that∑
|α|=�

‖∂mt ∂αx (η0,u0)(t)‖Lp(RN) ≤ Ct−N(1/q−1/p)/2−(m+�)/2‖(η0,u0)‖Lq(RN)

with 1 ≤ q ≤ 2 ≤ p ≤ ∞. Moreover,∑
|α|=�

‖∂mt ∂αx (η0,u0)(t)‖Lp(RN) ≤ C‖(η0,u0)‖Lq(RN), ∀ 0< t ≤ 2,

for 1 ≤ q ≤ p ≤ ∞ and (p, q) �= (1, 1), (∞, ∞).
(2) Let (�)+ = � if � ≥ 0 and (�)+ = 0 if � < 0. Let 1 < p < ∞. Then, there exist positive 

constants C and c such that for any t > 0,∑
|α|=�

‖∂mt ∂αx η∞(t)‖Lp(RN) ≤ Ce−ct
(
t−n/2‖η0‖

H
(2m+�−n−2)+
p (RN)

+ ‖η0‖H�p(RN)

+ t−n/2‖u0‖
H
(2m+�−n−1)+
p (RN)

+ ‖u0‖
H
(�−1)+
p (RN)

)
,∑

|α|=�
‖∂mt ∂αx u∞(t)‖Lp(RN) ≤ Ce−ct

(
t−n/2‖η0‖

H
(2m+�−n−1)+
p (RN)

+ ‖η0‖
H
(�−1)+
p (RN)

+ t−n/2‖u0‖
H
(2m+�−n)+
p (RN)

+ ‖u0‖
H
(�−2)+
p (RN)

)
.

6.3. Proof of Theorem 1.1

To obtain the decay estimates of (ρ, v) = T (t)(ρ0, v0), we borrow the cut-off functions ϕ, ψ0
and ψ∞ in (3.5). The proof is mainly divided into two steps, where we treat the bound of (ρ, v)
in �5R and �\B5R respectively. For simplicity, we only check the Lp-Lq decay estimates for 
t ≥ 3 with the large time behaviour of the solutions involved. Afterwards, the bound for all t ≥ 1
can be obtained by refining the constant C in Theorem 1.1.

Step 1. In this part, we would like to verify the following estimate in �5R,

‖T (t)(ρ0,v0)‖H 1,2
p (�5R)

≤ Ct−N/(2q)‖|(ρ0,v0)‖|p,q, ∀ t ≥ 3. (6.2)

To prove (6.2), we introduce (η, u) by solving the following system:⎧⎪⎪⎨⎪⎪⎩
∂tη+ γ1div u = 0 in RN ×R+,

γ1∂tu − Div
(
S(u)− γ2ηI

) = 0 in RN ×R+,

(η,u)|t=0 = (ψ∞ρ0,ψ∞v0) in RN.

In addition, Theorem 6.1 and the definition of ψ∞ in (3.5) imply that

‖(η,u)(t)‖
H

1,2
p (�5R)

≤ Cp,R
(‖(η0,u0)(t)‖

H
1,2∞ (RN) + ‖(η∞,u∞)(t)‖

H
1,2
p (RN)

)
−N/(2q)

(6.3)

≤ Cp,q,R t ‖|(ρ0,v0)‖|p,q, ∀ t ≥ 1.
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Next, (θ, w) = (ρ, v) − (1 − ϕ)(η, u) fulfils that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂t θ + γ1div w = du in �×R+,

γ1∂tw − Div
(
S(w)− γ2θI

) = fη,u in �×R+,(
S(w)− γ2θI

)
n� = 0 on �×R+,

(θ,w)|t=0 = (ϕρ0, ϕv0) in �,

(6.4)

with

du = γ1∇ϕ · u, fη,u = −(
S(u)− γ2ηI

)∇ϕ + Div U,

U = −μ(u ⊗ ∇ϕ + ∇ϕ ⊗ u)− (ν −μ)(∇ϕ · u)I,

where we have used the fact that (1 − ϕ)V = 0 from (1.11) and (3.5). Clearly,

supp (du, fη,u,U)⊂Db1,b2 ⊂�5R.

Moreover, (6.3) yields that (du, fu,η) ∈H 1,1
p (�5R) with

‖(du, fu,η)(t)‖H 1,k
p (�5R)

≤ C‖(η,u)(t)‖
H
k,1+k
p (�5R)

≤ Cp,q,R t−N/(2q)‖|(ρ0,v0)‖|p,q, (6.5)

for k = 0, 1, and t ≥ 1.
By the definition of (θ, w) and (6.3), (6.2) holds true if one can show

‖(θ,w)(t)‖
H

1,2
p (�5R)

≤ Ct−N/(2q)‖|(ρ0,v0)‖|p,q, ∀ t ≥ 3. (6.6)

To obtain (6.6), we use the Duhamel principle,

(θ,w)(t)= T (t)(ϕρ0, ϕv0)+
t∫

0

T (t − s)(du, fη,u)(s) ds. (6.7)

As (ϕρ0, ϕv0) ∈Xp,5R(�), Theorem 1.2 yields that

‖T (t)(ϕρ0, ϕv0)‖H 1,2
p (�5R)

≤ Ct−N/2‖(ϕρ0, ϕv0)‖H 1,0
p (�)

≤ Ct−N/2‖(ρ0,v0)‖H 1,0
p (�)

(6.8)

for all t ≥ 1. To bound the second term on the right-hand side of (6.7), we write

t∫
0

T (t − s)(du, fη,u)(s) ds =
( 1∫

0

+
t−2∫
1

+
t∫

t−2

)
T (t − s)(du, fη,u)(s) ds

= I1(t)+ I2(t)+ I3(t), ∀ t ≥ 3,

and then we study Ik(t) k = 1, 2, 3, respectively in what follows.
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Bound of I1(t). Firstly, Theorem 6.1 yields that

‖(η,u)(t)‖
H

0,1
p (RN) ≤ C(t−1/2‖(ψ∞ρ0,ψ∞v0)‖Lp(RN) + ‖(ψ∞ρ0,ψ∞v0)‖Lq(RN)) (6.9)

≤ Ct−1/2‖|(ρ0,v0)‖|p,q for 0< t < 1.

Then, by Theorem 1.2 and (6.9), we have

‖I1(t)‖H 1,2
p (�5R)

≤ C
1∫

0

(t − s)−N/2‖(du, fη,u)(s)‖H 1,0
p (�5R)

ds (6.10)

≤ C
1∫

0

(t − s)−N/2‖(η,u)(s)‖
H

0,1
p (�5R)

ds

≤ Ct−N/2‖|(ρ0,v0)‖|p,q, ∀ t ≥ 3.

Bound of I2(t). According to Theorem 1.2 and (6.5), we have

‖I2(t)‖H 1,2
p (�5R)

≤ C
t−2∫
1

(t − s)−N/2s−N/(2q) ds‖|(ρ0,v0)‖|p,q . (6.11)

Note that

t−2∫
1

(t − s)−N/2s−N/(2q) ds ≤
( t/3∫

1

+
t−2∫
t/3

)
(t − s)−N/2s−N/(2q) ds

≤
t/3∫
1

(
(t + s)/2)−N/2

s−N/(2q) ds

+
t−2∫
t/3

(t − s)−N/2((t + s)/4)−N/(2q)
ds =A1(t)+A2(t).

For the bound of A1(t), we first assume that N/(2q) > 1, and obtain

A1(t)≤ CNt−N/2
t/3∫
1

s−N/(2q) ds ≤ Cq,N t−N/2.

Otherwise, if 0 <N/(2q) ≤ 1 for some N ≥ 3, then we have
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A1(t)≤ CN
t/3∫
1

s1+σ−N/(2q)

(t + s)N/2 s
−(1+σ) ds ≤ Cσ,q,N t−(N/2−1−σ+N/(2q)),

with 0 < σ < 1/2. Thus we have

A1(t)≤ Cq,N t−N/(2q) for all 1 ≤ q ≤ 2 and N ≥ 3.

On the other hand,

A2(t)≤ Cq,N t−N/(2q)
t−2∫
t/3

(t − s)−N/2 ds ≤ Cq,N t−N/(2q).

Now, combining the bounds of A1(t) and A2(t) above, we obtain

t−2∫
1

(t − s)−N/2s−N/(2q) ds ≤ Cq,N t−N/(2q),

which, together with (6.11), implies that

‖I2(t)‖H 1,2
p (�5R)

≤ Ct−N/(2q)‖|(ρ0,v0)‖|p,q, ∀ t ≥ 3. (6.12)

Bound of I3(t). By Theorem 5.3, we have

‖T (t)(d, f)‖
H

1,2
p (�)

≤
{
Ct−1‖(d, f)‖

H
1,0
p (�)

, ∀ (d, f) ∈H 1,0
p (�),

C‖(d, f)‖
H

1,2
p (�)

, ∀ (d, f) ∈Dp(A�),

for 0 < t < 2. Then by the interpolation, we see that

‖T (t)(d, f)‖
H

1,2
p (�)

≤ Ct−1/2‖(d, f)‖
H

1,1
p (�)

. (6.13)

Now, we obtain from (6.13) and (6.5) that

‖I3(t)‖H 1,2
p (�5R)

≤ C
t∫

t−2

(t − s)−1/2‖(du, fη,u)(s)‖H 1,1
p (�5R)

ds

≤ C
t∫

t−2

(t − s)−1/2s−N/(2q) ds‖|(ρ0,v0)‖|p,q

≤ Ct−N/(2q)‖|(ρ0,v0)‖|p,q, ∀ t ≥ 3.

(6.14)

Finally, we can conclude the claim (6.6) by summing up (6.8), (6.10), (6.12) and (6.14). This 
completes the proof of (6.2).
196



Y. Shibata and X. Zhang Journal of Differential Equations 325 (2022) 150–205
Step 2. Let us study the bound of (ρ, v) = T (t)(ρ0, v0) near the area �\B5R by holding (6.3). 
Recall the definition of ψ∞ in (3.5). Then (ρ̃, ̃v) = (ψ∞ρ, ψ∞v) can be regarded as a solution 
of ⎧⎪⎪⎨⎪⎪⎩

∂t ρ̃ + γ1div ṽ = d̃ in RN ×R+,

γ1∂t ṽ − Div
(
S(̃v)− γ2ρ̃I

) = f̃ in RN ×R+,

(ρ̃, ṽ)|t=0 = (ψ∞ρ0,ψ∞v0) in RN,

(6.15)

with

d̃ = γ1∇ψ∞ · v, f̃ = −(
S(v)− γ2ρI

)∇ψ∞ − Div Ṽ

Ṽ = μ(v ⊗ ∇ψ∞ + ∇ψ∞ ⊗ v)+ (ν −μ)(∇ψ∞ · v) I.

Moreover, we have supp (d̃, ̃f) ⊂�5R and

∥∥∣∣(d̃ ,̃ f)(t)∥∥∣∣
p,q

≤ C‖(ρ,v)(t)‖
H

0,1
p (�5R)∩H 0,1

q (�5R)
≤ Cp,q,R‖(ρ,v)(t)‖

H
0,1
p (�5R)

for any t > 0 and 1 ≤ q ≤ 2 ≤ p <∞. Similar to (6.13), we can conclude

‖T (t)(ρ0,v0)‖H 1,1
p (�)

≤ Ct−1/2‖(ρ0,v0)‖H 1,0
p (�)

(0< t < 3) (6.16)

from the following inequalities in Theorem 5.3:

‖T (t)(ρ0,v0)‖H 1,0
p (�)

≤ C‖(ρ0,v0)‖H 1,0
p (�)

, ‖T (t)(ρ0,v0)‖H 1,2
p (�)

≤ Ct−1‖(ρ0,v0)‖H 1,0
p (�)

.

Thus (6.16) and (6.2) yield that3

∥∥∣∣(d̃ ,̃ f)(t)∥∥∣∣
p,q

≤
{
Ct−1/2‖(ρ0,v0)‖H 1,0

p (�)
, for 0< t < 2,

Ct−N/(2q)‖|(ρ0,v0)‖|p,q, for t ≥ 2.
(6.17)

According to Theorem 3.2, we denote {T̃ (t)}t≥0 for the (analytic) semigroup associated to 
(6.15). Then the Duhamel principle furnishes

(ρ̃, ṽ)(t)= T̃ (t)(ψ∞ρ0,ψ∞v0)+
t∫

0

T̃ (t − s)(d̃ ,̃ f)(s) ds. (6.18)

Applying Theorem 6.1, we obtain for t ≥ 1,

3 Without loss of generality, we can divide the time interval R+ by t = 2, as the bound of (d̃, ̃f)(t) for t ∈ [2, 3] is 
uniform up to some constant C.
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‖T̃ (t)(ψ∞ρ0,ψ∞v0)‖Lp(RN) ≤ Cp,q t−(N/q−N/p)/2‖|(ρ0,v0)‖|p,q,
‖∇T̃ (t)(ψ∞ρ0,ψ∞v0)‖Lp(RN) ≤ Cp,q t−(N/q−N/p)/2−1/2‖|(ρ0,v0)‖|p,q, (6.19)

‖∇2PvT̃ (t)(ψ∞ρ0,ψ∞v0)‖Lp(RN) ≤ Cp,q t−(N/q−N/p)/2−1‖|(ρ0,v0)‖|p,q .

Next, to study the second term on the right-hand side of (6.18), we write

t∫
0

T̃ (t − s)(d̃ ,̃ f)(s) ds =
( 2∫

0

+
t−1∫
2

+
t∫

t−1

)
T̃ (t − s)(d̃ ,̃ f)(s) ds

= Ĩ1(t)+ Ĩ2(t)+ Ĩ3(t), ∀ t ≥ 3.

Bound of Ĩ1(t). For 0 ≤ s ≤ 2 and t ≥ 3, we have (t − s) ≥ (t + s)/5. Then (6.19) and (6.17)
yield for t ≥ 3,

‖Ĩ1(t)‖Lp(RN) ≤ C
2∫

0

(t − s)−(N/q−N/p)/2s−1/2 ds ‖(ρ0,v0)‖H 1,0
p (�)

≤ Ct−(N/q−N/p)/2‖(ρ0,v0)‖H 1,0
p (�)

,

‖∇ Ĩ1(t)‖Lp(RN) ≤ C
2∫

0

(t − s)−(N/q−N/p)/2−1/2s−1/2 ds ‖(ρ0,v0)‖H 1,0
p (�)

(6.20)

≤ Ct−(N/q−N/p)/2−1/2‖(ρ0,v0)‖H 1,0
p (�)

,

‖∇2PvĨ1(t)‖Lp(RN) ≤ C
2∫

0

(t − s)−(N/q−N/p)/2−1s−1/2 ds ‖(ρ0,v0)‖H 1,0
p (�)

≤ Ct−(N/q−N/p)/2−1‖(ρ0,v0)‖H 1,0
p (�)

.

Bound of Ĩ2(t). As supp (d̃, ̃f) ⊂�5R , observe that∥∥∣∣(d̃ ,̃ f)(t)∥∥∣∣
p,1 ≤ Cq,R

∥∥∣∣(d̃ ,̃ f)(t)∥∥∣∣
p,q
, ∀ t > 0.

Then (6.19) and (6.17) imply for t ≥ 3,

‖Ĩ2(t)‖Lp(RN) ≤ C
t−1∫
2

(t − s)−(N−N/p)/2s−N/(2q) ds‖|(ρ0,v0)‖|p,q,

‖∇ Ĩ2(t)‖Lp(RN) ≤ C
t−1∫
(t − s)−(N−N/p)/2−1/2s−N/(2q) ds‖|(ρ0,v0)‖|p,q, (6.21)
2
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‖∇2PvĨ2(t)‖Lp(RN) ≤ C
t−1∫
2

(t − s)−(N−N/p)/2−1s−N/(2q) ds‖|(ρ0,v0)‖|p,q .

To continue the discussions, we write for κ > 0,

t−1∫
2

(t − s)−κs−N/(2q) ds =
( 2t/3∫

2

+
t−1∫

2t/3

)
(t − s)−κs−N/(2q) ds

≤
2t/3∫
2

(
(t + s)/5)−κ

s−N/(2q) ds

+
t−1∫

2t/3

(t − s)−κ(2(t + s)/5)−N/(2q)
ds.

Then the similar argument to the bound (6.11) gives us

‖Ĩ2(t)‖Lp(RN) ≤ Ct−(N/q−N/p)/2‖|(ρ0,v0)‖|p,q,
‖∇ Ĩ2(t)‖Lp(RN) ≤ Ct−σ1(p,q,N)‖|(ρ0,v0)‖|p,q, (6.22)

‖∇2PvĨ2(t)‖Lp(RN) ≤ Ct−σ2(p,q,N)‖|(ρ0,v0)‖|p,q, ∀ t ≥ 3.

Bound of Ĩ3(t). According to Theorem 3.2 and the standard semigroup theory, we have

‖T̃ (t)(d, f)‖
H

1,0
p (RN) ≤ C‖(d, f)‖

H
1,0
p (RN),

‖∇T̃ (t)(d, f)‖Lp(RN) ≤ Ct−1/2‖(d, f)‖Lp(RN), (6.23)

‖∇2PvT̃ (t)(d, f)‖Lp(RN) ≤ Ct−1/2‖(d, f)‖
H

1,1
p (RN),

for 0 < t < 2 and (d, f) ∈H 1,1
p (RN). In addition, (6.17) and (6.2) yield that

‖(d̃ ,̃ f)(s)‖
H

1,1
p (RN) ≤ C

(‖(d̃ ,̃ f)(s)‖
H

1,0
p (�5R)

+ ‖v(t)‖H 2
p(�5R)

) ≤ Ct−N/(2q)‖|(ρ0,v0)‖|p,q
(6.24)

for all s ≥ 2. Thus we obtain from (6.23) and (6.24) that

‖Ĩ3(t)‖Lp(RN) ≤ C
t∫

t−1

‖(d̃ ,̃ f)(s)‖
H

1,0
p (RN) ds ≤ Ct−N/(2q)‖|(ρ0,v0)‖|p,q,

‖∇ Ĩ3(t)‖Lp(RN) ≤ C
t∫
(t − s)−1/2‖(d̃ ,̃ f)(s)‖Lp(RN) ds (6.25)
t−1
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≤ Ct−N/(2q)‖|(ρ0,v0)‖|p,q,

‖∇2PvĨ3(t)‖Lp(RN) ≤ C
t∫

t−1

(t − s)−1/2‖(d̃ ,̃ f)(s)‖
H

1,1
p (RN) ds

≤ Ct−N/(2q)‖|(ρ0,v0)‖|p,q, ∀ t ≥ 3.

At last, we combine (6.19), (6.20), (6.22) and (6.25) to obtain

‖(ρ̃, ṽ)(t)‖Lp(RN) ≤ Ct−(N/q−N/p)/2‖|(ρ0,v0)‖|p,q,
‖∇(ρ̃, ṽ)(t)‖Lp(RN) ≤ Ct−σ1(p,q,N)‖|(ρ0,v0)‖|p,q, (6.26)

‖∇ 2̃v(t)‖Lp(RN) ≤ Ct−σ2(p,q,N)‖|(ρ0,v0)‖|p,q, ∀ t ≥ 3.

Furthermore, we immediately obtain from (6.26) that

‖(ρ,v)(t)‖Lp(�\B5R) ≤ Ct−(N/q−N/p)/2‖|(ρ0,v0)‖|p,q,
‖∇(ρ,v)(t)‖Lp(�\B5R) ≤ Ct−σ1(p,q,N)‖|(ρ0,v0)‖|p,q, (6.27)

‖∇2v(t)‖Lp(�\B5R) ≤ Ct−σ2(p,q,N)‖|(ρ0,v0)‖|p,q
Then (6.2) and (6.26) yield the desired bound for t ≥ 3. This completes the proof of Theorem 1.1.
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Appendix A. Principal of the linearization

A.1. Formulation via partial Lagrange coordinates

Let us define

x =Xu(y, t)= y +
t∫

0

κ(y)u(y, s) ds ∈�t ∪ �t , ∀ y ∈�∪ �, (A.1)

for some vector u = u(·, s) defined in � ∪�, and 0 ≤ t ≤ T . By assuming the condition

T∫
‖κ(·)u(·, s)‖H 1∞(�) ds ≤ δ < 1/2 (A.2)
0
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for small constant δ > 0, we denote X−1
u (·, t) for the inverse of Xu(·, t) in (A.1). Suppose that

ρ(x, t)= η(X−1
u (x, t), t

)
, v(x, t)= u

(
X−1

u (x, t), t
)
, �t =

{
x =Xu(y, t) | y ∈�}

,

solve (1.1) for some function η defined in �. We will derive the equations formally satisfied by 
(ρ, u) in � in what follows.

Assume that � is a compact hypersurface of C2 class. The kinematic (non-slip) condition 
V�t = v · nt is automatically satisfied under the transformation Xu, because κ = 1 near the 
boundary �. The calculations for the rest equations in (1.1) are very similar to the full Lagrangian 
transformation case. Denote that

∂x

∂y
= ∇yXu = I +

t∫
0

∇y(κ(y)u(y, s)) ds,

and Ju = det(∇yXu). Then by the assumption (A.2), there exists the inverse of ∇yXu, that is,

∂y

∂x
= (∇yXu

)−1 = I + V0(k), k =
t∫

0

∇y(κ(y)u(y, s)) ds,

where V0(k) = [V0ij (k)]N×N is a matrix-valued function given by

V0(k)=
∞∑
j=1

(−k)j .

In particular, V0(0) = 0. By the chain rule, we introduce the gradient, divergence and stress 
tensor operators with respect to the transformation (A.1),

∇u = (
I + V0(k)

)∇y, div uu = (
I + V0(k)

) : ∇yu = J−1div y
(
J
(
I + V0(k)

)�u
)
,

Du(u)=
(
I + V0(k)

)∇u + (∇u)�
(
I + V0(k)

)� = D(u)+ V0(k)∇u + (
V0(k)∇u

)�
, (A.3)

Su(u)= μDu(u)+ (ν −μ)(div uu)I, Div uA = J−1
u Div y

(
JuA

(
I + V0(k)

))
.

In addition, the ith component of Div uA can be also written via

(Div uA)i =
N∑

j,k=1

[
I + V0(k)

]
jk
∂kAij , ∀ i = 1, . . . ,N. (A.4)

In particular, Div uA = 0 if A is a constant matrix. Then according to (A.3), (ρ, u) fulfils
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tη+ (1 − κ)u · ∇uη+ (ρe + η)div uu = 0 in �× (0, T ),
(ρe + η)(∂tu + (1 − κ)u · ∇uu

) − Div u
(
Su(u)− P(ρe + η)I) = 0 in �× (0, T ),(

Su(u)− P(ρe + η)I)nu = −P(ρe)nu on �× (0, T ),
(η,u)|t=0 = (ρ0,v0) in �,

(A.5)
where n� denotes the unit normal vector to �, and nu is defined by

nu =
(
I + V0(k)

)
n�∣∣(I + V0(k)

)
n�

∣∣ ·
It is clear that the boundary condition in (A.5) is equivalent to(

Su(u)−
(
P(ρe + η)− P(ρe)

)
I
)(

I + V0(k)
)
n� = 0. (A.6)

A.2. Modified equations from (A.5)

In this subsection, we derive another linearized form of (1.1) from (A.5). We assume that

k =
t∫

0

∇y(κ(y)u(y, s)) ds

satisfies (A.2). Given a smooth function

G=G(k) : RN×N →R,

we use Taylor’s theorem

G(k)=G
( T∫

0

∇y
(
κ(y)u(y, s)

)
ds −

T∫
t

∇y
(
κ(y)u(y, s)

)
ds

)

=G(K)+
∑

|�|=1, β∈NN2
0

R�

( T∫
t

∇y
(
κ(y)u(y, s)

)
ds

)�
=G(K)+ G̃,

with K = ∫ T
0 ∇y

(
κ(y)u(y, s)

)
ds, G̃=G(k) −G(K), and R� given by

R� = −
1∫

0

(∂�G)
(

K − θ
T∫
t

∇y
(
κ(y)u(y, s)

)
ds

)
dθ.

With this notation K, we introduce that
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J (K)=
(

det
(
I + V0(K)

))−1 = det
(∇yXu(T , y)

)
, div T u = (

I + V0(K)
) : ∇yu,

DT (u)=
(
I + V0(K)

)∇u + (∇u)�
(
I + V0(K)

)�
, (A.7)

ST (u)= μDT (u)+ (ν −μ)(div T u)I, Div TA = J (K)−1Div y
(
J (K)A

(
I + V0(K)

))
.

Then the symbols in (A.3) are rewritten by noting (A.4) as follows,

div uu = div T u + Ṽ0 : ∇yu, Du(u)= DT (u)+ Ṽ0∇u + (Ṽ0∇u)�,

Su(u)= ST (u)+μ
(
Ṽ0∇u + (Ṽ0∇u)�

) + (ν −μ)(Ṽ0 : ∇yu)I, (A.8)

Div uA = Div TA + (Ṽ0∇|A),

where the ith component of (B∇|A) equals to 
∑
j,k Bjk∂kAij .

On the other hand, as P(·) is smooth, we obtain from Taylor’s theorem that

P(ρe + η)− P(ρe)= P ′(ρe)η+ η2

2

1∫
0

P ′′(ρe + θη)(1 − θ) dθ. (A.9)

Then we note from (A.9) that

Su(u)−
(
P(ρe + η)− P(ρe)

)
I = ST (u)− P ′(ρe)ηI + V1(η,u), (A.10)

with V1(η, u) given by

V1(η,u)=μ
(
Ṽ0∇u + (Ṽ0∇u)�

) + (ν −μ)(Ṽ0 : ∇yu)I

+ η2

2

1∫
0

P ′′(ρe + θη)(1 − θ) dθI.

Then thanks to (A.8) and (A.10), (A.5) with (A.6) can be reformulated by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tη+ ρe div T u = f (η,u) in �× (0, T ),
ρe∂tu − Div T

(
ST (u)− P ′(ρe)ηI

) = g(η,u) in �× (0, T ),(
ST (u)− P ′(ρe)ηI

)(
I + V0(K)

)
n = h(η,u) in �× (0, T ),

(η,u)|t=0 = (ρ0,v0),

(A.11)

where the nonlinear terms on the r.h.s. of (A.11) are given by

f (η,u)= −(1 − κ)u · ∇uη− η div uu − ρeṼ0 : ∇yu,

g(η,u)= −η∂tu − (ρe + η)(1 − κ)u · ∇uu

+ Div uV1(η,u)+
(
Ṽ0∇|ST (u)− P ′(ρe)ηI

)
,
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h(η,u)= −
(

Su(u)−
(
P ′(ρe)η+ η2

2

1∫
0

P ′′(ρe + θη)(1 − θ) dθ)I
)

Ṽ0n

− V1(η,u)
(
I + V0(K)

)
n.

At last, it is easy to see (1.8) from (A.11).

References

[1] F. Charve, R. Danchin, A global existence result for the compressible Navier-Stokes equations in the critical Lp
framework, Arch. Ration. Mech. Anal. 198 (1) (2010) 233–271.

[2] Q. Chen, C. Miao, Z. Zhang, Global well-posedness for compressible Navier-Stokes equations with highly oscillat-
ing initial velocity, Commun. Pure Appl. Math. 63 (9) (2010) 1173–1224.

[3] W. Dan, Y. Shibata, On the Lq–Lr estimates of the Stokes semigroup in a two-dimensional exterior domain, J. Math. 
Soc. Jpn. 51 (1) (1999) 181–207.

[4] R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math. 141 (3) 
(2000) 579–614.

[5] R. Danchin, J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical Lp
framework, Arch. Ration. Mech. Anal. 224 (1) (2017) 53–90.

[6] Y. Enomoto, L. von Below, Y. Shibata, On some free boundary problem for a compressible barotropic viscous fluid 
flow, Ann. Univ. Ferrara, Sez. 7: Sci. Mat. 60 (1) (2014) 55–89.

[7] Y. Enomoto, Y. Shibata, On some decay properties of Stokes semigroup of compressible viscous fluid flow in a 
2-dimensional exterior domain, J. Differ. Equ. 252 (12) (2012) 6214–6249.

[8] Y. Enomoto, Y. Shibata, On the R-sectoriality and the initial boundary value problem for the viscous compressible 
fluid flow, Funkc. Ekvacioj 56 (3) (2013) 441–505.

[9] D. Götz, Y. Shibata, On the R-boundedness of the solution operators in the study of the compressible viscous fluid 
flow with free boundary conditions, Asymptot. Anal. 90 (3–4) (2014) 207–236.

[10] B. Haspot, Existence of global strong solutions in critical spaces for barotropic viscous fluids, Arch. Ration. Mech. 
Anal. 202 (2) (2011) 427–460.

[11] T. Hishida, Y. Shibata, Lp-Lq estimate of the Stokes operator and Navier-Stokes flows in the exterior of a rotating 
obstacle, Arch. Ration. Mech. Anal. 193 (2) (2009) 339–421.

[12] D. Hoff, K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, 
Indiana Univ. Math. J. 44 (2) (1995) 603–676.

[13] D. Hoff, K. Zumbrun, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. Angew. 
Math. Phys. 48 (4) (1997) 597–614.

[14] H. Iwashita, Lq -Lr estimates for solutions of the nonstationary Stokes equations in an exterior domain and the 
Navier-Stokes initial value problems in Lq spaces, Math. Ann. 285 (2) (1989) 265–288.

[15] Y. Kagei, T. Kobayashi, Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half 
space, Arch. Ration. Mech. Anal. 177 (2) (2005) 231–330.

[16] T. Kobayashi, Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and 
heat-conductive gases in an exterior domain in R3, Commun. Math. Phys. 200 (3) (1999) 621–659.

[17] T. Kobayashi, Y. Shibata, Remark on the rate of decay of solutions to linearized compressible Navier-Stokes equa-
tions, Pac. J. Math. 207 (1) (2002) 199–234.

[18] T. Kubo, The Stokes and Navier-Stokes equations in an aperture domain, J. Math. Soc. Jpn. 59 (3) (2007) 837–859.
[19] H.-L. Li, T. Zhang, Large time behavior of isentropic compressible Navier-Stokes system in R3, Math. Methods 

Appl. Sci. 34 (6) (2011) 670–682.
[20] P.-L. Lions, Mathematical topics in fluid mechanics, vol. 2, in: Compressible Models, in: Oxford Lecture Series in 

Mathematics and Its Applications, vol. 10, The Clarendon Press, Oxford University Press/Oxford Science Publica-
tions, New York, 1998.

[21] P. Maremonti, V.A. Solonnikov, On nonstationary Stokes problem in exterior domains, Ann. Sc. Norm. Super. Pisa, 
Cl. Sci. (4) 24 (3) (1997) 395–449.

[22] A. Matsumura, T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-
conductive fluids, Proc. Jpn. Acad., Ser. A, Math. Sci. 55 (9) (1979) 337–342.

[23] A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive 
gases, J. Math. Kyoto Univ. 20 (1) (1980) 67–104.
204

http://refhub.elsevier.com/S0022-0396(22)00256-X/bib2A7950F6EB9C45729EF18E2B7A349216s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib2A7950F6EB9C45729EF18E2B7A349216s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib6F94B7906F1996D158306D2AB082F4CDs1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib6F94B7906F1996D158306D2AB082F4CDs1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib301980F1959E7326D04C623BC9414C9Cs1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib301980F1959E7326D04C623BC9414C9Cs1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib35EFF3BD97AECE42B6429E57A09DEDE9s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib35EFF3BD97AECE42B6429E57A09DEDE9s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib5475C73FA075B954DF355121D2242151s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib5475C73FA075B954DF355121D2242151s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib02A8364C4252C968F537E784467024E8s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib02A8364C4252C968F537E784467024E8s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibAF926EA2AAC4B92BF562DE42C6D7AE2Cs1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibAF926EA2AAC4B92BF562DE42C6D7AE2Cs1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib687442B03669B3650207DE124BD4C1F7s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib687442B03669B3650207DE124BD4C1F7s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib2B42844A6F4332DED3B16D8181D48A3Ds1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib2B42844A6F4332DED3B16D8181D48A3Ds1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib9F1CB701D8354C97DE72055303D5CEEAs1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib9F1CB701D8354C97DE72055303D5CEEAs1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibC740146A452F4C234AC597085AA75193s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibC740146A452F4C234AC597085AA75193s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibFF0B8EBB885727DFF220407BC244BB21s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibFF0B8EBB885727DFF220407BC244BB21s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib54F5B8F3EFBB9AE8DC1FE3F9081238B5s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib54F5B8F3EFBB9AE8DC1FE3F9081238B5s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibF7B4236C21AE296B185847A4F6E14DA4s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibF7B4236C21AE296B185847A4F6E14DA4s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibDF45F4A2675805A2AF0917A47DE35C1Es1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibDF45F4A2675805A2AF0917A47DE35C1Es1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib5C43465A0CD8C3938C50093AF3877271s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib5C43465A0CD8C3938C50093AF3877271s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibA1A5641AD98E09BDE388204D7B89B2ECs1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibA1A5641AD98E09BDE388204D7B89B2ECs1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibF7A047331E5547C76B08403C652ED712s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibF805C4D9A4BA6E9DEC442993B3184037s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibF805C4D9A4BA6E9DEC442993B3184037s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib054AA882B34BE86D18C2534FD6EC7B28s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib054AA882B34BE86D18C2534FD6EC7B28s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib054AA882B34BE86D18C2534FD6EC7B28s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib857D1C3C050170D738E32E5110534047s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib857D1C3C050170D738E32E5110534047s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib68AFE5F43C9F2469AD45E1AAAD53B4A3s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib68AFE5F43C9F2469AD45E1AAAD53B4A3s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib1FB5FE1331BAA5F8D46E7938C3D427CAs1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib1FB5FE1331BAA5F8D46E7938C3D427CAs1


Y. Shibata and X. Zhang Journal of Differential Equations 325 (2022) 150–205
[24] M. Okita, Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations, 
J. Differ. Equ. 257 (10) (2014) 3850–3867.

[25] G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations, Nonlinear Anal. 9 (5) 
(1985) 399–418.

[26] Y. Shibata, On the Lp-Lq decay estimate for the Stokes equations with free boundary conditions in an exterior 
domain, Asymptot. Anal. 107 (1–2) (2018) 33–72.

[27] Y. Shibata, R Boundedness, Maximal Regularity and Free Boundary Problems for the Navier Stokes Equations, 
Springer International Publishing, Cham, 2020, pp. 193–462.

[28] Y. Shibata, New thought on Matsumura-Nishida theory in the Lp -Lq maximal regularity framework, to appear in 
J. Math. Fluid Mech., arXiv :2107 .11944v1.

[29] Y. Shibata, Y. Enomoto, Global existence of classical solutions and optimal decay rate for compressible flows via 
the theory of semigroups, in: Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, 
2018, pp. 2085–2181.

[30] Y. Shibata, S. Shimizu, Decay properties of the Stokes semigroup in exterior domains with Neumann boundary 
condition, J. Math. Soc. Jpn. 59 (1) (2007) 1–34.
205

http://refhub.elsevier.com/S0022-0396(22)00256-X/bibD74F303529C228E13DAF85A8DCF87A6Ds1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibD74F303529C228E13DAF85A8DCF87A6Ds1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibF2F4FFEE6BA4FC4FFBE6C9BED25405F7s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibF2F4FFEE6BA4FC4FFBE6C9BED25405F7s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib1CAA40D26FAC9240101EEB7FA63BC826s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib1CAA40D26FAC9240101EEB7FA63BC826s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibDD5EA2DDCA43A139997878170C6026BBs1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bibDD5EA2DDCA43A139997878170C6026BBs1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib318B5A9631A45104C00346454ED8DE61s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib318B5A9631A45104C00346454ED8DE61s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib1B276BEB636A2EF85B753DD001596E55s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib1B276BEB636A2EF85B753DD001596E55s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib1B276BEB636A2EF85B753DD001596E55s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib18E6D0D8154441F98C3C938D55FB79D9s1
http://refhub.elsevier.com/S0022-0396(22)00256-X/bib18E6D0D8154441F98C3C938D55FB79D9s1

	The Lp-Lq decay estimate for the multidimensional compressible flow with free surface in the exterior domain
	1 Introduction
	1.1 Model
	1.2 Main result

	2 Important propositions for local energy decay
	2.1 The divergence equation with variable coefficients
	2.2 Modified Stokes and reduced Stokes operators
	2.2.1 Analysis of (2.6) for λ∕=0
	2.2.2 Reduced Stokes problem from (2.6)
	2.2.3 Analysis of (2.6) for λ=0

	2.3 Modified compressible model problem

	3 Resolvent problem for λ near zero
	3.1 Resolvent problem in RN
	3.2 Construction of the parametrix
	3.3 Proof of Lemma 3.5

	4 Some auxiliary problem
	5 Resolvent problem for λ away from zero
	5.1 Resolvent problem for large λ
	5.2 Resolvent problem for λ in some compact subset
	5.2.1 Some model problem in Ω5R
	5.2.2 Solvability of (1.13) by fixing λ


	6 Lp-Lq estimates of the linearized problem
	6.1 Local energy estimates
	6.2 Some result for the problem in RN
	6.3 Proof of Theorem 1.1

	Acknowledgment
	Appendix A Principal of the linearization
	A.1 Formulation via partial Lagrange coordinates
	A.2 Modified equations from (A.5)

	References


