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Abstract. This paper is devoted to proving the global well-posedness of initial-boundary value problem for Navier–Stokes
equations describing the motion of viscous, compressible, barotropic fluid flows in a three dimensional exterior domain
with non-slip boundary conditions. This was first proved by an excellent paper due to Matsumura and Nishida (Commun
Math Phys 89:445–464, 1983). In [10], they used energy method and their requirement was that space derivatives of the
mass density up to third order and space derivatives of the velocity fields up to fourth order belong to L2 in space-time,
detailed statement of Matsumura and Nishida theorem is given in Theorem 1 of Sect. 1 of context. This requirement is
essentially used to estimate the L∞ norm of necessary order of derivatives in order to enclose the iteration scheme with the
help of Sobolev inequalities and also to treat the material derivatives of the mass density. On the other hand, this paper
gives the global wellposedness of the same problem as in [10] in Lp (1 < p ≤ 2) in time and L2 ∩ L6 in space maximal
regularity class, which is an improvement of the Matsumura and Nishida theory in [10] from the point of view of the minimal
requirement of the regularity of solutions. In fact, after changing the material derivatives to time derivatives by Lagrange
transformation, enough estimates obtained by combination of the maximal Lp (1 < p ≤ 2) in time and L2 ∩ L6 in space
regularity and Lp–Lq decay estimate of the Stokes equations with non-slip conditions in the compressible viscous fluid flow
case enable us to use the standard Banach’s fixed point argument. Moreover, one of the purposes of this paper is to present a
framework to prove the Lp–Lq maximal regularity for parabolic-hyperbolic type equations with non-homogeneous boundary
conditions and how to combine the maximal Lp–Lq regularity and Lp–Lq decay estimates of linearized equations to prove
the global well-posedness of quasilinear problems in unbounded domains, which gives a new thought of proving the global
well-posedness of initial-boundary value problems for systems of parabolic or parabolic-hyperbolic equations appearing in
mathematical physics.
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1. Introduction

Matsumura and Nishida [10] proved the existence of unique solutions of equations governing the flow of
viscous, compressible, and heat conduction fluids in an exterior domain of 3 dimensional Euclidean space
R

3 for all times, provided the initial data are sufficiently small. Although Matsumura and Nishida [10]
considered the viscous, barotropic, and heat conductive fluid, in this paper we only consider the viscous,
compressible, barotropic fluid for simplicity and reprove the Matsumura and Nishida theory in view of
the Lp in time (1 < p ≤ 2) and L2 ∩ L6 in space maximal regularity theorem.

To describe in more detail, we start with description of equations considered in this paper. Let Ω
be a three dimensional exterior domain, that is the complement, Ωc, of Ω is a bounded domain in the
three dimensional Euclidean space R

3. Let Γ be the boundary of Ω, which is a compact C2 hypersurface.
Let ρ = ρ(x, t) and v = (v1(x, t), v2(x, t), v3(x, t))� be respective the mass density and the velocity field,
where M� denotes the transposed M , t is a time variable and x = (x1, x2, x3) ∈ Ω. Let p = p(ρ) be the
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fluid pressure, which is a smooth function defined on (0,∞) such that p′(ρ) > 0 for ρ > 0. We consider
the following equations:

∂tρ + div (ρv) = 0 in Ω × (0, T ),

ρ(∂tv + v · ∇v) − Div (μD(v) + νdiv vI − p(ρ)I) = 0 in Ω × (0, T ),

v|Γ = 0, (ρ, v)|t=0 = (ρ∗ + θ0, v0) in Ω.

(1)

Here, ∂t = ∂/∂t, D(v) = ∇v+(∇v)� is the deformation tensor, div v =
∑3

j=1 ∂vj/∂xj , for a 3×3 matrix
K with (i, j) th component Kij , Div K = (

∑3
j=1 ∂K1j/∂xj ,

∑3
j=1 ∂K2j/∂xj ,

∑3
j=1 ∂K3j/∂xj)�, μ and

ν are two viscous constants such that μ > 0 and μ + ν > 0, and ρ∗ is a positive constant describing the
mass density of a reference body.

According to Matsumura and Nishida [10], we have the global well-posedness of Eq. (1) in the L2

framework stated as follows:

Theorem 1 ([10]). Let Ω be a three dimensional exterior domain, the boundary of which is a smooth 2
dimensional compact hypersurface. Then, there exsits a small number ε > 0 such that for any initial
data (θ0, v0) ∈ H3(Ω)4 satisfying smallness condition: ‖(θ0, v0)‖H3(Ω) ≤ ε and compatibility conditions of
order 1, that is v0 and ∂tv|t=0 vanish at Γ, Problem (1) admits unique solutions ρ = ρ∗ + θ and v with

θ ∈ C0((0,∞),H3(Ω)) ∩ C1((0,∞),H2(Ω)), ∇ρ ∈ L2((0,∞),H2(Ω)3),

v ∈ C0((0,∞),H3(Ω)3) ∩ C1((0,∞),H1(Ω)3), ∇v ∈ L2((0,∞), ,H3(Ω)9).

Matsumura and Nishida [10] proved Theorem 1 essentially by energy method. One of key issues in
[10] is to estimate supt∈(0,∞) ‖v(·, t)‖H1∞(Ω) by Sobolev’s inequality, namely

sup
t∈((0,∞)

‖v(·, t)‖H1∞(Ω) ≤ C sup
t∈(0,∞)

‖v(·, t))‖H3(Ω). (2)

Recently, Enomoto and Shibata [8] proved the global wellposedness of Eq. (1) for (θ0, v0) ∈ H2(Ω)4

with small norms. Namely, they proved the following theorem.

Theorem 2 ([8]). Let Ω be a three dimensional exterior domain, the boundary of which is a smooth 2
dimensional compact hypersurface. Then, there exsits a small number ε > 0 such that for any initial data
(θ0, v0) ∈ H2(Ω)4 satisfying ‖(θ0, v0)‖H2(Ω) ≤ ε and compatibility condition: v0|Γ = 0, problem (1) admits
unique solutions ρ = ρ∗ + θ and v with

θ ∈ C0((0,∞),H2(Ω)) ∩ C1((0,∞),H1(Ω)), ∇ρ ∈ L2((0,∞),H1(Ω)3),

v ∈ C0((0,∞),H2(Ω)3) ∩ C1((0,∞), L2(Ω)3), ∇v ∈ L2((0,∞),H2(Ω)9).

The method used in the proof of Enomoto and Shibata [8] is essentially the same as that in Matsumura
and Nishida [10]. Only the difference is that (2) is replaced by

∫ ∞
0

‖∇v‖2
L∞(Ω) dt ≤ C

∫ ∞
0

‖∇v‖2
H2(Ω) dt

in [8]. As a conclusion, in the L2 framework the least regularity we need is that ∇ρ ∈ L2((0,∞),H1(Ω)3)
and ∇v ∈ L2((0,∞),H2(Ω)9). In this paper, we improve this point by solving the Eq. (1) in the Lp-Lq

maximal regularity class, that is the following theorem is a main result of this paper.

Theorem 3. Let Ω be an exterior domain in R
3, whose boundary Γ is a compact C2 hypersurface and

T ∈ (0,∞). Let p be an exponent with 1 < p ≤ 2 and set p′ = p/(p − 1). Let σ ∈ (0, 1) and set
� = (5+σ)/(4+2σ) and r = 2(2+σ)/(4+σ) = (1/2+1/(2+σ))−1. Let b be a positive constant satisfying
the condition

1
p′ < b < � − 1

p
. (3)
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Set

I =

{

(θ0, v0) | θ0 ∈
(

⋂

q=2,6

H1
q (Ω)

)

∩ Lr(Ω), v0 ∈
(

⋂

q=2,6

B2(1−1/p)
q,p (Ω)3

)

∩ Lr(Ω)3
}

,

‖(θ0, v0)‖I =
∑

q=2,6

‖θ0‖H1
q (Ω) +

∑

q=2,6

‖v0‖B
2(1−1/p)
q,p (Ω)

+ ‖(θ0, v0)‖Lr(Ω).

Then, there exists a small constant ε ∈ (0, 1) independent of T such that if initial data (θ0, v0) ∈ I satisfy
the compatibility condition: v0|Γ = 0 and the smallness condition : ‖(θ0, v0)‖I ≤ ε2, then problem (1)
admits unique solutions ρ = ρ∗ + θ and v with

θ ∈ H1
p ((0, T ), L2(Ω) ∩ L6(Ω)) ∩ Lp((0, T ),H1

2 (Ω) ∩ H1
6 (Ω)),

v ∈ H1
p ((0, T ), L2(Ω)3 ∩ L6(Ω)3) ∩ Lp((0, T ),H2

2 (Ω)3 ∩ H2
6 (Ω)3).

(4)

Moreover, writing ‖(θ, v)‖H�,m
q (Ω) = ‖θ‖H�

q(Ω) + ‖v‖Hm
q (Ω) and setting

ET (θ, v) = ‖ < t >b (θ, v)‖L∞((0,T ),L2(Ω)∩L6(Ω)) + ‖ < t >b ∇(θ, v)‖Lp((0,T ),H0,1
2 (Ω))

+ ‖ < t >b (θ, v)‖Lp((0,T ),H1,2
6 (Ω)) + ‖ < t >b ∂t(θ, v)‖Lp((0,T ),L2(Ω)∩L6(Ω)),

we have ET (θ, v) ≤ ε.

Remark 4. (1) T > 0 is taken arbitrarily and ε > 0 is chosen independently of T , and so Theorem 3 tells
us the global wellposedness of Eq. (1) for (0,∞) time inverval.

(2) In the p = 2 case, Theorem 3 gives an extension of Matsumura and Nishida theorem [10]. Roughly
speaking, if we assume that (θ0, v0) ∈ H3

2 (Ω)4, then (θ0, v0) ∈ (H1
2 (Ω) ∩ H1

6 (Ω)) × (H1
2 (Ω) ∩ B1

6,2(Ω)),
and so the global wellposedness holds in the class as

θ ∈ H1
2 ((0, T ),H1

2 (Ω) ∩ H1
6 (Ω)), v ∈ H1

2 ((0, T ), L2(Ω)3 ∩ L6(Ω)3) ∩ L2((0, T ),H2
2 (Ω)3 ∩ H2

6 (Ω)3)

under the additional condition: (θ0, v0) ∈ Lr(Ω)4.
(3) Since we assume that 1 < p ≤ 2, it automatically follows that

b < � − 1
2

=
3

2(2 + σ)
. (5)

(4) Following the argument in [12, Theorem 3.8.1], we can also consider the case where 2 < p < ∞.

As related topics, we consider the Cauchy problem, that is Ω = R
3 without boundary condition.

Matsumura and Nishida [9] proved the global wellposedness theorem, the statement of which is essentially
the same as in Theorem 1 and the proof is based on energy method. Danchin [4] proved the global
wellposedness in the critical space by using the Littlewood–Paley decomposition.

Theorem 5 ([4]). Let Ω = R
N (N ≥ 2). Assume that μ > 0 and μ + ν > 0. Let Bs = Ḃs

2,1(R
N ) and

F s = (L2((0,∞), Bs) ∩ C((0,∞), Bs ∩ Bs−1)) × (L1((0,∞), Bs+1) ∩ C((0,∞), Bs−1))N .

Then, there exists an ε > 0 such that if initial data θ0 ∈ BN/2(RN )∩BN/2−1(RN ) and v0 ∈ BN/2−1(RN )N

satisfy the condition:

‖θ0‖BN/2(RN )∩BN/2−1(RN ) + ‖v0‖BN/2−1(RN ) ≤ ε,

then problem (1) with Ω = R
N and T = ∞ admits a unique solution ρ = ρ∗ + θ and v with (θ, v) ∈ FN/2.

In the case where Ω = R
3 or R

N , there are a lot of works concerning (1), but we do not mention
them any more, because we are interested only in the global wellposedness in exterior domains. For more
information on references, refer to Enomoto and Shibata [7].

Concerning the L1 in time maximal regularity in exterior domains, the incompressible viscous fluid
flows has been treated by Danchin and Mucha [5]. To obtain L1 maximal regularity in time, we have
to use Ḃs

q,1 in space, which is slightly regular space than Hs
q , and the decay estimates for semigroup on
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Ḃs
q,1 must be needed to controle terms arising from the cut-off procedure near the boundary. Detailed

arguments related with these facts can be found in [5]. To treat (1) in an exterior domain in the L1 in time
maximal regularity framework, we have to prepare not only L1 maximal regularity for model problems
in the whole space and the half space but also decay properties of semigroup in Ḃs

q,1, and so this will be
a future work. From Theorem 3, we may say that problem (1) can be solved in Lp in time and L2 ∩ L6

in space maximal regularity class for any exponet p ∈ (1, 2].
The paper is organized as follows. In Sect. 2, Eq. (1) are rewriten in Lagrange coordinates to eliminate

v ·∇ρ and a main result for equations with Lagrangian description is stated. In Sect. 3, we give an Lp–Lq

maximal regularity theorem in some abstract setting. In Sect. 4, we give estimates of nonlinear terms. In
Sect. 5, we prove main results stated in Sect. 2. In Sect. 6, Theorem 3 is proved by using a main result
in Sect. 2. In Sect. 7, we discuss the N dimensonal case.

The main point of our proof is to obtain maximal regularity estimates with decay properties of solutions
to linearized equations, the Stokes equations with non-slip conditions. To explain the idea, we write
linearized equations as ∂tu−Au = f and u|t=0 = u0 symbolically, where f is a function corresponding to
nonlinear terms and A is a closed linear operator with domain D(A). We write u = u1 +u2, where u1 is a
solution to time shifted equations: ∂tu1 +λ1u1 −Au1 = f with some large positive number λ1 and u2 is a
solution to compensating equations: ∂tu2 − Au2 = λ1u1 and u2|t=0 = u0 − u1|t=0. Since the fundamental
solutions to time shifted equations have exponential decay properties, u1 has the same decay properties
as these of nonlinear terms f . Moreover u1 belongs to the domain of A for all positive time. By Duhamel
principle u2 is given by u2 = T (t)(u0 − u1|t=0) + λ1

∫ t

0
T (t − s)u1(s) ds, where {T (t)}t≥0 is a continuous

analytic semigroup associated with A. By using Lp-Lq decay properties of {T (t)}t≥0 in the interval
0 < s < t − 1 and standard estimates of continuous analytic semigroup: ‖T (t − s)u0‖D(A) ≤ C‖u0‖D(A)

for t − 1 < s < t, where ‖ · ‖D(A) denotes a domain norm, we obtain maximal Lp-Lq regularity of u2

with decay properties. This method seems to be a new thought to prove the global wellposedness and
to be applicable to many quasilinear problems of parabolic type or parabolic-hyperbolic mixture type
appearing in mathematical physics.

To end this section, symbols of functional spaces used in this paper are given. Let Lp(Ω), Hm
p (Ω)

and Bs
q,p(Ω) denote the standard Lebesgue spaces, Sobolev spaces and Besov spaces, while their norms

are written as ‖ · ‖Lp(Ω), ‖ · ‖Hm
p (Ω) and ‖ · ‖Bs

q,p(Ω). We write Hm(Ω) = Hm
2 (Ω), H0

q (Ω) = Lq(Ω) and
W s

q (Ω) = Bs
q,q(Ω). For any Banach space X with norm ‖ · ‖X , Lp((a, b),X) and Hm

p ((a, b),X) denote
respective the standard X-valued Lebesgue spaces and Sobolev spaces, while their time weighted norms
are defined by

‖ < t >b f‖Lp((a,b),X) =

⎧
⎨

⎩

(∫ b

a
(< t >b ‖f(t)‖X)p dt

)1/p

(1 ≤ p < ∞),

esssupt∈(a,b) < t >b ‖f(t)‖X (p = ∞),

where < t >= (1 + t2)1/2. Let Xn = {v = (u1, . . . , un)) | ui ∈ X (i = 1, . . . , n)}, but we write
‖ · ‖Xn = ‖ · ‖X for simplicity. Let H�,m

q (Ω) = {(ρ, v) | ρ ∈ H�
q(Ω), v ∈ Hm

q (Ω)3} and ‖(ρ, v)‖H�,m
q (Ω) =

‖ρ‖H�
q(Ω) + ‖v‖Hm

q (Ω). The letter C denotes generic constants and Ca,b,··· denotes that constants depend
on quantities a, b, . . .. C and Ca,b,··· may change from line to line.

2. Equations in Lagrange Coordinates and Statment of Main Results

To prove Theorem 3, we write Eq. (1) in Lagrange coordinates {y}. Let ζ = ζ(y, t) and u = u(y, t) be the
mass density and the velocity field in Lagrange coordinates {y}, and for a while we assume that

u ∈ H1
p ((0, T ), L6(Ω)3) ∩ Lp((0, T ),H2

6 (Ω)3), (6)
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and the quantity: ‖ < t >b ∇u‖Lp((0,T ),H1
6 (Ω) is small enough for some b > 0 with bp′ > 1, where

1/p + 1/p′ = 1. We consider the Lagrange transformation:

x = y +
∫ t

0

u(y, s) ds (7)

and assume that
∫ T

0

‖∇u(·, t)‖L∞(Ω) dt < δ (8)

with some small number δ > 0. If 0 < δ < 1, then for xi = yi +
∫ t

0
u(yi, s) ds we have

|x1 − x2| ≥ (1 −
∫ T

0

‖∇u(·, t)‖L∞(Ω) dt)|y1 − y2|,

and so the correspondence (7) is one to one. Moreover, applying a method due to Ströhmer [13], we see
that the correspondence (7) is a C1+ω (ω ∈ (0, 1/2)) diffeomorphism from Ω onto itself for any t ∈ (0, T ).
In fact, let J = I+

∫ t

0
∇u(y, s) ds, which is the Jacobian of the map defined by (7), and then by Sobolev’s

imbedding theorem and Hölder’s inequality for ω ∈ (0, 1/2) we have

sup
t∈(0,T )

‖
∫ t

0

∇u(·, s) ds‖Cω(Ω) ≤ Cω

(∫ T

0

< s >−bp′
ds

)1/p′(∫ T

0

‖ < s >b ∇u(·, s)‖p
H1

6 (Ω)
ds

)1/p

< ∞

(9)

and we may assume that the right hand side of (9) is small enough and (8) holds in the process of
constructing a solution. By (7), we have

∂x

∂y
= I +

∫ t

0

∂u

∂y
(y, s) ds,

and so choosing δ > 0 small enough, we may assume that there exists a 3×3 matrix V0(k) of C∞ functions
of variables k for |k| < δ, where k is a corresponding variable to

∫ t

0
∇u ds, such that ∂y

∂x = I + V0(k) and
V0(0) = 0. Let V0ij(k) be the (i, j) th component of 3 × 3 matrix V0(k), and then we have

∂

∂xj
=

∂

∂yj
+

3∑

j=1

V0ij(k)
∂

∂yj
. (10)

Let Xt(x) = y be the inverse map of Lagrange transform (7) and set ρ(x, t) = ζ(Xt(x), t) and v(x, t) =
u(Xt(x), t). Setting

Ddiv (k)∇u =
3∑

i,j=1

V0ij(k)
∂ui

∂yj
,

we have div v = div u + Ddiv (k)u. Let ζ = ρ∗ + η, and then

∂

∂t
ρ + div (ρu) =

∂η

∂t
+ (ρ∗ + η)(div u + Ddiv (k)∇u).

Setting

DD(k)∇u = V0(k)∇u + (V0(k)∇u)�, (11)

we have D(v) = ∇v + (∇v)� = (I + V0(k))∇u + ((I + V0(k))∇u)� = D(u) + DD(k)∇u. Moreover,

Div (μD(v) + νdiv vI) = (I + V0(k))∇(μ(D(u) + DD(k)∇u) + ν(div u + Ddiv (k)∇u)

= Div (μD(u) + νdiv uI) + V1(k)∇2u + (V2(k)
∫ t

0

∇2u ds)∇u
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with
V1(k)∇2u = μDD(k)∇2u + νDdiv (k)∇2uI

+ V0(k)(μ∇D(u) + ν∇div uI + μDD(k)∇2u + νDdiv (k)∇2uI),

(V2(k)
∫ t

0

∇u ds)∇u = (I + V0(k))(μ(dkDD(k)
∫ t

0

∇2u ds)∇u + ν(dkDdiv (k)
∫ t

0

∇2u ds∇u)I.

(12)

Here, dkF (k) denotes the derivative of F with respect to k. Note that V1(0) = 0. Moreover, we write

∇p(ρ) = p′(ρ∗)∇η + (p′(ρ∗ + η) − p′(ρ∗))∇η + p′(ρ∗ + η)V0(k)∇θ. (13)

The material derivative ∂tv + v · ∇v is changed to ∂tu.
Summing up, we have obtained

∂tη + ρ∗div u = F (η,u) in Ω × (0, T ),

ρ∗∂tu − Div (μD(u) + νdiv uI − p′(ρ∗)η) = G(η,u) in Ω × (0, T ),

u|Γ = 0, (η,u)|t=0 = (θ0, v0) in Ω.

(14)

Here, we have set

k =
∫ t

0

∇u(·, s) ds,

F (η,u) = ρ∗Ddiv (k)∇u + η(div u + Ddiv (k)∇u),

G(η,u) = η∂tu + V1(k)∇2u + (V2(k)
∫ t

0

∇2u ds)∇u

− (p′(ρ∗ + η) − p′(ρ∗))∇η − p′(ρ∗ + η)V0(k)∇η

(15)

and Ddiv (k)∇u, V1(k) and V2(k) have been defined in (11), (12) and (13). Note that Ddiv (0) = 0,
V0(0) = 0, and V1(0) = 0. The following theorem is a main result in this paper.

Theorem 6. Let Ω be an exterior domain in R
3, whose boundary Γ is a compact C2 hypersurface and

T ∈ (0,∞). Let p be an exponent with 1 < p ≤ 2 and set p′ = p/(p − 1). Let σ ∈ (0, 1) and set
� = (5+σ)/(4+2σ) and r = 2(2+σ)/(4+σ) = (1/2+1/(2+σ))−1. Let b be a positive constant satisfying
the condition

1
p′ < b < � − 1

p
. (16)

Set

I =

{

(θ0, v0) | θ0 ∈
(

⋂

q=2,6

H1
q (Ω)

)

∩ Lr(Ω), v0 ∈
(

⋂

q=2,6

B2(1−1/p)
q,p (Ω)3

)

∩ Lr(Ω)3
}

,

‖(θ0, v0)‖I =
∑

q=2,6

‖θ0‖H1
q (Ω) +

∑

q=2,6

‖v0‖B
2(1−1/p)
q,p (Ω)

+ ‖(θ0, v0)‖Lr(Ω).

Then, there exists a small constant ε ∈ (0, 1) independent of T such that if initial data (θ0, v0) ∈ X satisfy
the compatibility condition: v0|Γ = 0 and the smallness condition : ‖(θ0, v0)‖I ≤ ε2, then Problem (14)
admits unique solutions ζ = ρ∗ + η and u with

η ∈ H1
p ((0, T ),H1

2 (Ω)) ∩ H1
6 (Ω)),

u ∈ H1
p ((0, T ), L2(Ω)3 ∩ L6(Ω)3) ∩ Lp((0, T ),H2

2 (Ω)3 ∩ H2
6 (Ω)3)

(17)

possessing the estimate ET (η,u) ≤ ε. Here, we have set

ET (η,u) = ET (η,u) + ‖ < t >b ∂t∇η‖Lp((0,T ),L2(Ω)∩L6(Ω))

and ET (η,u) is the quantity defined in Theorem 3.
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Remark 7. (1) The choice of ε is independent of T > 0, and so solutions of Eq. (14) exist for any time
t ∈ (0,∞).
(2) For any natural number m, Bm

q,2(Ω) ⊂ Hm
q (Ω) for 2 < q < ∞ and Bm

2,2 = Hm.
(3) Letting σ > 0 be taken a small number such that H2

6 ⊂ C1+σ, we see that Theorem 6 implies
∫ T

0

‖u(·, s)‖C1+σ(Ω) ds < δ

with some small number δ > 0, which guarantees that Lagrange transform given in (7) is a C1+σ

diffeomorphism on Ω. Moreover, Theorem 3 follows from Theorem 6, the proof of which will be given in
Sect. 6 below.

3. R-Bounded Solution Operators

This section gives a general framework of proving the maximal Lp regularity (1 < p < ∞), and so problem
is formulated in an abstract setting. Let X, Y , and Z be three UMD Banach spaces such that X ⊂ Z ⊂ Y
and X is dense in Y , where the inclusions are continuous. Let A be a closed linear operator from X into
Y and let B be a linear operator from X into Z and also from Z into Y . Moreover, we assume that

‖Ax‖Y ≤ C‖x‖X , ‖Bx‖Z ≤ C‖x‖X , ‖Bz‖Y ≤ C‖z‖Z

with some constant C for any x ∈ X and z ∈ Z. Let ω ∈ (0, π/2) be a fixed number and set

Σω = {λ ∈ C \ {0} | | arg λ| < π − ω}, Σω,λ0 = {λ ∈ Σω | |λ| ≥ λ0}.

We consider an abstract boundary value problem with parameter λ ∈ Σω,λ0 :

λu − Au = f, Bu = g. (18)

Here, Bu = g represents boundary conditions, restrictions like divergence condition for Stokes equations
in the incompressible viscous fluid flows case, or both of them. The simplest example is the following:

λu − Δu = f in Ω,
∂u

∂ν
= g on Γ,

where Ω is a uniform C2 domain in R
N , Γ its boundary, ν the unit outer normal to Γ, and ∂/∂ν = ν·∇ with

∇ = (∂/∂x1, . . . , ∂/∂xN ) for x = (x1, . . . , xN ) ∈ R
N . In this case, it is standard to choose X = H2

q (Ω),
Y = Lq(Ω), Z = H1

q (Ω) with 1 < q < ∞, A = Δ, and B = ∂/∂ν.
Problem formulated in (18) is corresponding to parameter elliptic problems which have been studied

by Agmon [1], Agmon et al. [2], Agranovich and Visik [3], Denk and Volevich [6] and references there in,
and their arrival point is to prove the unique existence of solutions possessing the estimate:

|λ|‖u‖Y + ‖u‖X ≤ C(‖f‖Y + |λ|α‖g‖Y + ‖g‖Z)

for some α ∈ R. From this estimate, we can derive the generation of a continuous analytic semigroup
associated with A when Bu = 0. But to prove the maximal Lp regularity with 1 < p < ∞ for the
corresponding nonstationary problem:

∂tv − Av = f, Bv = g for t > 0, v|t=0 = v0, (19)

especially in the cases where Bv = g 
= 0, further consideration is needed. Below, we introduce a frame-
work based on the Weis operator valued Fourier multiplier theorem. To state this theorem, we make a
preparation.
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Definition 8. Let E and F be two Banach spaces and let L(E,F ) be the set of all bounded linear operators
from E into F . We say that an operator family T ⊂ L(E,F ) is R bounded if there exist a constant C
and an exponent q ∈ [1,∞) such that for any integer n, {Tj}n

j=1 ⊂ T and {fj}n
j=1 ⊂ E, the inequality:

∫ 1

0

∥
∥
∥
∥
∥
∥

n∑

j=1

rj(u)Tjfj

∥
∥
∥
∥
∥
∥

q

F

du ≤ C

∫ 1

0

∥
∥
∥
∥
∥
∥

n∑

j=1

rj(u)fj

∥
∥
∥
∥
∥
∥

q

E

du

is valid, where the Rademacher functions rk, k ∈ N, are given by rk : [0, 1] → {−1, 1}; t �→ sign(sin 2kπt).
The smallest such C is called R bound of T on L(E,F ), which is denoted by RL(E,F )T .

For m(ξ) ∈ L∞(R \ {0},L(E,F )), we set

Tmf = F−1
ξ [m(ξ)F [f ](ξ)] f ∈ S(R, E),

where F and F−1
ξ denote respective Fourier transformation and inverse Fourier transformation.

Theorem 9 (Weis’s operator valued Fourier multiplier theorem). Let E and F be two UMD Banach
spaces. Let m(ξ) ∈ C1(R \ {0},L(E,F )) and assume that

RL(E,F )({m(ξ) | ξ ∈ R \ {0}}) ≤ rb

RL(E,F )({ξm′(ξ) | ξ ∈ R \ {0}}) ≤ rb

with some constant rb > 0. Then, for any p ∈ (1,∞), Tm ∈ L(Lp(R, E), Lp(R, F )) and

‖Tmf‖Lp(R,F ) ≤ Cprb‖f‖Lp(R,E)

with some constant Cp depending solely on p.

Remark 10. For a proof, refer to Weis [14].

We introduce the following assumption. Recall that ω is a fixed number such that 0 < ω < π/2.

Assumption 11. Let X, Y and Z be UMD Banach spaces. There exist a constant λ0, α ∈ R, and an
operator family S(λ) with

S(λ) ∈ Hol (Σω,λ0 ,L(Y × Y × Z,X))

such that for any f ∈ Y and g ∈ Z, u = S(λ)(f, λαg, g) is a solution of Eq. (18), and the estimates:

RL(Y ×Y ×Z,X)({(τ∂τ )�S(λ) | λ ∈ Σω,λ0}) ≤ rb

RL(Y ×Y ×Z,Y )({(τ∂τ )�(λS(λ)) | λ ∈ Σω,λ0}) ≤ rb

for � = 0, 1 are valid, where λ = γ + iτ ∈ Σω,λ0 . S(λ) is called an R-bounded solution operator or an R
solver of Eq. (18).

We now consider an initial-boundary value problem:

∂tu − Au = f Bu = g (t > 0), u|t=0 = u0. (20)

This problem is divided into the following two equations:

∂tu − Au = f Bu = g (t ∈ R); (21)

∂tu − Au = 0 Bu = 0 (t > 0), u|t=0 = u0. (22)

From the definition of R-boundedness with n = 1 we see that u = S(λ)(f, 0, 0) satisifes equations:

λu − Au = f, Bu = 0,

and the estimate:

|λ|‖u‖Y + ‖u‖X ≤ C‖f‖Y .



JMFM New Thought on Matsumura-Nishida Theory... Page 9 of 23    66 

Let D(A) be the domain of the operator A defined by

D(A) = {u0 ∈ X | Bu0 = 0}.

Then, the operator A generates continuous analytic semigroup {TA(t)}t≥0 such that u = TA(t)u0 solves
Eq. (22) uniquely and the following estimates hold:

‖u(t)‖Y ≤ rbe
λ0t‖u0‖Y , ‖∂tu(t)‖Y ≤ rb t−1 eλ0t‖u0‖Y , ‖∂tu(t)‖Y ≤ rbe

λ0t‖u0‖X . (23)

These estimates and trace method of real-interpolation theory yield the following theorem.

Theorem 12 (Maximal regularity for initial value problem). Let 1 < p < ∞ and set D = (Y,D(A))1−1/p,p,
where (·, ·)1−1/p,p denotes a real interpolation functor. Then, for any u0 ∈ D, Problem (22) admits a
unique solution u with

e−λ0tu ∈ Lp(R+,X) ∩ H1
p (R+, Y ) (R+ = (0,∞))

possessing the estimate:

‖e−λ0t∂tu‖Lp(R+,Y ) + ‖e−λ0tu‖Lp(R+,X) ≤ C‖u0‖(Y,D(A))1−1/p,p
.

The R-bounded solution operator plays an essential role to prove the following theorem.

Theorem 13 (Maximal regularity for boundary value problem). Let 1 < p < ∞. Then for any f and g
with e−γtf ∈ Lp(R, Y ) and e−γtg ∈ Lp(R, Z) ∩ Hα

p (R, Y ) for any γ ≥ λ0, Problem (21) admits a unique
solution u with e−γtu ∈ Lp(R,X) ∩ H1

p (R, Y ) for any γ ≥ λ0 possessing the estimate:

‖e−γt∂tu‖Lp(R+,Y ) + ‖e−γtu‖Lp(R+,X) ≤ C(‖e−γtf‖Lp(R,Y )

+ (1 + γ)α‖e−γtg‖Hα
p (R,Y ) + ‖e−γtg‖Lp(R,Z))

for any γ ≥ λ0. Here, the constant C may depend on λ0 but independent of γ whenever γ ≥ λ0, and we
have set

Hα
p (R, Y ) = {h ∈ S ′(R, Y ) | ‖h‖Hα

p (R,Y ) := ‖F−1
ξ [(1 + |ξ|2)α/2F [h](ξ)]‖Lp(R,Y ) < ∞}.

Proof. Let L and L−1 denote respective Laplace transformation and inverse Laplace transformation
defined by setting

L[f ](λ) =
∫

R

e−λtf(t) dt =
∫

R

e−iτt(e−γtf(t)) dt = F [e−γtf(t)](τ) (λ = γ + iτ),

L−1[f ](t) =
1
2π

∫

R

eλtf(τ) dτ =
eγt

2π

∫

R

eiτtf(τ) dτ = eγtF−1[f ](τ).

We consider equations:

∂tu − Au = f, Bu = g for t ∈ R.

Applying Laplace transformation yields that

λL[u](λ) − AL[u](λ) = L[f ](λ), BL[u](λ) = L[g](λ).

Applying R-bounded solution operator S(λ) yields that

L[u](λ) = S(λ)(L[f ](λ), λαL[g](λ),L[g](λ)),

and so

u = L−1[S(λ)L[(f,Λαg, g)](λ)],

where Λαg = L−1[λαL[g]]. Moreover,

∂tu = L−1[λS(λ)L[f,Λαg, g)](λ)].
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Using Fourier transformation and inverse Fourier transformation, we rewrite

u = eγtF−1[S(λ)F [e−γt(f,Λαg, g)](τ)](t),

∂tu = eγtF−1[λS(λ)F [e−γt(f,Λαg, g)](τ)](t).

Applying the assumption of R-bounded solution operators and Weis’s operator valued Fourier multiplier
theorem yields that

‖e−γt∂tu‖Lp(R,Y ) + ‖e−γtu‖Lp(R,X)

≤ Cprb(‖e−γtf‖Lp(R,Y ) + (1 + γ)α‖e−γtg‖Hα
p (R,Y ) + ‖e−γtg‖Lp(R,Z))

for any γ ≥ λ0. The uniqueness follows from the generation of analytic semigroup and Duhamel’s principle.
�

We now explain our strategy to solve initial-boundary value problem:

∂tu − Au = f, Bu = g for t ∈ (0,∞), u|t=0 = u0. (24)

The point is how to get enough decay estimates. As a first step, we consider the following time shifted
equations without initial data

∂tw + λ1w − Aw = f, Bw = g for t ∈ R. (25)

Then, we have the following theorem which guarantees the polynomial decay of solutions.

Theorem 14. Let λ0 be a constant appearing in Assumption 11 and let λ1 > λ0. Let 1 < p < ∞ and b ≥ 0.
Then, for any f and g with < t >b f ∈ Lp(R, Y ) and < t >b g ∈ Lp(R, Z) ∩ Hα

p (R,X), Problem (25)
admits a unique solution w ∈ H1

p (R, Y ) ∩ Lp(R,X) possessing the estimate:

‖ < t >b w‖Lp(R,X) + ‖ < t >b ∂tw‖Lp(R,Y )

≤ C(‖ < t >b f‖Lp(R,Y ) + ‖ < t >b g‖Hα
p (R,Y ) + ‖ < t >b g‖Lp(R,Z)).

(26)

Proof. Since ik + λ1 ∈ Σω,λ0 , for k ∈ R we set w = F−1[M(ik + λ1)(F [f ], (ik)αF [g],F [g])], and then w
satisfies equations:

∂tw + λ1w − Aw = f, Bw = g for t ∈ R,

and the estimate:

‖∂tw‖Lp(R,Y ) + ‖w‖Lp(R,X) ≤ C(‖f‖Lp(R,Y ) + ‖g‖Hα
p (R,Y ) + ‖g‖Lp(R,Z)). (27)

This prove the theorem in the case where b = 0. When 0 < b ≤ 1, we observe that

∂t(< t >b w) + λ1(< t >b w) − A(< t >b w) =< t >b f+ < t >b−2 tw, B(< t >b w) =< t >b g,

and so noting that ‖ < t >b−2 tw‖Y ≤ C‖w‖Y ≤ C‖w‖X , we have

‖ < t >b w‖Lp((0,∞),X) + ‖ < t >b ∂tw‖Lp((0,∞),Y )

≤ C(‖ < t >b−2 tw‖Lp(R,Y ) + ‖ < t >b f‖Lp(R,Y ) + ‖ < t >b g‖Hα
p (R,Y ) + ‖ < t >b g‖Lp(R,Z))

≤ C(‖ < t >b f‖Lp(R,Y ) + ‖ < t >b g‖Hα
p (R,Y ) + ‖ < t >b g‖Lp(R,Z)).

If b > 1, then repeated use of this argument yields the theorem, which completes the proof of Theorem 14.
�

To compensate solutions, let v1 be a solution of time shifted equations:

∂tv1 + λ1v1 − Av1 = λ1w, Bv1 = 0 for t ∈ R.

By Theorem 14,

‖ < t >b ∂tv1‖Lp(R,Y ) + ‖ < t >b v1‖Lp(R,X) ≤ C‖ < t > w‖Lp(R,Y )

≤ C(‖ < t >b f‖Lp(R,Y ) + ‖ < t >b g‖Hα
p (R,Y ) + ‖ < t >b g‖Lp(R,Z)).

(28)
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Here, we used the assumption that X is continuously embedded into Y , that is ‖w‖Y ≤ C‖w‖X for some
constant C. The role of v1 is to controle the compatibility conditions, that is

v1 ∈ D(A) for all t ∈ R. (29)

Thus, if g = 0 in (24) like Dirichlet zero condition case, then we need not this step.
To solve Eq. (24), we now consider a second compensation function v2, which is a solution of the

following initial problem with zero boundary condition:

∂tv2 − Av2 = λ1v1, Bv2 = 0 for t ∈ (0,∞), v2|t=0 = u0 − (w|t=0 + v|t=0). (30)

To solve (30) with the help of semi-group {TA(t)}t≥0, we need the compatibility condition:

B(u0 − (w|t=0 + v1|t=0)) = Bu0 − g|t=0 = 0. (31)

Since (29) holds, assuming the compatibility condition: Bu0 = g|t=0, by Duhamel’s principle, v2 is
represented as

v2 = TA(t)(u0 − (w|t=0 + v1|t=0) +
∫ t

0

TA(t − s)(λ1v1(s)) ds. (32)

And then, u = w + v1 + v2 is a required solution of Eq. (24). Concerning the estimate of v2, for t ∈ (0, 2)
we use the estimate:

‖TA(t)v0‖D(A) ≤ C‖v0‖D(A)

where ‖ · ‖D(A) denotes the norm of domain D(A). And, for t ∈ [2,∞) we use so called Lp-Lq decay
estimate for the semigroup {TA(t)}t≥0. In this paper, we use the Lp-Lq decay estimate for the Stokes
equations for the compressible viscous fluid, which will be given in (68) in Sect. 5 below.

4. Estimates of Nonlinear Terms

In what follows, let T > 0 be any positive time and let b and p be positive numbers and an exponents
given in Theorem 3 and Theorem 6. Let U i

ε (i = 1, 2) be underlying spaces for linearized equations of
equations (14), which is defined by

U1
T = {θ ∈ H1

p ((0, T ),H1
2 (Ω)∩H1

6(Ω)) | θ|t=0 = θ0, sup
t∈(0,T )

‖θ(·, t)‖L∞(Ω) ≤ ρ∗/2},

U2
T = {v ∈ Lp((0, T ),H2

2 (Ω)3∩H2
6(Ω)3)∩H1

p((0, T ), L2(Ω)3∩L6(Ω)3) |

v|t=0 = v0,

∫ T

0

‖∇v(·, s)‖L∞(Ω) ds ≤ δ}.

(33)

Recall that our energy ET (η,u) has been defined by

ET (η,u) = ‖ < t >b ∇(η,u)‖Lp((0,T ),H0,1
2 (Ω)) + ‖ < t >b (η,u)‖L∞((0,T ),L2(Ω)∩L6(Ω))

+ ‖ < t >b ∂t(η,u)‖Lp((0,T ),H1,0
2 (Ω)∩H1,0

6 (Ω)) + ‖ < t >b (η,u)‖Lp((0,T ),H2
6 (Ω)).

To estimate L2+σ norm, we use standard interpolation inequality:

‖f‖L2+σ(Ω) ≤ ‖f‖
4−σ

2(2+σ)

L2(Ω) ‖f‖
3σ

2(2+σ)

L6(Ω) ≤ 4 − σ

2(2 + σ)
‖f‖L2(Ω) +

3σ

2(2 + σ)
‖f‖L6(Ω). (34)
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In estimating Lr norm, we meet L2+σ norm in view of Hölder’s inequality, but this norm is estimate by
L2 and L6 norm with the help of (34). In particular, for (θ, v) ∈ U1

T × U2
T , we know that

‖ < t >b (θ, v)‖L∞((0,T ),L2+σ(Ω) ≤ Cσ

∑

q=2,6

‖ < t >b (θ, v)‖L∞((0,T ),Lq(Ω)),

‖ < t >b ∇(θ, v)‖Lp((0,T ),H0,1
2+σ(Ω) ≤ Cσ

∑

q=2,6

‖ < t >b ∇(θ, v)‖Lp((0,T ),H0,1
q (Ω)),

‖ < t >b ∂t(θ, v)‖Lp((0,T ),H1,0
2+σ(Ω) ≤ Cσ

∑

q=2,6

‖ < t >b ∂t(θ, v)‖Lp((0,T ),H1,0
q (Ω)).

(35)

Notice that for any θ ∈ U1
T we see that

ρ∗/2 ≤ |ρ∗ + τθ(y, t)| ≤ 3ρ∗/2 for (y, t) ∈ Ω × (0, T ) and |τ | ≤ 1. (36)

For v ∈ U2
T let kv =

∫ t

0
∇v(·, s) ds, and then |kv(y, t)| ≤ δ for any (y, t) ∈ Ω × (0, T ). Moreover, for

q = 2, 2 + σ and 6 by Hölder’s inequality

sup
t∈(0,T )

‖kv‖H1
q (Ω) ≤

∫ T

0

‖∇v(·, t)‖H1
q (Ω)dt ≤ C

(∫ ∞

0

< t >−p′b dt
)1/p′

‖ < t >b ∇v‖Lp((0,T ),H1
q (Ω)), (37)

where bp′ > 1.
In what follows, for notational simplicity we use the following abbreviation: ‖f‖H1

q (Ω) = ‖f‖H1
q
,

‖f‖Lq(Ω) = ‖f‖Lq
, ‖f‖L∞((0,T ),X) = ‖f‖L∞(X), and ‖ < t >b f‖Lp((0,T ),X) = ‖f‖Lp,b(X). Let (θ, v) ∈

U1
T × U2

T and (θi, vi) ∈ U1
T × U2

T (i = 1, 2). The purpose of this section is to give necessary estimates of
(F (θ, v),G(θ, v)) and difference: (F (θ1, v1) − F (θ2, v2),G(θ1, v1) − G(θ2, v2))) to prove the global well-
posedness of Eq. (14). Recall that

F (θ, v) = ρ∗Ddiv (k)∇v + θdiv v + θDdiv (k)∇v,

G(θ, v) = θ∂tv + V1(k)∇2v + (V2(k)
∫ t

0

∇2v ds)∇v

− (p′(ρ∗ + θ) − p′(ρ∗))∇θ − p′(ρ∗ + θ)V0(k)∇θ.

(38)

We start with estimating ‖F (θ, v)‖Lp,b(H1
r ). Recall that r−1 = 2−1 +(2+σ)−1 and we use the estimates:

‖fg‖Lp,b(H1
r ) ≤ C‖f‖L∞(H1

2+σ)‖g‖Lp,b(H1
2 ),

‖fgh‖Lp,b(H1
r ) ≤ C(‖f‖L∞(H1

6 )‖g‖L∞(H1
2+σ) + ‖f‖L∞(H1

2+σ)‖g‖L∞(H1
6 ))‖h‖Lp,b(H1

2 ),
(39)

as follows from Hölder’s inequality and Sobolev’s inequality : ‖f‖L∞ ≤ C‖f‖H1
6
. Let dG(k) denote

the derivative of G(k) with respect to k and Cdiv be a constan such that sup|k|<δ |Ddiv (k)| < Cdiv ,
sup|k|<δ |dDdiv (k)| < Cdiv , and sup|k|<δ |d(dDdiv )(k)| < Cdiv . Then, noting Ddiv (0) = 0, by (37) we
have

‖Ddiv (kv)‖H1
q

≤ Cdiv ‖kv‖H1
q

≤ C‖∇v‖Lp,b(H1
q ) for v ∈ U2

T and q = 2, 2 + σ and 6. (40)

Moreover, for v1, v2 ∈ U2
T writing

Ddiv (kv1) − Ddiv (kv2) =
∫ t

0

dDdiv (kv2 + τ(kv1 − kv2)) dτ (kv1 − kv2),

and noting that |kv2 + τ(kv1 − kv2)| = |(1 − τ)kv2 + τkv1 | ≤ (1 − τ)δ + τδ = δ, we have

‖Ddiv (kv1) − Ddiv (kv2)‖H1
q

≤ Cdiv (‖kv1 − kv2‖L∞(H1
q ) +

∑

i=1,2

‖∇kvi‖L∞(Lq)‖kv1 − kv2‖L∞(L∞))

≤ C(‖∇(v1 − v2)‖Lp,b(H1
q ) +

∑

i=1,2

‖∇vi‖Lp,b(H1
q )‖∇(v1 − v2)‖Lp,b(H1

6 ).

(41)



JMFM New Thought on Matsumura-Nishida Theory... Page 13 of 23    66 

Since θ = θ|t=0 +
∫ t

0
∂sθ ds, for X ∈ {Lq,H

1
q } with q = 2, 2 + σ and 6

‖θ(·, t)‖X ≤ ‖θ0‖X +
∫ T

0

‖(∂sθ)(·, s)‖X ds

≤ ‖θ0‖X +
(∫ ∞

0

< t >−p′b dt
)1/p′

‖∂sθ‖Lp,b(X).

(42)

In particular, by Sobolev’s inequality

‖θ(·, t)‖L∞ ≤ C(‖θ0‖H1
6

+ ‖∂tθ‖Lp,b(H1
6 )). (43)

For θ ∈ U1
T and v ∈ U2

T , combining (39), (40), (41), (42), and (43) yields that

‖F (θ, v)‖Lp,b(H1
r ) ≤ C[‖∇v‖Lp,b(H1

2+σ)‖∇v‖Lp,b(H1
2 ) + (‖θ0‖H1

2+σ
+ ‖∂tθ‖Lp,b(H1

2+σ))‖∇v‖Lp,b(H1
2 )

+ {(‖θ0‖H1
6

+ ‖∂tθ‖Lp,b(H1
6 ))‖∇v‖Lp,b(H1

2+σ) + (‖θ0‖H1
2+σ

+ ‖∂tθ‖Lp,b(H1
2+σ))‖∇v‖Lp,b(H1

6 )}
× ‖∇v‖Lp,b(H1

2 )].

(44)

Analogously, for θi ∈ U1
T and vi ∈ U2

T (i = 1, 2),

‖F (θ1, v1) − F (θ2, v2)‖Lp,b(Lr)

≤ C[(‖∇(v1 − v2)‖Lp,b(H1
2+σ) +

∑

i=1,2

‖∇vi‖Lp,b(H1
2+σ)‖∇(v1 − v2)‖Lp,b(H1

6 ))‖∇v1‖Lp,b(H1
2 )

+ ‖∇v2‖Lp,b(H1
2+σ)‖∇(v1 − v2)‖Lp,b(H1

2 ) + ‖∂t(θ1 − θ2)‖Lp,b(H1
2+σ)‖∇v1‖Lp,b(H1

2 )

+ (‖θ0‖H1
2+σ

+ ‖∂tθ2‖Lp,b(H1
2+σ))‖∇(v1 − v2)‖Lp,b(H1

2 )

+ (‖∂t(θ1 − θ2)‖Lp,b(H1
6 )‖∇v1‖Lp,b(H1

2+σ) + ‖∂t(θ1 − θ2)‖Lp,b(H1
2+σ)‖∇v1‖Lp,b(H1

6 ))‖∇v1‖Lp,b(H1
2 )

+ {(‖θ0‖H1
6

+ ‖∂tθ2‖Lp,b(H1
6 ))(‖∇(v1 − v2)‖Lp,b(H1

2+σ) +
∑

i=1,2

‖∇vi‖Lp,b(H1
2+σ)‖∇(v1 − v2)‖Lp,b(H1

6 )))

+ (‖θ0‖H1
2+σ

+ ‖∂tθ‖Lp,b(H1
2+σ))(‖∇(v1 − v2)‖Lp,b(H1

6 ) +
∑

i=1,2

‖∇vi‖Lp,b(H1
6 )‖∇(v1 − v2)‖Lp,b(H1

6 ))}

× ‖∇v1‖Lp,b(H1
2 )

+ {(‖θ0‖H1
6

+ ‖∂tθ2‖Lp,b(H1
6 ))‖∇v2‖Lp,b(H1

2+σ) + (‖θ0‖H1
2+σ

+ ‖∂tθ2‖Lp,b(H1
2+σ)‖∇v2‖Lp,b(H1

6 )}
× ‖∇(v1 − v2)‖Lp,b(H1

2 )]. (45)

We now estimate ‖F (θ, v)‖Lp,b(H1
q ) and ‖F (θ1, v1) − F (θ2, v2)‖Lp,b(H1

q ) with q = 2 and 6. For this
purpose, we use the following estimates:

‖fg‖Lp,b(H1
q ) ≤ C{‖f‖L∞(H1

q )‖g‖Lp,b(H1
6 ) + ‖f‖L∞(H1

q )‖g‖Lp,b(H1
6 )},

‖fgh‖Lp,b(H1
q ) ≤ C{‖f‖L∞(H1

q )‖g‖L∞(H1
6 )‖h‖Lp,b(H1

6 ) + ‖f‖L∞(H1
6 )‖g‖L∞(H1

q )‖h‖Lp,b(H1
6 )

+ ‖f‖L∞(H1
6 )‖g‖L∞(H1

6 )‖h‖Lp,b(H1
q )}.

And then, using (40), (41), (42), we have

‖F (θ, v)‖Lp,b(H1
q ) ≤ C{‖∇v‖Lp,b(H1

q )‖∇v‖Lp,b(H1
6 ) + (‖θ0‖H1

q
+ ‖∂tθ‖Lp,b(H1

q ))‖∇v‖Lp,b(H1
6 )

+ (‖θ0‖H1
6

+ ‖∂tθ‖Lp,b(H1
6 ))‖∇v‖Lp,b(H1

q ) + (‖θ0‖H1
q

+ ‖∂tθ‖Lp,b(H1
q ))‖∇v‖2

Lp,b(H1
6 )

+ (‖θ0‖H1
6

+ ‖∂tθ‖Lp,b(H1
6 ))‖∇v‖Lp,b(H1

q )‖∇v‖Lp,b(H1
6 )}; (46)

‖F (θ1, v1) − F (θ2, v2)‖Lp,b(H1
q )

≤ C{(‖∇(v1 − v2)‖Lp,b(H1
q ) +

∑

i=1,2

‖∇vi‖Lp,b(H1
q )‖∇(v1 − v2)‖Lp,b(H1

6 ))‖∇v1‖Lp,b(H1
6 )

+ (‖∇(v1 − v2)‖Lp,b(H1
6 ) +

∑

i=1,2

‖∇vi‖Lp,b(H1
6 )‖∇(v1 − v2)‖Lp,b(H1

6 ))‖∇v1‖Lp,b(H1
q )
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+ ‖∇v2‖Lp,b(H1
q )‖∇(v1 − v2)‖Lp,b(H1

6 ) + ‖∇v2‖Lp,b(H1
6 )‖∇(v1 − v2)‖Lp,b(H1

q )

+ ‖∂t(θ1 − θ2)‖Lp,b(H1
q )‖∇v1‖Lp,b(H1

6 ) + ‖∂t(θ1 − θ2)‖Lp,b(H1
6 )‖∇v1‖Lp,b(H1

q )

+ (‖θ0‖H1
q

+ ‖∂tθ2‖Lp,b(H1
q ))‖∇(v1 − v2)‖Lp,b(H1

6 ) + (‖θ0‖H1
6

+ ‖∂tθ2‖Lp,b(H1
6 ))‖∇(v1 − v2)‖Lp,b(H1

q )

+ ‖∂t(θ1 − θ2)‖Lp,b(H1
q )‖∇v1‖2

Lp,b(H1
6 ) + ‖∂t(θ1 − θ2)‖Lp,b(H1

6 )‖∇v1‖Lp,b(H1
q )‖∇v1‖Lp,b(H1

6 )

+ (‖θ0‖H1
q

+ ‖∂tθ2‖Lp,b(H1
q ))(‖∇(v1 − v2)‖Lp,b(H1

6 ) +
∑

i=1,2

‖∇v1‖Lp,b(H1
6 )‖∇(v1 − v2)‖Lp,b(H1

6 ))

× ‖∇v1‖Lp,b(H1
6 )

+ (‖θ0‖H1
6

+ ‖∂tθ2‖Lp,b(H1
6 ))(‖∇(v1 − v2)‖Lp,b(H1

q ) +
∑

i=1,2

‖∇v1‖Lp,b(H1
q )‖∇(v1 − v2)‖Lp,b(H1

6 ))

× ‖∇v1‖Lp,b(H1
6 )

+ (‖θ0‖H1
6

+ ‖∂tθ2‖Lp,b(H1
6 ))(‖∇(v1 − v2)‖Lp,b(H1

6 ) +
∑

i=1,2

‖∇v1‖Lp,b(H1
6 )‖∇(v1 − v2)‖Lp,b(H1

6 ))

× ‖∇v1‖Lp,b(H1
q )

+ (‖θ0‖H1
q

+ ‖∂tθ2‖Lp,b(H1
q ))‖∇v2‖Lp,b(H1

6 )‖∇(v1 − v2)‖Lp,b(H1
6 )

+ (‖θ0‖H1
6

+ ‖∂tθ2‖Lp,b(H1
6 ))‖∇v2‖Lp,b(H1

q )‖∇(v1 − v2)‖Lp,b(H1
6 )

+ (‖θ0‖H1
6

+ ‖∂tθ2‖Lp,b(H1
6 ))‖∇v2‖Lp,b(H1

6 )‖∇(v1 − v2)‖Lp,b(H1
q )}. (47)

We next estimate ‖G(θ, v)‖Lp,b(Lr) and ‖G(θ1, v1) − G(θ2, v2)‖Lp,b(Lr). For this purpose, we use the
estimates:

‖fg‖Lp,b(Lr) ≤ ‖f‖L∞(L2+σ)‖g‖Lp,b(L2),

‖fgh‖Lp,b(Lr) ≤ ‖f‖L∞(L∞)‖g‖L∞(L2+σ)
‖h‖Lp,b(L2).

(48)

Employing the same argument as in (40) and (41) and using Vi(0) = 0 (i = 0, 1), for i = 0, 1 we have

‖Vi(k)‖L∞(Lq) ≤ sup
|k|<δ

|dVi(k)|
∫ T

0

‖∇v(·, s)‖Lq
≤ C‖∇v‖Lp,b(Lq);

‖Vi(kv1) − Vi(kv2)‖L∞(Lq) ≤ C‖∇(v1 − v2)‖Lp,b(Lq),

(49)

where q = 2, 2 + σ and 6. Moreover, ‖V2(k)‖L∞(L∞) = sup|k|<δ |V1(k)|,

‖Vi(k)‖L∞(L∞) ≤ sup
|k|<δ

|dVi(k)|
∫ T

0

‖∇v(·, s)‖H1
6

≤ C‖∇v‖Lp,b(H1
6 ); (i = 0, 1),

‖Vi(kv1) − Vi(kv2)‖L∞(L∞) ≤ C‖∇(v1 − v2)‖Lp,b(H1
6 ) (i = 0, 1, 2)

as follows from |V2(kv1) − V2(kv2)| ≤ sup|k|≤δ |(dVi)(k)||kv1 − kv2 |. Writing

p′(ρ∗ + θ) − p′(ρ∗) =
∫ 1

0

p′′(ρ∗ + τθ) dτ θ,

p′(ρ∗ + θ1) − p′(ρ∗ + θ2) =
∫ 1

0

p′′(ρ∗ + θ2 + τ(θ1 − θ2)) dτ (θ1 − θ2),
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by (36) and (42) we have

‖(p′(ρ∗ + θ) − p′(ρ∗))∇θ‖Lp,b(Lr) ≤ C(‖θ0‖L2+σ
+ ‖∂tθ‖Lp,b(L2+σ))‖∇θ‖Lp,b(L2),

‖(p′(ρ∗ + θ1) − p′(ρ∗))∇θ1 − (p′(ρ∗ + θ2) − p′(ρ∗))∇θ2‖Lp,b(Lr)

≤ C{‖∂t(θ1 − θ2)‖Lp,b(L2+σ)‖∇θ‖Lp,b(L2) + (‖θ0‖L2+σ
+ ‖∂tθ2‖Lp,b(L2+σ)‖∇(θ1 − θ2)‖Lp,b(L2)},

‖(p′(ρ∗ + θ) − p′(ρ∗))∇θ‖Lp,b(Lq) ≤ C(‖θ0‖H1
6

+ ‖∂tθ‖Lp,b(H1
6 )‖∇θ‖Lp,b(Lq)),

‖(p′(ρ∗ + θ1) − p′(ρ∗))∇θ1 − (p′(ρ∗ + θ2) − p′(ρ∗))∇θ2‖Lp,b(Lq)

≤ C{‖∂t(θ1 − θ2)‖Lp,b(H1
6 )‖∇θ1‖Lp,b(Lq) + (‖θ0‖H1

6
+ ‖∂tθ2‖Lp,b(H1

6 )‖∇(θ1 − θ2)‖Lp,b(Lq)},

(50)

for q = 2, 2 + σ and 6. Combining these estimates above, we have

‖G(θ, v)‖Lp,b(Lr) ≤ C{(‖θ0‖L2+σ
+ ‖∂tθ‖Lp,b(L2+σ))(‖∂tv‖Lp,b(L2) + ‖∇θ‖Lp,b(L2))

+ ‖∇v‖Lp,b(L2+σ)(‖∇2v‖Lp,b(L2) + ‖∇θ‖Lp,b(L2))}; (51)

‖G(θ1, v1) − G(θ2, v2)‖Lp,b(Lr) ≤ C{‖∂t(θ1 − θ2)‖Lp,b(L2+σ)‖∂tv1‖Lp,b(L2)

+ (‖θ0‖L2+σ
+ ‖∂tθ2‖Lp,b(L2+σ))‖∂t(v1 − v2)‖Lp,b(L2) + ‖∇(v1 − v2)‖Lp,b(L2)‖∇2v1‖Lp,b(L2+σ)

+ ‖∇v2‖Lp,b(L2+σ)‖∇2(v1 − v2)‖Lp,b(L2) + ‖∇(v1 − v2)‖Lp,b(L2)‖∇2v1‖Lp,b(L2+σ)‖∇v1‖Lp,b(H1
6 )

+ ‖∇2(v1 − v2)‖Lp,b(L2)‖∇v1‖Lp,b(L2+σ) + ‖∇2v2‖Lp,b(L2+σ)‖∇(v1 − v2)‖Lp,b(L2)

+ ‖∂t(θ1 − θ2)‖Lp,b(L2)‖∇θ1‖Lp,b(L2+σ) + ‖∇(v1 − v2)‖Lp,b(L2)‖∇θ1‖Lp,b(L2+σ)

+ ‖∇v2‖Lp,b(L2+σ)‖∇(θ1 − θ2)‖Lp,b(L2) + (‖θ0‖L2+σ
+ ‖∂tθ2‖Lp,b(L2+σ)‖∇(θ1 − θ2)‖Lp,b(L2). (52)

Finally, we estimate ‖G(θ, v)‖Lp,b(Lq) and ‖G(θ1, v1) − G(θ2, v2)‖Lp,b(Lq) with q = 2 and 6. For this
purpose, we use the following estimates:

‖fg‖Lp,b(Lq) ≤ C‖f‖L∞(H1
q )‖g‖Lp,b(Lq),

‖fgh‖Lp,b(Lq) ≤ C‖f‖L∞(L∞)‖g‖L∞(H1
6 )‖h‖Lp,b(Lq).

And then, using (49), (50), (42) and (43), for q = 2 and 6 we have

‖G(θ, v)‖Lp,b(Lq) ≤ C{(‖θ0‖H1
6

+ ‖∂tθ‖Lp,b(H1
6 ))(‖∂tv‖Lp,b(Lq) + ‖∇θ‖Lp,b(Lq))

+ ‖∇v‖Lp,b(H1
6 )(‖∇2v‖Lp,b(Lq) + ‖∇θ‖Lp,b(Lq))}; (53)

‖G(θ1, v1) − G(θ2, v2)‖Lp,b(Lq) ≤ C(‖∂t(θ1 − θ2)‖Lp,b(H1
6 )‖∂tv1‖Lp,b(Lq)

+ (‖θ0‖H1
6

+ ‖∂tθ2‖Lp,b(H1
6 ))‖∂t(v1 − v2)‖Lp,b(Lq) + ‖∇(v1 − v2)‖Lp,b(H1

6 )‖∇2v1‖Lp,b(Lq)

+ ‖∇v2‖Lp,b(H1
6 )‖∇2(v1 − v2)‖Lp,b(Lq) + ‖∇(v1 − v2)‖Lp,b(H1

6 )‖∇v1‖Lp,b(H1
6 )‖∇2v1‖Lp,b(Lq)

+ ‖∇2(v1 − v2)‖Lp,b(Lq)‖∇v1‖Lp,b(H1
6 ) + ‖∇2v2‖Lp,b(Lq)‖∇(v1 − v2)‖Lp,b(H1

6 )

+ ‖∂t(θ1 − θ2)‖Lp,b(H1
6 )‖∇θ1‖Lp,b(Lq) + ‖∇(v1 − v2)‖Lp,b(H1

6 )‖∇θ1‖Lp,b(Lq)

+ ‖∇v2‖Lp,b(H1
6 )‖∇(θ1 − θ2)‖Lp,b(Lq) + (‖θ0‖H1

6
+ ‖∂tθ2‖Lp,b(H1

6 )‖∇(θ1 − θ2)‖Lp,b(Lq)). (54)

5. A Priori Estimates for Solutions of Linearized Equations

Let VT,ε = {(θ, v) ∈ U1
T × U2

T | ET (θ, v) ≤ ε}. For (θ, v) ∈ VT,ε, we consider linearized equations:

∂tη + ρ∗div u = F (θ, v) in Ω × (0, T ),

ρ∗∂tu − Div (μD(u) + νdiv uI − p′(ρ∗)η) = G(θ, v) in Ω × (0, T ),

u|Γ = 0, (η,u)|t=0 = (θ0, v0) in Ω.

(55)
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We first show that Eq. (55) admit unique solutions η and u with

η ∈ H1
p ((0, T ),H1

2 (Ω) ∩ H1
6 (Ω)),

u ∈ H1
p ((0, T ), L2(Ω)3 ∩ L6(Ω)3) ∩ Lp((0, T ),H2

2 (Ω)3 ∩ H2
6 (Ω)3)

(56)

possessing the estimate:

ET (η,u) ≤ C(ε2 + ε3 + ε4) (57)

with some constant C independent of T and ε.
To prove (57), we divide η and u into two parts: η = η1 + η2 and u = u1 + u2, where η1 and u1 are

solutions of time shifted equations:

∂tη1 + λ1η1 + ρ∗div u1 = F (θ, v) in Ω × (0, T ),

ρ∗(∂tu1 + λu1) − Div (μD(u1) + νdiv u1I − p′(ρ∗)η1) = G(θ, v) in Ω × (0, T ),

u1|Γ = 0, (η1,u1)|t=0 = (0, 0) in Ω,

(58)

and η2 and u2 are solutions to compensation equations:

∂tη2 + ρ∗div u2 = λ1η1 in Ω × (0, T ),

ρ∗∂tu2 − Div (μD(u2) + νdiv u2I − p′(ρ∗)η2) = ρ∗λ1u1 in Ω × (0, T ),

u2|Γ = 0, (η2,u2)|t=0 = (θ0, v0) in Ω.

(59)

We first treat with Eq. (58). For this purpose, we use results stated in Sect. 3. We consider resolvent
problem corresponding to Eq. (55) given as follows:

λζ + ρ∗divw = f in Ω,

ρ∗λw − Div (μD(w) + νdivwI − p′(ρ∗)ζ) = g in Ω,

w|Γ = 0 in Ω.

(60)

Enomoto and Shibata [7] proved the existence of R bounded solution operators associated with (60).
Namely, we know the following theorem.

Theorem 15. Let Ω be a uniform C2 domain in R
N . Let 0 < ω < π/2 and 1 < q < ∞. Set H1,0

q (Ω) =
H1

q (Ω) × Lq(Ω)3 and H1,2
q (Ω) = H1

q (Ω) × H2
q (Ω)3. Then, there exist a large number λ0 > 0 and operator

families P(λ) and S(λ) with

P(λ) ∈ Hol (Σω,λ0 ,L(H1,0
q (Ω),H1

q (Ω))), S(λ) ∈ Hol (Σω,λ0 ,L(H1,0
q (Ω),H2

q (Ω)))

such that for any λ ∈ Σω,λ0 and (f, g) ∈ H1,0
q (Ω), ζ = P(λ)(f, g) and w = S(λ)(f, g) are unique solutions

of Stokes resolvent problem (60) and

RL(H1,0
q (Ω),H1

q (Ω))({(τ∂τ )�(λkP(λ)) | λ ∈ Σω,λ0}) ≤ rb,

RL(H1,0
q (Ω),H2−j

q (Ω)3)({(τ∂τ )�(λj/2S(λ)) | λ ∈ Σω,λ0}) ≤ rb

for � = 0, 1, k = 0, 1 and j = 0, 1, 2.

From Theorem 14 we have the following theorem.

Theorem 16. Let 1 < p, q < ∞. Let b ≥ 0. Then, there exists a large constant λ1 > 0 such that for any
(f, g) with < t >b (f, g) ∈ Lp((0, T ),H1,0

q (Ω)), problem:

∂tρ + λ1ρ + ρ∗divw = f in Ω × (0, T ),

ρ∗(∂tw + λ1w) − Div (μD(w) + νdivwI − p′(ρ∗)ρ) = g in Ω × (0, T ),

w|Γ = 0, (ρ,w)|t=0 = (0, 0) in Ω,

(61)
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admits unique solutions ρ ∈ H1
p ((0, T ),H1

q (Ω)) and w ∈ H1
p ((0, T ), Lq(Ω)3) ∩ Lp((0, T ),H2

q (Ω)3) possess-
ing the estimate:

‖ < t >b (ρ, ∂tρ)‖Lp((0,T ),H1
q (Ω)) + ‖ < t >b ∂tw‖Lp((0,T ),Lq(Ω)) + ‖ < t >b w‖Lp((0,T ),H2

q (Ω))

≤ C‖ < t >b (f, g)‖Lp((0,T ),H1,0
q (Ω)).

Here, C is a constant independent of T > 0.

Proof. Our situation is that Bu = u and g = 0 in Sect. 3. Let f0 and g0 be the zero extensions of f and
g outside of (0, T ). Applying Theorem 14 yields the unique existence of solutions ρ and w defined on the
whole time interval R possessing the estimate (26). But, what f0 and g0 vanish for t < 0 implies that
ρ and w also vanish for t < 0, which can be proved by using the uniqueness argument due to Saito [11,
Sect. 7]. Thus, these ρ and w are required solutions to Eq. (61). This completes the proof of Theorem 16.
�

We now consider Eq. (59). The corresponding Cauchy problem is equations:

∂tζ + ρ∗div z = 0 in Ω × (0, T ),

ρ∗∂tz − Div (μD(z) + νdiv zI − p′(ρ∗)ζ) = 0 in Ω × (0, T ),

z|Γ = 0, (ζ, z)|t=0 = (θ0, v0) in Ω.

(62)

As was seen in Sect. 3, Theorem 15 implies generation of continuous analytic semigroup {T (t)}t≥0 asso-
ciated with equations (62). Thus, by Duhamel’s principle we have

(η2,u2) = T (t)(θ0, v0) +
∫ t

0

T (t − s)(λ1η1(·, s), ρ∗λ1u1(·, s)) ds. (63)

Now, we shall estimate (η1,u1) and (η2,u2). Applying Theorem 16 to Eq. (58) yields that

‖ < t >b ∂t(η1,u1)‖Lp((0,T ),H1,0
q (Ω)) + ‖ < t >b (η1,u1)‖Lp((0,T ),H1,2

q (Ω))

≤ C‖ < t >b (F (θ, v),G(θ, v))‖Lp((0,T ),H1,0
q (Ω))

(64)

for q = r, 2 and 6. Recalling that ‖(θ0, v0)‖I ≤ ε2 and ET (θ, v) ≤ ε, by (34), (44), (46), (51), (53), and
(64), we have

‖ < t >b ∂t(η1,u1)‖Lp((0,T ),H1,0
q (Ω)) + ‖ < t >b (η1,u1)‖Lp((0,T ),H1,2

q (Ω))) ≤ C(ε2 + ε3 + ε4). (65)

for q = r, 2, and 6. Here, C is a constant independent of T and ε. By the trace method of real interpolation
theorem,

‖ < t >b u1‖L∞((0,T ),Lq(Ω)) ≤ C(‖ < t >b ∂tu1‖Lp((0,T ),Lq(Ω)) + ‖ < t >b u1‖Lp((0,T ),H2
q (Ω))),

and so by (65),

‖ < t >b u1‖L∞((0,T ),Lq(Ω)) ≤ C(ε2 + ε3 + ε4), (66)

for q = 2 and 6, which, combined with (65), yields that

ET (η1,u1) ≤ C(ε2 + ε3 + ε4) (67)

with some constant C > 0 independent of T ∈ (0,∞).
To estimate η2 and u2, we shall use the following Lp-Lq decay estimates due to Enomoto and Shi-

bata [8]. Setting (θ, v) = T (t)(f, g), we have

‖(θ, v)(·, t)‖Lp(Ω) ≤ Cp,qt
− 3

2 ( 1
q − 1

p )[(f, g)]p,q (t > 1);

‖∇(θ, v)(·, t)‖Lp(Ω) ≤ Cp,qt
−σ(p,q)[(f, g)]p,q (t > 1);

‖∇2v(·, t)‖Lp(Ω) ≤ Cp,qt
− 3

2q [(f, g)]p,q (t > 1);

‖∂t(θ, v)(·, t)‖Lp(Ω) ≤ Ct−
3
2q [(f, g)]p,q (t > 1).

(68)
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Here, 1 ≤ q ≤ 2 ≤ p < ∞, [(f, g)]p,q = ‖(f, g)‖H1,0
p (Ω) + ‖(f, g)‖Lq(Ω), and

σ(p, q) =
3
2

(
1
q

− 1
p

)

+
1
2

(2 ≤ p ≤ 3), and
3
2q

(p ≥ 3).

Moreover, we use

‖(θ, v)(·, t)‖H1,2
q (Ω) ≤ M‖(f, g)‖H1,2

q (Ω) (0 < t < 2), (69)

for q = 2, 2+σ, and 6, which follows from standard estimates for continuous analytic semigroup. In (63),
we set

(η1
2 ,u1

2) = T (t)(θ0, v0), (η2
2 ,u2

2) =
∫ t

0

T (t − s)(λ1η1(·, s), ρ∗λ1u1(·, s)) ds.

Recall that

� =
1
2

+
3

2(2 + σ)
=

1
2

+
3
2

(1
2

+
1

2 + σ
− 1

2

)
=

3
2

(1
2

+
1

2 + σ
− 1

6

)
,

and

σ(2, r) = �, σ(2 + σ, r) =
1
2

+
3
4

> �, σ(6, r) = �, � ≤ 3/2r.

In particular, we use (68) estimate with decay rate �, replacing q with r, except for the first inequality in
(68).

We first consider the case where T > 2. Direct use of (68) with q = r for t ∈ (1, T ) and (69) for
t ∈ (0, 2] yields immediately that

ET (η1
2 ,u1

2) ≤ C‖(θ0, v0)‖I ≤ Cε2. (70)

Here, the estimate of sup1<t<T tb‖η1
2(·, t),u1

2(·, t)‖Lq(Ω) is a little bit exceptional. In fact, since b ≤
� − 1/2 ≤ (3/2)(1/r − 1/q) for q = 2 and 6 as follows from (5), we have

sup
1<t<T

tb‖(η1
2(·, t),u1

2(·, t))‖Lq(Ω) ≤ C(‖(θ0, v0)‖Lr(Ω) + ‖(θ0, v0)‖H1,0
q (Ω)).

To estimate (η2
2 ,u2

2), we set

[[(η1,u1)(·, s)]] = ‖(η1,u1)(·, s)‖Lr(Ω) +
∑

q=2,6

(‖(η1,u1)(·, s)‖H1,2
q (Ω) + ‖∂t(η1,u1)(·, s)‖H1,0

q (Ω)).

We set

ẼT (η1,u1) :=
(∫ T

0

(< t >b [[η1,u1)(·, t)]])p dt
)1/p

,

and then, by (65) we have

ẼT (η1,u1) ≤ C(ε2 + ε3 + ε4). (71)

First we consider the case: 2 ≤ t ≤ T . Let (η3,u3) = (∇η2
2 , ∇̄1∇u2

2) when q = 2, and (η3,u3) =
(∇̄1η2

2 , ∇̄2u2
2) when q = 6. Here, ∇̄mf = (∂α

x f | |α| ≤ m). And then,

‖(η3,u3)(·, t)‖Lq(Ω)

≤ C
{∫ t/2

0

+
∫ t−1

t/2

+
∫ t

t−1

}
‖(∇, ∇̄1∇) or (∇̄1, ∇̄2)T (t − s)(λ1η1, ρ∗λ1u1)(·, s)‖Lq(Ω) ds

= Iq + IIq + IIIq.

By (68) and bp′ > 1 (cf. (16)), we have

Iq(t) ≤ C

∫ t/2

0

(t − s)−�[[(η1,u1)]] ds
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≤ C(t/2)−�

∫ t/2

0

< s >−b< s >b [[(η1,u1)(·, s)]] ds

≤ Ct−�
(∫ T

0

< s >−bp′
ds

)1/p′(∫ T

0

(< s >b [[(η1,u1)(·, s)]])p ds
)1/p

≤ Ct−�ẼT (η1,u1).

Recalling that (� − b)p > 1 (cf. (16)), we have
∫ T

1

(< t >b Iq(t))p dt ≤ CẼT (η1,u1)p.

We next estimate IIq(t). By (68) we have

IIq(t) ≤ C

∫ t−1

t/2

(t − s)−�[[(η1,u1)(·, s)]] ds.

By Hölder’s inequality and < t >b≤ Cb < s >b for s ∈ (t/2, t − 1), we have

< t >b IIq(t) ≤ C

∫ t−1

t/2

(t − s)−�/p′
(t − s)−�/p < s >b [[(η1,u1)(·, s)]] ds

≤ C
(∫ t−1

t/2

(t − s)−� ds
)1/p′(∫ t−1

t/2

(t − s)−�(< s >b [[(η1,u1)(·, s)]])p ds
)1/p

.

Setting
∫ ∞
1

s−� ds = L, by Fubini’s theorem we have
∫ T

2

(< t >b IIq(t))p dt ≤ CLp/p′
∫ T−1

1

(< s >b [[(η1,u1)(·, s)]])p
(∫ 2s

s+1

(t − s)−� dt
)

ds

≤ CLpẼT (η1,u1)p.

Using a standard estimate (69) for continuous analytic semigroup, we have

IIIq(t) ≤ C

∫ t

t−1

‖(η1,u1)(·, s)‖H1,2
q (Ω) ds ≤ C

∫ t

t−1

[[(η1,u1)(·, s)]] ds.

Thus, employing the same argument as in estimating IIq(t), we have
∫ T

2

(< t >b IIIq(t))p dt ≤ CẼT (η1,u1)p.

Combining these three estimates yields that
∫ T

2

(< t >b ‖(η3,u3)(·, t)‖Lq(Ω))p dt ≤ CẼT (η1,u1)p, (72)

when T > 2.
For 0 < t < min(2, T ), using (69) and employing the same argument as in estimating IIIq(t) above,

we have
∫ min(2,T )

0

(< t >b ‖(η3,u3)(·, t)‖Lq(Ω))p dt ≤ CẼT (η1,u1)p,

which, combined with (72), yields that
∫ T

0

(< t >b ‖(η3,u3)(·, t)‖Lq(Ω))p dt ≤ CẼT (η1,u1)p (73)

for q = 2 and 6.
Since

∂t(η2
2 ,u2

2) = −λ1(η1, ρ∗u1)(·, t) − λ1

∫ t

0

∂tT (t − s)(η1, ρ∗u1)(·, s) ds,
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employing the same argument as in proving (73), we have
∫ T

0

(< t >b ‖∂t(η2
2 ,u2

2)(·, t)‖Lq(Ω))p dt ≤ CẼT (η1,u1)p (74)

for q = 2 and 6.
We now estimate sup2<t<T < t >b ‖(η2

2 ,u2
2)‖Lq(Ω) for q = 2 and 6. Let q = 2 and 6 in what follows.

For 2 < t < T ,

‖(η2
2 ,u2

2)(·, t)‖Lq(Ω) ≤ C
{∫ t/2

0

+
∫ t−1

t/2

+
∫ t

t−1

}
‖T (t − s)(λ1η1, λ1ρ∗u1)(·, s)‖Lq(Ω) ds

= Iq,0 + IIq,0 + IIIq,0.

By (68), we have

Iq,0(t) ≤ C

∫ t/2

0

(t − s)−3/2(2+σ)[[(η1,u1)(·, s)]] ds

≤ C(t/2)−3/2(2+σ)

∫ t/2

0

< s >−b< s >b [[(η1,u1)(·, s)]] ds

≤ Ct−3/2(2+σ)
(∫ ∞

0

< s >−p′b ds
)1/p′

ẼT (η1,u1).

Noting that (3/2(2 + σ))p′ > bp′ > 1 and using (68), we have

IIq,0(t) ≤ C

∫ t−1

t/2

(t − s)−3/2(2+σ)‖(η1,u1)(·, s)]] ds

≤ C
(∫ t−1

t/2

((t − s)−3/2(2+σ) < s >−b)p′
ds

)1/p′(∫ t−1

t/2

(< s >b [[(η1,u1)(·, s)]])p ds
)1/p

≤ C < t >−b ẼT (η1,u1).

By (69), we have

IIIq,0(t) ≤ C

∫ t

t−1

[[(η1,u1)(·, s)]] ds

≤ C < t >−b

∫ t

t−1

< s >b [[(η1,u1)(·, s)]] ds

≤ C < t >−b
(∫ t

t−1

ds
)1/p′

ẼT (η1,u1).

Since b < 3/2(2 + σ), combining these estimates yields that

sup
2<t<T

< t >b ‖(η2
2 ,u2

2)(·, t)‖Lq(Ω) ≤ CẼT (η1,u1). (75)

For 0 < t < min(2, T ), by standard estimate (69) of continuous analytic semigroup, we have

sup
0<t<min(2,T )

< t >b ‖(η2
2 ,u2

2)(·, t)‖Lq(Ω) ≤ CẼT (η1,u1)

which, combined with (75), yields that

‖ < t >b (η2
2 ,u2

2)(·, t)‖L∞((0,T ),Lq(Ω) ≤ CẼT (η1,u1) (76)

for q = 2 and 6.
Recalling that η = η1 + η2 and u = u1 + u2, noting that ET (η1,u1) ≤ C(ẼT (η1,u1) + ‖(θ0, v0)‖I) as

follows from (66), and combining (73), (74), (76), and (71) yield that

ET (η,u) ≤ C(ε2 + ε3 + ε4). (77)
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If we choose ε > 0 so small that C(ε + ε2 + ε3) < 1 in (77), we have ET (η,u) ≤ ε. Moreover, by (43)

sup
t∈(0,T )

‖η(·, t)‖L∞(Ω) ≤ C(‖η0‖H1
6

+ ‖∂tη‖Lp((0,T ),H1
6 (Ω))) ≤ C(ε2 + ε3 + ε4).

Thus, choosing ε > 0 so small that C(ε2 + ε3 + ε4) ≤ ρ∗/2, we see that supt∈(0,T ) ‖η(·, t)‖L∞(Ω) ≤ ρ∗/2.
And also,

∫ T

0

‖∇u(·, s)‖L∞(Ω) ds ≤
(∫ ∞

0

< s >−p′b ds
)1/p′

‖ < t >b ∇u‖Lp((0,T ),H1
6 (Ω)) ≤ Cp′,b(ε2 + ε3 + ε4).

Thus, choosing ε > 0 so small that Cp′,b(ε2 + ε3 + ε4) ≤ δ, we see that
∫ T

0
‖∇u(·, s)‖L∞(Ω) ds ≤ δ. From

consideration above, it follows that (η,u) ∈ VT,ε. Let S be an operator defined by S(θ, v) = (η,u) for
(θ, v) ∈ VT,ε, and then S maps VT,ε into itself.

We now show that S is a contraction map. Let (θi, vi) ∈ VT,ε (i = 1, 2) and set (η,u) = (η1,u1) −
(η2,u2) = S(θ1, v1) − S(θ2, v2), and F = F (θ1, v1) − F (θ2, v2) and G = G(θ1, v1) − G(θ2, v2). And then,
from (55) it follows that

∂tη + ρ∗div u = F in Ω × (0, T ),

ρ∗∂tu − Div (μD(u) + νdiv uI − p′(ρ∗)η) = G in Ω × (0, T ),

u|Γ = 0, (η,u)|t=0 = (0, 0) in Ω.

(78)

By (34), (45), (47), (52), and (54), we have

‖(F,G)‖Lp((0,T ),H1,0
r (Ω)) +

∑

q=2,2+σ,6

‖(F,G)‖Lp((0,T ),H1,0
q (Ω)) ≤ C(ε + ε2 + ε3)ET ((θ1, v1) − (θ2, v2)).

Applying the same argument as in proving (77) to Eq. (78) and recalling (η,u) = S(θ1, v1) − S(θ2, v2),
we have

ET (S(θ1, v1) − S(θ2, v2)) ≤ C(ε + ε2 + ε3)ET ((θ1, v1) − (θ2, v2)),

for some constant C independent of ε and T . Thus, choosing ε > 0 so small that C(ε + ε2 + ε3) < 1,
we have that S is a contraction map on VT,ε, which proves Theorem 6. Since the contraction mapping
principle yields the uniqueness of solutions in VT,ε, we have completed the proof of Theorem 6.

6. A Proof of Theorem 3

We shall prove Theorem 3 with the help of Theorem 6. In what follows, let b and p be the constants
given in Theorem 6, and q = 2 and 6. As was stated in Sect. 2, the Lagrange transform (7) gives a
C1+ω (ω ∈ (0, 1/2)) diffeomorphism on Ω and dx = det(I + k) dy, where {x} and {y} denote respective
Euler coordinates and Lagrange coordinates on Ω and k =

∫ t

0
∇u(·, s) ds. By (8), ‖k‖L∞(Ω) ≤ δ < 1. In

particular, choosing δ > 0 smaller if necessary, we may assume that C−1 ≤ det(I +
∫ t

0
∇u(·, s) ds) ≤ C

with some constant C > 0 for any (x, t) ∈ Ω × (0, T ). Let y = Xt(x) be an inverse map of Lagrange
transform (7), and set θ(x, t) = η(Xt(x), t) and v(x, t) = u(Xt(x), t). We have

‖(θ, v)‖Lq(Ω) ≤ C‖(η,u)‖Lq(Ω).

Noting that (η,u)(y, t) = (θ, v)(y +
∫ t

0
u(y, s) ds, t), the chain rule of composite functions yields that

‖(∇(θ, v)‖Lq(Ω) ≤ C(1 − ‖k‖L∞(Ω))−1‖∇(η,u)‖Lq(Ω);

‖∇2v‖Lq(Ω) ≤ C((1 − ‖k‖L∞(Ω))−2‖∇2u‖Lq(Ω) + (1 − ‖k‖L∞(Ω))−1‖∇k‖Lq(Ω)‖∇u‖L∞(Ω)).

Thus, using ‖∇k‖Lq(Ω) ≤ C‖ < t >b ∇2u‖Lp((0,T ),Lq(Ω)) and ‖∇u‖L∞(Ω) ≤ C‖∇u‖H1
6 (Ω), we have

‖ < t >b ∇(θ, v)‖L∞((0,T ),L2(Ω)∩L6(Ω)) ≤ C‖ < t >b ∇(θ, v)‖L∞((0,T ),L2(Ω)∩L6(Ω));

‖ < t >b (θ, v)‖Lp((0,T ),L6(Ω)) ≤ C‖ < t >b (θ, v)‖Lp((0,T ),L6(Ω));
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‖ < t >b (θ, v)‖L∞((0,T ),L2(Ω)∩L6(Ω)) ≤ C‖ < t >b (θ, v)‖Lp((0,T ),L2(Ω)∩L6(Ω));

‖ < t >b ∇2v‖Lp((0,T ),L2(Ω)∩L6(Ω)) ≤ C(‖ < t >b ∇2u‖Lp((0,T ),L2(Ω)∩L6(Ω))

+ ‖ < t >b ∇2u‖Lp((0,T ),Lq(Ω))‖ < t >b ∇u‖Lp((0,T ),H1
6 (Ω))).

Since ∂t(η,u)(y, t) = ∂t[(θ, v)(y +
∫ t

0
u(y, s) ds, t)] = ∂t(θ, v)(x, t) + u · ∇(θ, v)(x, t), we have

‖∂t(θ, v)‖Lq(Ω) ≤ C(‖∂t(η,u)‖Lq(Ω) + ‖u‖L∞(Ω)‖∇η‖Lq(Ω) + ‖u‖Lq(Ω)‖∇u‖L∞(Ω)).

Since ‖∇η‖L∞((0,T ),Lq(Ω)) ≤ ‖∇θ0‖Lq(Ω) + C‖ < t >b ∂tη‖Lp((0,T ),H1
q (Ω)), we have

‖ < t >b ∂t(θ, v)‖Lp((0,T ),Lq(Ω)) ≤ C(‖ < t >b ∂t(η,u)‖Lp((0,T ),Lq(Ω))

+ (‖∇θ0‖Lq(Ω) + ‖ < t >b ∂tη‖Lp((0,T ),H1
q (Ω)))‖ < t >b u‖Lp((0,T ),H1

6 (Ω))

+ ‖ < t >b u‖L∞((0,T ),Lq(Ω))‖ < t >b ∇u‖Lp((0,T ),H1
6 (Ω))).

By Theorem 6, we see that there exists a small constant ε > 0 such that if initial data (θ0, v0) ∈ I
satisifes the compatibility condition: v0|Γ = 0 and the smallness condition: ‖(θ0, v0)‖I ≤ ε2 then problem
(1) admits unique solutions ρ = ρ∗ + θ and v satisfying the regularity conditions (4) and E(θ, v) ≤ ε. This
completes the proof of Theorem 3.

7. Comment on the Proof

Let N ≥ 3 and Ω be an exterior domain in R
N . Assume that Lp-Lq decay estmates for continuous analytic

semigroup like (68) are valid. We choose q1 = 2, q2 = 2 + σ, and q3 in such a way that q3 > N and
1
2

+
N

2(2 + σ)
≤ N

2

(1
2

+
1

2 + σ
− 1

q3

)
.

Namely, q3 = 6 (N = 3) and q3 > N ≥ 2N/(N − 2) for N ≥ 4. If L1 in space estimates hold, then the
global well-posedness is established with q1 = q2 = 2. But, so far L1 in space estimates does not hold,
and so we have chosen q1 = 2 and q2 = 2 + σ. Let p and b be chosen in such a way that

(1
2

+
N

2(2 + σ)
− b

)
p > 1, bp′ > 1.

If we write equations as

∂tu − Au = f, Bu = g (t > 0), u|t=0 = u0.

Here, Bu = g is corresponding to boundary conditions, and f and g are corresponding to nonlinear terms.
The first reduction is that u1 is a solution to equations:

∂tu1 + λ1u1 − Au1 = f, Bu1 = g (t ∈ R).

Then, u1 has the same decay properties as nonlinear terms f and g have. If u1 does not belong to the
domain of the operator (A,B) (free boundary conditions or slip boundary conditions cases)), in addition
we choose u2 as a solution of equations:

∂tu2 + λ1u2 − Au2 = λ1u1, Bu2 = 0 (t ∈ R)

with very large constant λ1 > 0. Since u2 belongs to the domain of operator A for any t > 0, we choose
u3 as a solution of equations:

∂tu3 − Au3 = λ1u2, Bu3 = 0 (t > 0), u3|t=0 = u0 − (u1 + u2)|t=0.

And then, by the Duhamel principle, we have

u3 = T (t)(u0 − (u1 + u2)|t=0) + λ1

∫ t

0

T (t − s)u2(s) ds,

and we use Lp-Lq decay estimate like (68) for 0 < s < t − 1 and a standard semigroup estimate for
t−1 < s < t, that is ‖T (t−s)u2(s)‖D(A) ≤ C‖u(s)‖D(A) for t−1 < s < t, where ‖·‖D(A) is a domain norm.
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When N = 2, the method above is fail, because
1
2

+
2

2(2 + σ)
< 1.

And so, Matsumura–Nishida method seems to be only the way to prove the global wellposedness in two
dimensional exterior domains.
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