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ABSTRACT
In this paper, we are concerned with generally symmetric hyper-
bolic-parabolic systems with Korteweg-type dispersion. Referring to
those classical efforts by Kawashima et al., we formulate new struc-
tural conditions for the Korteweg-type dispersion and develop the
dissipative mechanism of “regularity-gain type.” As an application, it
is checked that several concrete model systems (e.g., the compress-
ible Navier-Stokes(-Fourier)-Korteweg system) satisfy the general
structural conditions. In addition, the optimality of our general the-
ory on the dissipative structure is also verified by calculating the
asymptotic expansions of eigenvalues.
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1. Introduction

We consider linear symmetric hyperbolic-parabolic systems with Korteweg-type disper-
sion:

A0ut þ
Xn
j¼1

Ajuxj ¼
Xn
j, k¼1

Bjkuxjxk þ
Xn

j, k, ‘¼1

Djk‘uxjxkx‘ , (1.1)

where u ¼ uðt, xÞ 2 R
m is the unknown function of t> 0 and x 2 R

n, and A0, Aj, Bjk,
and Djk‘ are m�m real constant matrices. Here A0 is real symmetric and positive
definite, AðxÞ ¼Pn

j¼1 A
jxj is real symmetric, and BðxÞ ¼Pn

j, k¼1 B
jkxjxk is real sym-

metric and nonnegative definite, where x 2 Sn�1: We study the dissipative structure
and decay property of the system (1.1) in a general framework which contains the
following linearized compressible Navier-Stokes-Fourier-Korteweg system as an
example:
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qt þ �qdiv u ¼ 0,

�qut þ �pqrqþ �phrh ¼ lDuþ ðlþ l0Þrdiv uþ jrDq,

�q�ehht þ �h�phdiv u ¼ �Dh:

8>><
>>: (1.2)

Here q, u, and h denote the perturbations of the density, velocity and absolute tempera-
ture from the corresponding constant states �q > 0, �u ¼ 0 2 R

3 and �h > 0, respectively;
we used the abbreviations �pq ¼ pqð�q, �hÞ, �ph ¼ phð�q, �hÞ and �eh ¼ ehð�q, �hÞ, where p ¼
pðq, hÞ is the pressure and e ¼ eðq, hÞ is the internal energy, and we assume that �pq > 0

and �eh > 0; l and l0 are the coefficients of viscosity satisfying l > 0 and 2lþ l0 >
0, � > 0 is the coefficient of heat-conduction, and j > 0 is the coefficient of capillarity.
So far there are lots of efforts dedicated to the nonlinear Navier-Stokes(-Fourier)-

Korteweg system. The rigorous derivation of the corresponding equations is due to
Dunn and Serrin [1], which can be used to the phase transition. The existence of
smooth solutions was known since the works by Hattori and Li [2, 3]. In contrast with
the local existence, global solutions are obtained only for initial data close enough to
the stable equilibrium ð�., 0Þ with convex pressure profiles. Danchin and Desjardins [4]
established the global existence of strong solutions in so-called critical Besov spaces
which are invariant by the scaling of Korteweg system, for initial data close enough to
stable equilibria. Bresch, Desjardins, and Lin [5] proved the global existence of weak
solutions in a periodic or strip domain. Later, their results were improved by Haspot in
[6]. Antonelli and Spirito [7] established the global existence of finite energy weak solu-
tions for large initial data, where vacuum regions are allowed in the definition of weak
solutions. Kotschote [8] considered the initial-boundary value problem in bounded
domain and proved the local existence and uniqueness of strong solutions in maximal
Lp-regularity class, which are treated by Dore-Venni Theory, real interpolation and H1

calculus. Based on [2, 3], Tan and Wang [9] deduced various optimal L2 and Lpðp � 2Þ
time-decay rates of solutions and their spatial derivatives. Chikami and Kobayashi [10]
established the global existence and decay of strong solutions in the critical Besov
spaces, where the assumption on the pressure law is not necessary monotone increasing.
Charve, Danchin, and the third author [11] investigated the global existence and Gevrey
analyticity in more general critical Lp framework, which is the first effort that exhibits
Gevrey analyticity for a model of compressible fluids. Furthermore, the authors [12]
developed the Lp energy methods (independent of spectral analysis), which leads to the
optimal time-decay estimates of Lq-Lr type. Recently, Murata and the second author
[13] addressed a totally different statement on the global existence and decay estimates,

provided that the initial data belong to Xq, p¢B3�2=p
q, p � B2ð1�1=pÞ

q, p whose regularity is
independent of the spatial dimensions. The maximal Lp-Lq regularity to the linearized
equation in R

n is mainly employed. See also [14] where the maximal Lp-Lq regularity
for compressible fluids of Korteweg type has been established on general domains.
Inspired by the work of the second author and Tanaka [15], Chen and Zhao [16]
studied the global existence and nonlinear stability of stationary solutions to the com-
pressible Navier-Stokes-Korteweg system with the external force. Bian, Yao, and Zhu
[17] performed the vanishing capillarity limit of smooth solutions to the initial value
problem. The convergence rate estimates are also presented for any positive time. Li
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and Yong [18] investigated the zero Mach number limit in the regime of smooth solu-
tions. It was shown that smooth solutions of Navier-Stokes-Korteweg equations con-
verged to those for incompressible Navier-Stokes equations at some convergence rate.
Charve [19] studied three capillary compressible models (the classical local systems and
non-local models) for large initial data bounded away from zero. He proved that these
systems had a unique local in time solution and studied the corresponding convergence
rate of the solutions of the non-local models toward the local Korteweg model.
Germain and Lefloch [20] validated the zero viscosity-capillarity limit associated with
the Navier-Stokes-Korteweg system in one dimension. Specifically, they established the
existence of finite energy solutions as well as their convergence toward entropy solu-
tions to the Euler system.
In the present paper, the main task is to study the dissipative structure and decay

property of the system (1.1). To this end, as structural conditions, we formulate
Craftsmanship conditions (S) and (K) (see Section 2). Under these structural conditions
we prove that the dissipative structure of the system (1.1) is described by

kðinÞ � �cjnj2=ð1þ jnj2Þ, n 2 R
n, (1.3)

where kðinÞ denotes the eigenvalue of the system (1.1) in the Fourier space. See
Theorem 2.1 and Remark 2.3. Moreover, in another case where Additional condition
(A) (see Section 2) is satisfied, the dissipative structure can be improved, which is
described by

kðinÞ � �cjnj2, n 2 R
n: (1.4)

This dissipativity is the same as that of heat kernel and is of the “regularity-gain type.” See
Theorem 2.2 and Remark 2.5. We verify that the compressible Navier-Stokes-Fourier-
Korteweg system (1.2) in the three-dimensional case and in the one-dimensional case are
both fall into the framework of (1.4), while the one-dimensional compressible Euler-
Fourier-Korteweg system (see (4.12)) is in the framework of (1.3). Furthermore, we derive
the asymptotic expansions of the eigenvalues of the one-dimensional compressible Navier-
Stokes-Fourier-Korteweg system (resp. the one-dimensional compressible Euler-Fourier-
Korteweg system) for n ! 0 and jnj ! 1 and show that our characterization (1.4) (resp.
(1.3)) is optimal in each general framework.
The dissipative structure and the corresponding decay property were first studied in

[21] for symmetric hyperbolic-parabolic systems (with symmetric diffusion and/or sym-
metric relaxation). It was proved in [21] that under the original Craftsmanship condi-
tions (K) the dissipative structure of the systems is described by (1.3). Moreover, it was
shown in [22] that this dissipative structure (1.3) is completely characterized by Stability
condition formulated in [22]. Later, another characterization was given in [23] by using
the Kalman rank condition. Rather recently, symmetric hyperbolic systems with non-
symmetric relaxation were studied in [24,25] and some weaker dissipative structures of
the regularity-loss type were investigated. Very recently, the dissipative structure of sym-
metric hyperbolic systems with memory-type symmetric diffusion or memory-type sym-
metric relaxation were studied in [26–28]. The dissipative structure and the decay
property for systems with memory-type dissipation are interesting problems with
long history.
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The paper is organized as follows. In Section 2, we formulate structural conditions
and state the main results on the dissipative structure of the system (1.1). The proofs
are given in Section 3, which is based on the energy method in the Fourier space. In
Section 4, we investigate the compressible Navier-Stokes-Fourier-Korteweg system and
the compressible Euler-Fourier-Korteweg system as applications of our main results. In
the final section, we verify the optimality of our general theory by calculating the
asymptotic expansions of the eigenvalues of the model systems.

1.1. Notations
We denote by h�, �i the standard inner product in R

m or Cm: For u 2 R
m (column vec-

tor), we denote by uT (row vector) the transpose of u. For an m�m real matrix X, we
denote by XT the transpose of X. We denote by Xsy and Xasy the symmetric part and
skew-symmetric part of X, respectively. Namely, Xsy ¼ 1

2 ðX þ XTÞ and Xasy ¼
1
2 ðX � XTÞ: Let 1 � p � 1: Then Lp ¼ LpðRnÞ denotes the usual Lebesgue space over
R

n with the norm k � kLp : For s � 0, Hs ¼ HsðRnÞ denotes the sth order Sobolev space
over Rn in the L2 sense, equipped with the norm k � kHs : We note that L2 ¼ H0: Finally,
in this paper, we use C and c to denote generic positive constants, which may change
from line to line, when the exact value of the constant is not essential.

2. Main results

In [24,25], the first author and his collaborators formulated the uniform dissipativity of
type (k, l) for the dissipative system:

Re kðinÞ � �c
jnj2k

ð1þ jnj2Þl
, n 2 R

n, (2.1)

for some constant c> 0, where k, l are nonnegative integers. It calls the system is of
“standard type” when k¼ l and calls the one is of “regularity-loss type” when k< l.
The main purpose of this paper is to introduce a new dissipative mechanism with

k> l, which is the so-called “regularity-gain type”. To this end, we first take the Fourier
transform of (1.1) to have

A0ût þ ijnjAðxÞû þ jnj2BðxÞû þ ijnj3DðxÞû ¼ 0, (2.2)

where

AðxÞ ¼
Xn
j¼1

Ajxj, BðxÞ ¼
Xn
j, k¼1

Bjkxjxk, DðxÞ ¼
Xn

j, k, ‘¼1

Djk‘xjxkx‘

for x ¼ n=jnj 2 S
n�1: We introduce the following basic assumption on the matrices A0,

AðxÞ and BðxÞ:

Basic assumption (B).

� A0 is real symmetric and positive definite.
� AðxÞ is real symmetric for each x 2 S

n�1:
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� BðxÞ is real symmetric and nonnegative definite for each x 2 S
n�1 such that

kerðBðxÞÞ is independent of x 2 S
n�1:

Also we formulate the following structural conditions.

Craftsmanship condition (S). There is an m�m real matrix SðxÞ with Sð�Þ 2
C1ðSn�1Þ that satisfies the following properties:

� SðxÞA0 is real symmetric and nonnegative definite for each x 2 S
n�1 such that

kerðSðxÞA0Þ is independent of x 2 S
n�1:

� SðxÞAðxÞ þ DðxÞ is real symmetric for each x 2 S
n�1:

� ðSðxÞBðxÞÞsy is (real symmetric and) nonnegative definite for each x 2 S
n�1:

� SðxÞDðxÞ is real symmetric for each x 2 S
n�1:

Here and in what follows Xsy denotes the symmetric part of the real matrix X.

Craftsmanship condition (K). There is an m�m real matrix KðxÞ with Kð�Þ 2
C1ðSn�1Þ that satisfies the following properties:

� KðxÞA0 is real skew-symmetric for each x 2 S
n�1:

� ðKðxÞAðxÞÞsy þ BðxÞ is (real symmetric and) positive definite for each x 2 S
n�1:

� ðKðxÞDðxÞÞsy þ BðxÞ is (real symmetric and) nonnegative definite for each x 2
S
n�1: Moreover, kerððKðxÞDðxÞÞsy þ BðxÞÞ is independent of x 2 S

n�1 and satis-
fies

kerððKðxÞDðxÞÞsy þ BðxÞÞ � kerðSðxÞA0Þ,
where SðxÞ is the matrix in Craftsmanship condition (S).
We denote by P, Q0 and Q the orthogonal projections onto kerðBðxÞÞ, kerðSðxÞA0Þ

and kerððKðxÞDðxÞÞsy þ BðxÞÞ, respectively. Then our first main result is stated
as follows.

Theorem 2.1. Assume (B), (S), and (K) hold. Then the solution u of (1.1) with the initial
data u0 satisfies the following pointwise estimate:

jûðt, nÞj2 þ jnj2jðI � Q0Þûðt, nÞj2 � Ce�cqðnÞtfjû0ðnÞj2 þ jnj2jðI � Q0Þû0ðnÞj2g (2.3)

for t � 0 and n 2 R
n, where qðnÞ ¼ jnj2=ð1þ jnj2Þ:

Remark 2.1. The system (1.1) is uniformly dissipative of the type (1,1). Namely, the
eigenvalues k ¼ kðinÞ of the system (2.2) satisfy

Re kðinÞ � �cqðnÞ, n 2 R
n, (2.4)

where qðnÞ ¼ jnj2=ð1þ jnj2Þ: This dissipativity is of the standard type in (2.1).

Next we consider another case by modifying Craftsmanship condition (K) as follows.

Craftsmanship condition (K)’. There is an m�m real matrix KðxÞ with Kð�Þ 2
C1ðSn�1Þ that satisfies the following properties:
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� KðxÞA0 is real skew-symmetric for each x 2 S
n�1:

� ðKðxÞAðxÞÞsy þ BðxÞ is (real symmetric and) positive definite for each x 2 S
n�1:

� ðKðxÞDðxÞÞsy is (real symmetric and) nonnegative definite for each x 2 S
n�1:

Moreover, kerððKðxÞDðxÞÞsyÞ is independent of x 2 S
n�1 and satisfies

kerððKðxÞDðxÞÞsyÞ � kerðSðxÞA0Þ,
where SðxÞ is the matrix in Craftsmanship condition (S).
We would like to mention that the last assumption in Conditions (K) (resp. (K)’)

gives the relationship between (S) and (K) (resp. (K)’). The nonnegativity is used for
energy estimate (3.11) (resp. (3.18)) and the inclusion is used only for decay estimate
(2.3) (resp. (2.5)). Also, we assume the following additional condition for another case.

Additional condition (A).

� Q0KðxÞA0Q0 ¼ 0 for each x 2 S
n�1:

� Q0KðxÞBðxÞ ¼ 0 for each x 2 S
n�1:

Here we denote by P, Q0 and Q0 the orthogonal projections onto kerðBðxÞÞ,
kerðSðxÞA0Þ and kerððKðxÞDðxÞÞsyÞ, respectively. Then our second main result is
stated as follows.

Theorem 2.2. Assume (B), (S), (K)’ and (A) hold. Then the solution u of (1.1) with the
initial data u0 satisfies the following pointwise estimate:

jûðt, nÞj2 þ jnj2jðI � Q0Þûðt, nÞj2 � Ce�cjnj2tfjû0ðnÞj2 þ jnj2jðI � Q0Þû0ðnÞj2g (2.5)

for t � 0 and n 2 R
n:

Remark 2.2. The system (1.1) is uniformly dissipative of the type (1,0). Namely, the
eigenvalues k ¼ kðinÞ of the system (2.2) satisfy

Re kðinÞ � �cjnj2, n 2 R
n: (2.6)

This dissipativity is essentially the same as that of the heat equation and is of the
“regularity-gain type” in (2.1).

3. Energy method in the Fourier space

The aim of this section is to prove those main results. As is well known, the notion of
entropy for hyperbolic conservation laws was introduced by Godunov [29] and
Friedrichs-Lax [30]. The first author and his collaborator performed the entropy exten-
sion to generally hyperbolic-parabolic composite systems and developed the energy
method in Fourier spaces, see [21,22]. Based on the same spirt of energy methods, we
shall deal with the new context arising from the Koreteweg-type dispersion term DðxÞ
and get the following results on the energy estimates.

Proposition 3.1. Let those conditions in Theorem 2.1 fulfill. Then the solution u of (1.1)
with the initial data u0 satisfies the following energy estimate:
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kuðtÞk2Hs þ kðI � Q0Þ@xuðtÞk2Hs þ
ðt
0
k@xuðsÞk2Hs�1 þ kðI � QÞ@2

xuðsÞk2Hs�1 ds

þ
ðt
0
kðI � PÞ@xuðsÞk2Hs ds � Cfku0k2Hs þ kðI � Q0Þ@xu0k2Hsg

(3.1)

for t � 0, provided that u0 2 Hs and ðI � Q0Þ@xu0 2 Hs for s � 0:
In addition, one can have the “regularity-gain type” energy estimate under differ-

ent conditions.

Proposition 3.2. Let those conditions in Theorem 2.2 fulfill. Then the solution u of (1.1)
with the initial data u0 satisfies the following energy estimate:

kuðtÞk2Hs þ kðI � Q0Þ@xuðtÞk2Hs þ
ðt
0
k@xuðsÞk2Hs þ kðI � Q0Þ@2

xuðsÞk2Hs ds

� Cfku0k2Hs þ kðI � Q0Þ@xu0k2Hsg
(3.2)

for t � 0, provided that u0 2 Hs and ðI � Q0Þ@xu0 2 Hs for s � 0:

Proof of Theorem 2.1 and Proposition 3.1
We apply the energy method to the system (2.2) in the Fourier space. We first take the
C

m inner product of (2.2) with û: From the real part we have

1
2
@

@t
hA0û, ûi þ jnj2hBðxÞû, ûi þ Refijnj3hDðxÞû, ûig ¼ 0, (3.3)

where we used the fact that A0, AðxÞ, and BðxÞ are real symmetric by Basic assump-
tion. Secondly, letting SðxÞ be the matrix in Craftsmanship condition (S), we multiply

(2.2) by jnj2SðxÞ and take the inner product of the resulting equation with û: From the
real part we have

1
2
@

@t
fjnj2hSðxÞA0û, ûig þ Refijnj3hSðxÞAðxÞû, ûig þ jnj4hðSðxÞBðxÞÞsyû, ûi ¼ 0,

(3.4)

where we used the fact that SðxÞA0 and SðxÞDðxÞ are real symmetric by
Craftsmanship condition (S). Now we add (3.3) and (3.4). Since SðxÞAðxÞ þ DðxÞ is
real symmetric by Craftsmanship condition (S), we obtain

1
2
@

@t
fhA0û, ûi þ jnj2hSðxÞA0û, ûig þ jnj2hBðxÞû, ûi þ jnj4hðSðxÞBðxÞÞsyû, ûi ¼ 0:

(3.5)

Thirdly, we use the matrix KðxÞ in Craftsmanship condition (K). We multiply (2.2) by
�ijnjKðxÞ and take the inner product of the resulting equation with û: Taking the real
part, we have

1
2
@

@t
f�jnjhiKðxÞA0û, ûig þ jnj2hðKðxÞAðxÞÞsyû, ûi

þ jnj4hðKðxÞDðxÞÞsyû, ûi ¼ Refijnj3hKðxÞBðxÞû, ûig:
(3.6)

Here we used the fact that iKðxÞA0 is Hermitian by Craftsmanship condition (K).
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We now combine (3.5) and (3.6) such that ð3:5Þ þ ð3:6Þ � a=ð1þ jnj2Þ, where a > 0
is a constant to be determined. Then we obtain the following energy equality

1
2
@

@t
Eþ D ¼ F, (3.7)

where our Lyapunov function E, the corresponding dissipation term D and the error
term F are given, respectively, by

E ¼ hA0û, ûi þ jnj2hSðxÞA0û, ûi � ajnj
1þjnj2 hiKðxÞA0û, ûi,

D ¼ jnj2hBðxÞû, ûi þ jnj4hðSðxÞBðxÞÞsyû, ûi
þ ajnj2

1þjnj2 hðKðxÞAðxÞÞ
syû, ûi þ ajnj4

1þjnj2 hðKðxÞDðxÞÞ
syû, ûi

F ¼ ajnj3
1þjnj2 RefihKðxÞBðxÞû, ûig:

8>>>>>>>>><
>>>>>>>>>:

(3.8)

We first estimate E. Since A0 is positive definite and SðxÞA0 is nonnegative definite, we
find a positive constant a0 such that for a 2 ð0, a0	, we have

c0fjûj2 þ jnj2jðI � Q0Þûj2g � E � C0fjûj2 þ jnj2jðI � Q0Þûj2g, (3.9)

where c0 and C0 are positive constants independent of a and Q0 is the orthogonal pro-
jection onto kerðSðxÞA0Þ: Next we estimate D. We have

D ¼ aqðnÞfhððKðxÞAðxÞÞsy þ BðxÞÞû, ûi þ jnj2hððKðxÞDðxÞÞsy þ BðxÞÞû, ûig
þ ð1� aÞjnj2hBðxÞû, ûi þ jnj4hðSðxÞBðxÞÞsyû, ûi
� ac1qðnÞfjûj2 þ jnj2jðI � QÞûj2g þ c1jnj2jðI � PÞûj2

for a 2 ð0, 1=2	, where qðnÞ ¼ jnj2=ð1þ jnj2Þ and c1 is a positive constant independent
of a. Here we used the fact that ðKðxÞAðxÞÞsy þ BðxÞ is positive definite, and
ðKðxÞDðxÞÞsy þ BðxÞ, BðxÞ and ðSðxÞBðxÞÞsy are nonnegative definite; Q and P are
the orthogonal projections onto kerððKðxÞDðxÞÞsy þ BðxÞÞ and kerBðxÞ, respectively.
Finally, we estimate F as

jFj � aCqðnÞjnjjûjjðI � PÞûj
� a�qðnÞjûj2 þ aC�qðnÞjnj2jðI � PÞûj2

for any a, � > 0, where C� is a constant depending on � but is independent of a. We
take � > 0 and a > 0 such that � � c1=2 and aC� � c1=2: Then we find that

D� F � cqðnÞfjûj2 þ jnj2jðI � QÞûj2g þ cjnj2jðI � PÞûj2: (3.10)

We now integrate (3.7) with respect to t. Then, using (3.9) and (3.10), we obtain the
following energy estimate in the Fourier space:

jûðt, nÞj2 þ jnj2jðI � Q0Þûðt, nÞj2 þ qðnÞ
ðt
0
jûðs, nÞj2 þ jnj2jðI � QÞûðs, nÞj2 ds

þ
ðt
0
jnj2jðI � PÞûðs, nÞj2 ds � Cfjû0ðnÞj2 þ jnj2jðI � Q0Þû0ðnÞj2g,

(3.11)
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where û0 is the initial data. We multiply this estimate by ð1þ jnj2Þs and integrate over
n 2 R

n: This yields the desired energy estimate (3.1) and hence the proof of Proposition
3.1 is complete.
Finally, we prove Theorem 2.1. Since kerððKðxÞDðxÞÞsy þ BðxÞÞ � kerðSðxÞA0Þ by

Craftsmanship condition (K), we have jðI � QÞûj � jðI � Q0Þûj: Therefore we have
from (3.10) that

D� F � cqðnÞfjûj2 þ jnj2jðI � Q0Þûj2g � cqðnÞE, (3.12)

where we used (3.9) in the last inequality. We substitute (3.12) into (3.7) to get

@

@t
Eþ cqðnÞE � 0:

Solving this differential inequality, we obtain Eðt, nÞ � e�cqðnÞtEð0, nÞ, which together
with (3.9) yields the desired pointwise estimate (2.3). This completes the proof of
Theorem 2.1.
We remark that the dissipativity (2.4) can be shown in the same way. In fact, we

apply the same energy method to the eigenvalue problem associated with (2.2):

kA0/þ ijnjAðxÞ/þ jnj2BðxÞ/þ ijnj3DðxÞ/ ¼ 0, (3.13)

where k 2 C and / 2 C
m with / 6¼ 0: Then, as the counterpart of @

@t Eþ cqðnÞE � 0,
we obtain Re kþ cqðnÞ � 0, which shows (2.4). w

Proof of Theorem 2.2 and Proposition 3.2
In this case, we also have the energy equalities (3.5) and (3.6), where SðxÞ and KðxÞ
are the matrices in Craftsmanship conditions (S) and (K)’, respectively. We combine
(3.5) and (3.6) such that ð3:5Þ þ ð3:6Þ � a, where a > 0 is a constant to be determined.
Then, as the counterpart of (3.7), we obtain the following energy equality

1
2
@

@t
~E þ ~D ¼ ~F , (3.14)

where the Lyapunov function ~E, the corresponding dissipation term ~D and the error
term ~F in this case are given respectively by

~E ¼ hA0û, ûi þ jnj2hSðxÞA0û, ûi � ajnjhiKðxÞA0û, ûi,
~D ¼ jnj2hBðxÞû, ûi þ jnj4hðSðxÞBðxÞÞsyû, ûi

þ ajnj2hðKðxÞAðxÞÞsyû, ûi þ ajnj4hðKðxÞDðxÞÞsyû, ûi
~F ¼ ajnj3RefihKðxÞBðxÞû, ûig:

8>>>><
>>>>:

(3.15)

This (3.15) is the counterpart of (3.8).
We estimate each term in (3.14). We recall that A0 is positive definite and SðxÞA0 is

nonnegative definite. Also we have Q0KðxÞA0Q0 ¼ 0 by Condition (A), where Q0 is the
orthogonal projection onto kerðSðxÞA0Þ: This gives

jajnjhiKðxÞA0û, ûij � aCjnjjûjjðI � Q0Þûj
� aCfjûj2 þ jnj2jðI � Q0Þûj2g:

Consequently, we find a positive constant a0 such that for a 2 ð0, a0	, we have
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c0fjûj2 þ jnj2jðI � Q0Þûj2g � ~E � C0fjûj2 þ jnj2jðI � Q0Þûj2g, (3.16)

where c0 and C0 are positive constants independent of a. This is the counterpart of
(3.9). Next we estimate ~D: We have

~D ¼ ajnj2fhððKðxÞAðxÞÞsy þ BðxÞÞû, ûi þ jnj2hðKðxÞDðxÞÞsyû, ûig
þ ð1� aÞjnj2hBðxÞû, ûi þ jnj4hðSðxÞBðxÞÞsyû, ûi
� ac1jnj2fjûj2 þ jnj2jðI � Q0Þûj2g þ c1jnj2jðI � PÞûj2

for a 2 ð0, 1=2	, where c1 is a positive constant independent of a. Here we used the fact
that ðKðxÞAðxÞÞsy þ BðxÞ is positive definite, and ðKðxÞDðxÞÞsy and BðxÞ are nonneg-
ative definite by Condition (K)’; Q0 and P are the orthogonal projections onto
kerðKðxÞDðxÞÞsy and kerBðxÞ, respectively. Finally, we estimate ~F as

j~F j � aCjnj3jðI � Q0ÞûjjðI � PÞûj
� a�jnj4jðI � Q0Þûj2 þ aC�jnj2jðI � PÞûj2

for any a, � > 0, where C� is a constant depending on � but is independent of a. Here
we used Q0KðxÞBðxÞ ¼ 0 in Condition (A). We take � > 0 and a > 0 such that � �
c1=2 and aC� � c1: Then we find that

~D � ~F � cjnj2fjûj2 þ jnj2jðI � Q0Þûj2g, (3.17)

which is the counterpart of (3.10).
We integrate (3.14) with respect to t and substitute (3.16)–(3.17) into the resultant

equality. Then, as the counterpart of (3.11), we obtain the following energy estimate in
the Fourier space:

jûðt, nÞj2 þ jnj2jðI � Q0Þûðt, nÞj2 þ jnj2
ðt
0
jûðs, nÞj2 þ jnj2jðI � Q0Þûðs, nÞj2 ds

� Cfjû0ðnÞj2 þ jnj2jðI � Q0Þû0ðnÞj2g,
(3.18)

where û0 is the initial data. We multiply (3.18) by ð1þ jnj2Þs and integrate over n 2 R
n:

This yields the desired energy estimate (3.2) and hence the proof of Proposition 3.2
is complete.
Finally, we prove Theorem 2.2. Since kerððKðxÞDðxÞÞsyÞ � kerðSðxÞA0Þ by

Condition (K)’, we have jðI � Q0Þûj � jðI � Q0Þûj: Therefore it follows from (3.17) that

~D � ~F � cjnj2fjûj2 þ jnj2jðI � Q0Þûj2g � cjnj2~E, (3.19)

where we used (3.16) in the last inequality. We substitute (3.19) into (3.14) to get

@

@t
~E þ cjnj2~E � 0:

Solving this differential inequality, we obtain ~Eðt, nÞ � e�cjnj2t~Eð0, nÞ, which together
with (3.16) yields the desired pointwise estimate (2.5). This completes the proof of
Theorem 2.1. We remark that the dissipativity (2.6) can be shown in the same way as
before and we omit the details. w

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 387



4. Applications

In this section, we treat several concrete model systems as applications of Theorems 2.1
and 2.2 and Propositions 3.1 and 3.2.

4.1. Navier-Stokes-Fourier-Korteweg system

We first consider the compressible Navier-Stokes-Fourier-Korteweg system (1.2), where
the coefficients satisfy

�q > 0, �h > 0; �pq > 0, �eh > 0; l > 0, 2lþ l0 > 0, � > 0; j > 0: (4.1)

We apply the Fourier transform to (1.2) and obtain

q̂t þ ijnj�qðx � ûÞ ¼ 0,

�qût þ ijnjð�pqxq̂ þ �phxĥÞ þ jnj2ðlû þ ðlþ l0Þxðx � ûÞÞ þ ijnj3jxq̂ ¼ 0,

�q�ehĥt þ ijnj�h�phðx � ûÞ þ jnj2�ĥ ¼ 0,

8>><
>>: (4.2)

where x ¼ ðx1,x2,x3ÞT ¼ n=jnj 2 S
2 is regarded as a column vector and x � û denotes

the C
3 inner product of x and û: The system (4.2) is written as

A0Û t þ ijnjAðxÞÛ þ jnj2BðxÞÛ þ ijnj3DðxÞÛ ¼ 0, (4.3)

where U ¼ ðq, uT , hÞT 2 R
5 (u 2 R

3 is regarded as a column vector) and

A0 ¼
�pq=�q 0 0

0 �qI 0

0 0 �q�eh=�h

0
B@

1
CA, AðxÞ ¼

0 �pqx
T 0

�pqx 0 �phx

0 �phx
T 0

0
BB@

1
CCA,

BðxÞ ¼
0 0 0

0 lI þ ðlþ l0ÞxxT 0

0 0 �=�h

0
B@

1
CA, DðxÞ ¼

0 0 0

jx 0 0

0 0 0

0
B@

1
CA:

(4.4)

We want to verify that the system (1.2) satisfies the conditions assumed in Theorem
2.2. We see that A0, AðxÞ and BðxÞ in (4.4) are real symmetric. Also A0 is positive def-

inite and BðxÞ is nonnegative definite such that kerðBðxÞÞ ¼ spanfe1g in C
5, where

fe1, :::, e5g is the standard orthogonal basis in R
5: In fact, we have

hBðxÞU ,Ui ¼ ljuj2 þ ðlþ l0Þjx � uj2 þ ð�=�hÞjhj2

for U ¼ ðq, uT , hÞT 2 C
5, where q 2 C, u 2 C

3 (column vector) and h 2 C: When lþ
l0 � 0, we have ljuj2 þ ðlþ l0Þjx � uj2 � ljuj2: On the other hand, when lþ l0 � 0,
we have

ljuj2 þ ðlþ l0Þjx � uj2 ¼ ð2lþ l0Þjuj2 � ðlþ l0Þðjuj2 � jx � uj2Þ � ð2lþ l0Þjuj2:
Thus, we arrive at

hBðxÞU ,Ui � minfl, 2lþ l0gjuj2 þ ð�=�hÞjhj2: (4.5)

Therefore, our system (1.2) satisfies Assumption (B).
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Next we verify Craftsmanship condition (S) for the system (1.2). We take the matrix
SðxÞ as

SðxÞ ¼ S :¼
j=�pq 0 0
0 0 0
0 0 0

0
@

1
A: (4.6)

Then we see that

SðxÞA0 ¼
j=�q 0 0
0 0 0
0 0 0

0
@

1
A,

which is real symmetric and nonnegative definite such that kerðSðxÞA0Þ ¼
spanfe2, :::, e5g: Also we have

SðxÞAðxÞ ¼
0 jxT 0
0 0 0
0 0 0

0
@

1
A, SðxÞAðxÞ þ DðxÞ ¼

0 jxT 0
jx 0 0
0 0 0

0
@

1
A:

Therefore, SðxÞAðxÞ þ DðxÞ is real symmetric. Moreover a simple computation shows
that SðxÞBðxÞ ¼ 0 and SðxÞDðxÞ ¼ 0: Thus we have verified that our system (1.2) sat-
isfies Condition (S).
To verify Condition (K)’, as in [31], we take the matrix KðxÞ as follows.

KðxÞ ¼ a

0 xT 0

�x 0 0

0 0 0

0
B@

1
CAðA0Þ�1 ¼ a

0 ð1=�qÞxT 0

�ð�q=�pqÞx 0 0

0 0 0

0
B@

1
CA, (4.7)

where a > 0 is a constant to be determined. Then KðxÞA0 is real skew-symmetric. Also
we see that

KðxÞAðxÞ ¼ a
�pq=�q 0 �ph=�q
0 ��qxxT 0
0 0 0

0
B@

1
CA:

Therefore, we have

hðKðxÞAðxÞÞsyU,Ui � afð�pq=�qÞjqj2 � �qjx � uj2 � ðj�phj=�qÞjqjjhjg
� afð�pq=2�qÞjqj2 � Cðjuj2 þ jhj2Þg

for U ¼ ðq, uT , hÞT 2 C
5, where C is a positive constant independent of a. This together

with (4.5) shows that ðKðxÞAðxÞÞsy þ BðxÞ is positive definite for a > 0 satisfying
2aC � minfl, 2lþ l0, �=�hg: Moreover, a simple computation gives

KðxÞDðxÞ ¼ a
j=�q 0 0
0 0 0
0 0 0

0
@

1
A,

which is real symmetric and nonnegative definite such that

kerððKðxÞDðxÞÞsyÞ ¼ spanfe2, :::, e5g ¼ kerðSðxÞA0Þ,
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where SðxÞ is in (4.6). Thus we have verified that our system (1.2) satisfies
Condition (K)’.
Finally we check Condition A. Let Q0 and Q0 be the orthogonal projections onto

kerðSðxÞA0Þ and kerððKðxÞDðxÞÞsyÞ, respectively, Then

Q0 ¼ Q0 ¼
0 0 0
0 I 0
0 0 1

0
@

1
A:

By direct computations we find that Q0KðxÞA0Q0 ¼ 0 and Q0KðxÞBðxÞ ¼ 0: Therefore,
our system (1.2) satisfies Additional condition. Consequently, we conclude that
Theorem 2.2 and Proposition 3.2 are applicable to the system (1.2). Namely, we have

Proposition 4.1. Let (4.1) fulfill. Then the compressible Navier-Stokes-Fourier-Korteweg
system (1.2) satisfies (B), (S), (K)’ and (A); in particular, the matrices SðxÞ and KðxÞ are
given by (4.6) and (4.7), respectively. Therefore, Theorem 2.2 and Proposition 3.2 are
applicable to the system (1.2). As the consequence we have:

jðq̂, û, ĥÞðt, nÞj2 þ jnj2jq̂ðt, nÞj2 � Ce�cjnj2tfjðq̂0, û0, ĥ0ÞðnÞj2 þ jnj2jq̂0ðnÞj2g
for t � 0 and n 2 R

3, and

kðq, u, hÞðtÞk2Hs þ k@xqðtÞk2Hs þ
ðt
0
k@xðq, u, hÞðsÞk2Hs þ k@2

xqðsÞk2Hs ds

� Cfkðq0, u0, h0Þk2Hs þ k@xq0k2Hsg
for t � 0, provided that ðq0, u0, h0Þ 2 Hs and @xq0 2 Hs for s � 0:

Remark 4.1. (i) The same result holds true also for the one-dimensional compressible
Navier-Stokes-Fourier-Korteweg system (4.8) given below. (ii) We have the same result
also for the barotropic model of (1.2) and the corresponding one-dimensional model.

We briefly verify the above remark (i). The one-dimensional version of the system
(1.2) is written in the form

qt þ �qux ¼ 0,

�qut þ �pqqx þ �phhx ¼ ~luxx þ jqxxx,

�q�ehht þ �h�phux ¼ �hxx,

8>><
>>: (4.8)

where ~l :¼ 2lþ l0 and the coefficients satisfy (4.1). This system can be rewritten as

A0Ut þ AUx ¼ BUxx þ DUxxx, (4.9)

where U ¼ ðq, u, hÞT 2 R
3 and

A0 ¼
�pq=�q 0 0
0 �q 0
0 0 �q�eh=�h

0
@

1
A, A ¼

0 �pq 0
�pq 0 �ph
0 �ph 0

0
@

1
A,

B ¼
0 0 0
0 ~l 0
0 0 �=�h

0
@

1
A, D ¼

0 0 0
j 0 0
0 0 0

0
@

1
A:

(4.10)
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Compare (4.10) with (4.4). This one-dimensional system (4.8) satisfies Basic assumption.

In particular, we see that kerðBÞ ¼ spanfe1g in C
3, where fe1, e2:e3g is the standard

orthogonal basis in R
3: Also we can verify Conditions (S) and (K)’ together with (A) by

taking the matrices S, K, Q0 and Q0 as follows.

S ¼
j=�pq 0 0

0 0 0

0 0 0

0
B@

1
CA, Q0 ¼ Q0 ¼

0 0 0

0 1 0

0 0 1

0
B@

1
CA,

K ¼ a

0 1 0

�1 0 0

0 0 0

0
B@

1
CAðA0Þ�1 ¼ a

0 1=�q 0

��q=�pq 0 0

0 0 0

0
B@

1
CA,

(4.11)

where a > 0 is a small constant as in Proposition 4.1. In particular, we see that

kerððKDÞsyÞ ¼ kerðSA0Þ ¼ spanfe2, e3g in C
3: We omit the detailed discussion.

4.2. Euler-Fourier-Korteweg system

In this subsection, we treat the following one-dimensional Euler-Fourier-Korteweg sys-
tem:

qt þ �qux ¼ 0,

�qut þ �pqqx þ �phhx ¼ jqxxx,

�q�ehht þ �h�phux ¼ �hxx:

8>><
>>: (4.12)

This system is obtained from (4.8) by putting ~l :¼ 2lþ l0 ¼ 0: Here the coefficients
satisfy

�q > 0, �h > 0; �pq > 0, �ph 6¼ 0, �eh > 0; � > 0; j > 0: (4.13)

Compare this (4.13) with (4.1). The system (4.12) is written in the form of (4.9) with

U ¼ ðq, u, hÞT 2 R
3 and the following coefficient matrices:

A0 ¼
�pq=�q 0 0

0 �q 0

0 0 �q�eh=�h

0
B@

1
CA, A ¼

0 �pq 0

�pq 0 �ph
0 �ph 0

0
B@

1
CA,

B ¼
0 0 0

0 0 0

0 0 �=�h

0
B@

1
CA, D ¼

0 0 0

j 0 0

0 0 0

0
B@

1
CA:

(4.14)

Compare this (4.14) with (4.10).
We want to verify that the one-dimensional system (4.12) satisfies the conditions

assumed in Theorem 2.1. We see that A0, A and B in (4.14) are real symmetric. Also A0

is positive definite and B is nonnegative definite such that kerðBÞ ¼ spanfe1, e2g in C
3,

where fe1, e2, e3g is the standard orthogonal basis in R
3: Therefore our system (4.12)

satisfies Basic assumption.
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Next we verify Condition (S) for the system (4.12) similarly as in Subsection 4.1. We
take the matrix S as

S ¼
j=�pq 0 0
0 0 0
0 0 0

0
@

1
A, (4.15)

which is the same as in (4.11) (cf. (4.6)). Then we see that

SA0 ¼
j=�q 0 0
0 0 0
0 0 0

0
@

1
A,

which is real symmetric and nonnegative definite such that kerðSA0Þ ¼ spanfe2, e3g:
Also we have

SA ¼
0 j 0
0 0 0
0 0 0

0
@

1
A, SAþ D ¼

0 j 0
j 0 0
0 0 0

0
@

1
A:

Therefore, SA þ D is real symmetric. Moreover a simple computation shows that
SB¼ 0 and SD¼ 0. Thus we have verified that our system (4.12) satisfies Condition (S).
To verify Condition (K), as in [31], we take the matrix K as follows

K ¼ a

0 b 0

�b 0 1=�ph
0 �1=�ph 0

0
B@

1
CAðA0Þ�1 ¼ a

0 bð1=�qÞ 0

�bð�q=�pqÞ 0 �h=�q�eh�ph
0 �1=�q�ph 0

0
B@

1
CA, (4.16)

where a, b > 0 are constants to be determined; here we used �ph 6¼ 0: Then KA0 is real
skew-symmetric. Also we see that

KA ¼ a

bð�pq=�qÞ 0 bð�ph=�qÞ
0 �h=�q�eh � b�q 0

��pq=�q�ph 0 �1=�q

0
BB@

1
CCA:

Therefore, we have

hðKAÞsyU,Ui
� afbð�pq=�qÞjqj2 þ ð�h=�q�eh � b�qÞjuj2 � ð1=�qÞjhj2 � ðbj�phj=�h þ �pq=�qj�phjÞjqjjhjg
� afbð�pq=2�qÞjqj2 þ ð�h=2�q�ehÞjuj2 � Cbjhj2g

for U ¼ ðq, u, hÞT 2 C
3, where we have taken b > 0 such that 2b�q � �h=�q�eh: Here the

constant Cb is depending on the above choice of b but is independent of a > 0: Now
we choose a > 0 such that 2aCb � �=�h: Then we find that ðKAÞsy þ B is positive defin-
ite. Moreover, by a simple computation, we see that

KD ¼ a

bðj=�qÞ 0 0

0 0 0

�j=�q�ph 0 0

0
B@

1
CA:

Therefore, we have
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hðKDÞsyU,Ui � afbðj=�qÞjqj2 � ðj=�qj�phjÞjqjjhjg
� afbðj=2�qÞjqj2 � ~Cbjhj2g

for U ¼ ðq, u, hÞT 2 C
3, where ~Cb is a constant depending on the above choice of b but

not on a. We take a > 0 so small that 2a~Cb � �=�h: Then we see that ðKDÞsy þ B is
(real symmetric and) nonnegative definite such that

kerððKDÞsy þ BÞ ¼ spanfe2g � spanfe2, e3g ¼ kerðSA0Þ,
where S is in (4.15). Thus we have verified that our system (4.12) satisfies
Craftsmanship condition (K). Consequently, we conclude that Theorem 2.1 and
Proposition 3.1 are applicable to the system (4.12). Namely, we have

Proposition 4.2. Assume (4.13). Then the one-dimensional compressible Euler-Fourier-
Korteweg system (4.12) satisfies (B), (S) and (K); in particular, the matrices S and K are
given by (4.15) and (4.16), respectively. Therefore, Theorem 2.1 and Proposition 3.1 are
applicable to the system (4.12). As the consequence we have

jðq̂, û, ĥÞðt, nÞj2 þ jnj2jq̂ðt, nÞj2 � Ce�cqðnÞtfjðq̂0, û0, ĥ0ÞðnÞj2 þ jnj2jq̂0ðnÞj2g
for t � 0 and n 2 R, where qðnÞ ¼ jnj2=ð1þ jnj2Þ. Also we have

kðq, u, hÞðtÞk2Hs þ k@xqðtÞk2Hs þ
ðt
0
k@xðq, u, hÞðsÞk2Hs�1 þ k@2

xðq, hÞðsÞk2Hs�1 ds

þ
ðt
0
k@xhðsÞk2Hs ds � Cfkðq0, u0, h0Þk2Hs þ k@xq0k2Hsg

for t � 0, provided that ðq0, u0, h0Þ 2 Hs and @xq0 2 Hs for s � 0:

5. Dispersion effect and optimality of dissipative structure

In this last section, we consider the eigenvalues of the one-dimensional systems (4.8)
and (4.12) and derive their asymptotic expansions for n ! 0 and jnj ! 1: Then we
want to verify the optimality of the dissipative structures characterized by (2.4) (in
Remark 2.1) and (2.6) (in Remark 2.2), respectively. Also we want to verify the possibil-
ity of dispersion effects for those systems.
We consider the system (4.9) with (4.10) or (4.14). We apply the Fourier transform

to (4.9) and obtain

A0Û t þ inAÛ � ðinÞ2BÛ � ðinÞ3DÛ ¼ 0,

where n 2 R: The corresponding eigenvalue problem is

fkA0 þ inA� ðinÞ2B� ðinÞ3Dg/ ¼ 0, (5.1)

where k 2 C and / 2 C
3 with / 6¼ 0: Before considering this eigenvalue problem, we

study the eigenvalue problems for the hyperbolic part system (compressible Euler sys-
tem) A0Ut þ AUx ¼ 0 and the dispersion system (Korteweg system) A0Ut ¼ DUxxx: Let

a 2 R be an eigenvalue of the matrix ðA0Þ�1A with the corresponding eigenvector r 2
R

3: Then ðaA0 � AÞr ¼ 0 with r 6¼ 0: By direct computation, using (4.10) (or (4.14)),
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we know that

detðaA0 � AÞ ¼ �q�pq�eh
�h

a a2 � �pq þ
�h�p2h
�q2�eh

 !( )
¼ 0:

Thus we find that there are three different eigenvalues a ¼ aj, j¼ 1, 2, 3, where

a1 ¼ �a
, a2 ¼ 0, a3 ¼ a
,

a
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pq þ c


p
, c
 ¼

�h�p2h
�q2�eh

:
(5.2)

Here a
 denotes the sound speed. Let r ¼ rj be the eigenvector corresponding to a ¼
aj, j¼ 1, 2, 3. By direct computations we find that

r1 ¼
�q

�a

�h�ph=�q�eh

0
@

1
A, r2 ¼

�ph
0

��pq

0
B@

1
CA, r3 ¼

�q
a


�h�ph=�q�eh

0
@

1
A: (5.3)

Next we compute the eigenvalues of the matrix ðA0Þ�1D: Let k be an eigenvalue of

ðA0Þ�1D with the corresponding eigenvector q. Then ðkA0 � DÞq ¼ 0 with q 6¼ 0: By
direct computation, using (4.10) (or (4.14)), we see that

detðkA0 � DÞ ¼ �q�pq�eh
�h

k3 ¼ 0:

Therefore, we have k¼ 0 (with multiplicity 3). The corresponding eigenvectors q satisfy
Dq¼ 0. Hence we have:

k ¼ 0 ðmultipcility 3Þ, q 2 kerðDÞ ¼ spanfe2, e3g, (5.4)

where fe1, e2, e3g is the standard orthogonal basis in R
3:

Asymptotic expansions for n ! 0: We consider the eigenvalue problem (5.1). By
applying the perturbation theory of one-parameter family of matrices (see [32]), we
know that the eigenvalues k ¼ kðinÞ and the corresponding eigenvectors / ¼ /ðinÞ
have the following asymptotic expansions as n ! 0:

kðinÞ ¼
X1
n¼1

ðinÞnkðnÞ, /ðinÞ ¼
X1
n¼0

ðinÞn/ðnÞ, (5.5)

where kðnÞ 2 C and /ðnÞ 2 C
3: We substitute (5.5) into (5.1) and arrange the result

according to the powers of in: From the terms with the powers ðinÞn, n¼ 1, 2, we have

ðkð1ÞA0 þ AÞ/ð0Þ ¼ 0, (5.6)

ðkð2ÞA0 � BÞ/ð0Þ þ ðkð1ÞA0 þ AÞ/ð1Þ ¼ 0: (5.7)

The Eq. (5.6) implies that �kð1Þ is an eigenvalue of ðA0Þ�1A and /ð0Þ is the correspond-

ing eigenvector. Therefore, noting (5.2) and (5.3), we can determine kð1Þ and /ð0Þ as

kð1Þ ¼ �aj, /ð0Þ ¼ rj, j ¼ 1, 2, 3: (5.8)

We substitute these relations into (5.7) and get ðkð2ÞA0 � BÞrj ¼ ðajA0 � AÞ/ð1Þ: This

equation can be solved with respect to /ð1Þ if and only if ðkð2ÞA0 � BÞrj 2 rangeðajA0 �
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AÞ ¼ kerðajA0 � AÞ?: Since kerðajA0 � AÞ ¼ spanfrjg, we have hðkð2ÞA0 � BÞrj, rji ¼ 0:
Thus we obtain (cf. [28, 31, 33])

kð2Þ ¼ hBrj, rji
hA0rj, rji ¼: bj, j ¼ 1, 2, 3: (5.9)

We compute the values of bj. For the compressible Navier-Stokes-Fourier-Korteweg sys-
tem (4.8), by using (4.10) and (5.3), we have

hA0r2, r2i ¼
�q�pq�eh
�h

a2
, hBr2, r2i ¼
�p2q
�h
�,

hA0rj, rji ¼ 2�qa2
, hBrj, rji ¼ ~l þ c

�eha2


�

� �
a2
, j ¼ 1, 3,

where a
 and c
 are given in (5.2). Therefore we obtain

b2 ¼
�pq
a2


�
, bj ¼
1
2

~l
�q
þ c

a2


�

� �

, j ¼ 1, 3, �
 :¼ �

�q�eh
: (5.10)

The values bj for the compressible Euler-Fourier-Korteweg system (4.12) are calculated
by using (4.14) and (5.3), and we have

b2 ¼
�pq
a2


�
, bj ¼
c

2a2


�
, j ¼ 1, 3, �
 :¼ �

�q�eh
, (5.11)

which are formally obtained by putting ~l ¼ 0 in (5.10).
Asymptotic expansions for jnj ! 1: Next we consider the eigenvalue problem (5.1)

for jnj ! 1: By applying the perturbation theory of one-parameter family of matrices
(see [32]), we know that the eigenvalues k ¼ kðinÞ and the corresponding eigenvectors
/ ¼ /ðinÞ have the following asymptotic expansions as jnj ! 1

kðinÞ ¼
X3
n¼1

ðinÞnkðnÞ þ
X1
n¼0

ðinÞ�nkð�nÞ, /ðinÞ ¼
X1
n¼0

ðinÞ�n/ð�nÞ, (5.12)

where kðnÞ 2 C and /ðnÞ 2 C
3: We substitute (5.12) into (5.1) and arrange the result

according to the powers of in: From the terms with the powers ðinÞn, n ¼ 3, 2, 1, 0, � 1,
we have

ðkð3ÞA0 � DÞ/ð0Þ ¼ 0, (5.13)

ðkð3ÞA0 � DÞ/ð�1Þ þ ðkð2ÞA0 � BÞ/ð0Þ ¼ 0, (5.14)

ðkð3ÞA0 � DÞ/ð�2Þ þ ðkð2ÞA0 � BÞ/ð�1Þ þ ðkð1ÞA0 þ AÞ/ð0Þ ¼ 0, (5.15)

ðkð3ÞA0 � DÞ/ð�3Þ þ ðkð2ÞA0 � BÞ/ð�2Þ þ ðkð1ÞA0 þ AÞ/ð�1Þ þ kð0ÞA0/ð0Þ ¼ 0, (5.16)

ðkð3ÞA0 � DÞ/ð�4Þ þ ðkð2ÞA0 � BÞ/ð�3Þ

þ ðkð1ÞA0 þ AÞ/ð�2Þ þ kð0ÞA0/ð�1Þ þ kð�1ÞA0/ð0Þ ¼ 0:
(5.17)

It follows from (5.13) that kð3Þ is an eigenvalue of ðA0Þ�1D and /ð0Þ is the correspond-
ing eigenvector. Therefore, noting (5.4), we have

kð3Þ ¼ 0 ðmultipcility 3Þ, /ð0Þ ¼ q 2 kerðDÞ ¼ spanfe2, e3g: (5.18)
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Next we determine kð2Þ: We first treat the compressible Navier-Stoke-Fourier-
Korteweg system (4.8). We substitute (5.18) into (5.14) and (5.15) and get

ðkð2ÞA0 � BÞq ¼ D/ð�1Þ,

ðkð2ÞA0 � BÞ/ð�1Þ þ ðkð1ÞA0 þ AÞq ¼ D/ð�2Þ:

We put q ¼ ð0, u0, h0ÞT 2 spanfe2, e3g and /ð�nÞ ¼ ðqn , un , hnÞT , n¼ 1, 2. By using
(4.10), we rewrite the above equalities explicitly as

ðkð2Þ�q � ~lÞu0 ¼ jq1, ð1=�hÞðkð2Þ�q�eh � �Þh0 ¼ 0, (5.19)

ð�pq=�qÞðkð2Þq1 þ �qu0Þ ¼ 0,

ðkð2Þ�q � ~lÞu1 þ ðkð1Þ�qu0 þ �phh0Þ ¼ jq2,

ð1=�hÞfðkð2Þ�q�eh � �Þh1 þ ð�h�phu0 þ kð1Þ�q�ehh0Þg ¼ 0:

(5.20)

We use the first equation of (5.19) and the first equation of (5.20). We eliminate q1
from these two equations and obtain fðkð2ÞÞ2 � ð~l=�qÞkð2Þ þ jgu0 ¼ 0: When u0 6¼ 0,

we have ðkð2ÞÞ2 � ð~l=�qÞkð2Þ þ j ¼ 0: Thus we have

kð2Þ ¼ ~l
2�q

6i j� ~l
2�q

� �2
( )1=2

,

where we assumed ð~l=2�qÞ2 � j (small viscosity) for simplicity. In this case we have
h0 ¼ 0 from the second equation of (5.19) and hence we can take q ¼ e2. On the other

hand, when u0 ¼ 0, we have h0 6¼ 0 so that we can take q ¼ e3. Also we have kð2Þ ¼
�=�q�eh ¼ �
 from the second equation of (5.19). Consequently, we obtain:

kð2Þ ¼ rk, /ð0Þ ¼ qk, k ¼ 1, 2, 3,

r1, 2 :¼ ~l
2�q

6i j� ~l
2�q

� �2
( )1=2

, q1, 2 :¼ e2; r3 :¼ �

�q�eh
¼: �
, q3 :¼ e3:

(5.21)

Next we consider the compressible Euler-Fourier-Korteweg system (4.12). For this
system, we use (4.14) instead of (4.10) and obtain (5.21) with ~l ¼ 0: Namely, we have:

kð2Þ ¼ rk, /ð0Þ ¼ qk, k ¼ 1, 2, 3,

r1, 2 :¼ 6i
ffiffiffi
j

p
, q1, 2 :¼ e2; r3 :¼ �

�q�eh
¼: �
, q3 :¼ e3:

(5.22)

In this case, for k¼ 1, 2, we have to further compute kð1Þ and kð0Þ: To this end, we set

c :¼ 6
ffiffiffi
j

p
and write kð2Þ ¼ rk ¼ ic for k¼ 1, 2. We put ~l ¼ 0, kð2Þ ¼ ic and ðu0, h0Þ ¼

ð1, 0Þ in (5.20). Then (5.20) is reduced to

icq1 þ �q ¼ 0, �qðicu1 þ kð1ÞÞ ¼ jq2, ðic�q�eh � �Þh1 þ �h�ph ¼ 0: (5.23)

From the first and the third equations of (5.23) we determine q1 and h1 as

q1 ¼ i�q=c, h1 ¼ �h�ph=ð� � ic�q�ehÞ: (5.24)
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To compute kð1Þ and kð0Þ, we use (5.16) and (5.17). We put kð3Þ ¼ 0, kð2Þ ¼ ic and

/ð0Þ ¼ q ¼ e2 in (5.16) and (5.17). Then we have

ðicA0 � BÞ/ð�2Þ þ ðkð1ÞA0 þ AÞ/ð�1Þ þ kð0ÞA0e2 ¼ D/ð�3Þ,

ðicA0 � BÞ/ð�3Þ þ ðkð1ÞA0 þ AÞ/ð�2Þ þ kð0ÞA0/ð�1Þ þ kð�1ÞA0e2 ¼ D/ð�4Þ (5.25)

By using (4.14), we write the first equation of (5.25) explicitly as

ð�pq=�qÞficq2 þ ðkð1Þq1 þ �qu1Þg ¼ 0,

ic�qu2 þ ð�pqq1 þ kð1Þ�qu1 þ �phh1Þ þ kð0Þ�q ¼ jq3,

ð1=�hÞfðic�q�eh � �Þh2 þ ð�h�phu1 þ kð1Þ�q�ehh1Þg ¼ 0,

(5.26)

where /ð�nÞ ¼ ðqn, un, hnÞT , n¼ 1, 2, 3. Similarly, the first component of the second
equation of (5.25) is given as follows:

ð�pq=�qÞficq3 þ ðkð1Þq2 þ �qu2Þ þ kð0Þq1g ¼ 0: (5.27)

We use q1 ¼ i�q=c (in (5.24)) together with c2 ¼ j and find that the first equation of

(5.26) is rewritten in the form �qðicu1 � kð1ÞÞ ¼ jq2: This equality combined with the
second equation of (5.23) shows that

kð1Þ ¼ 0: (5.28)

Next we substitute (5.28) into (5.27) and use q1 ¼ i�q=c together with c2 ¼ j: Then we

see that �qðicu2 � kð0ÞÞ ¼ jq3: This equation and the second equation of (5.26) with

kð1Þ ¼ 0 yield

ð�pqq1 þ �phh1Þ þ 2�qkð0Þ ¼ 0:

Consequently, we obtain

kð0Þ ¼ � 1
2�q

ð�pqq1 þ �phh1Þ ¼ � 1
2

c
�

�2
 þ j

þ ic
�pq
j
þ c

�2
 þ j

 !( )
,

where we used (5.24); c
 and �
 are given in (5.2) and (5.11), respectively. Thus we
have

kð0Þ ¼ gk, k ¼ 1, 2, g1, 2 :¼ � 1
2

c
�

�2
 þ j

6i
ffiffiffi
j

p �pq
j
þ c

�2
 þ j

 !( )
: (5.29)

Above observations are summarized as follows.

Proposition 5.1 (Navier-Stokes-Fourier-Korteweg). Assume (4.1). Then the eigenvalues
k ¼ kjðinÞ, j¼ 1, 2, 3, of the compressible Navier-Stokes-Fourier-Korteweg system (4.8)
have the following asymptotic expansions as n ! 0 and jnj ! 1:

kjðinÞ ¼
X1
n¼1

ðinÞnkðnÞj , n ! 0,

kjðinÞ ¼
X3
n¼0

ðinÞ3�n~k
ð3�nÞ
j þ

X1
n¼1

ðinÞ�nkð�nÞ
j , jnj ! 1,
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where

k 1ð Þ
1, 3 ¼ 6a
, k 1ð Þ

2 ¼ 0; k 2ð Þ
1, 3 ¼

1
2

~l
�q
þ c

a2


�

� �

, k 2ð Þ
2 ¼

�pq
a2


�
,

~k
3ð Þ
1, 2, 3 ¼ 0; ~k

2ð Þ
1, 2 ¼

~l
2�q

6i j� ~l
2�q

� �2
( )1=2

, ~k
2ð Þ
3 ¼ �
:

Here a
 and c
 are given in (5.2), and �
 is in (5.10). Notice that kð2Þj > 0 and Re ~k
ð2Þ
j >

0 for j¼ 1, 2, 3. Therefore these asymptotic expansions suggest the optimality of the char-
acterization (2.6) for the dissipative structure in the framework of Theorem 2.2.

Proposition 5.2 (Euler-Fourier-Korteweg). Assume (4.13). Then the eigenvalues
k ¼ kjðinÞ, j¼ 1, 2, 3, of the compressible Euler-Fourier-Korteweg system (4.12) have the
following asymptotic expansions as n ! 0 and jnj ! 1:

kjðinÞ ¼
X1
n¼1

ðinÞnkðnÞj , n ! 0,

kjðinÞ ¼
X3
n¼0

ðinÞ3�n~k
ð3�nÞ
j þ

X1
n¼1

ðinÞ�nkð�nÞ
j , jnj ! 1,

where

kð1Þ1, 3 ¼ 6a
, kð1Þ2 ¼ 0; kð2Þ1, 3 ¼
c

2a2


�
, kð2Þ2 ¼
�pq
a2


�
,

~k
ð3Þ
1, 2, 3 ¼ 0; ~k

ð2Þ
1, 2 ¼ 6i

ffiffiffi
j

p
, ~k

ð2Þ
3 ¼ �
;

~k
ð1Þ
1, 2 ¼ 0; ~k

ð0Þ
1, 2 ¼ � 1

2
c
�

�2
 þ j

6i
ffiffiffi
j

p �pq
j
þ c

�2
 þ j

 !( )
:

Here a
 and c
 are given in (5.2), and �
 is in (5.11). Notice that kð2Þj > 0 for j¼ 1, 2, 3.

Also, ~k
ð2Þ
3 > 0, Re ~k

ð2Þ
k ¼ 0 and Re ~k

ð0Þ
k < 0 for k¼ 1, 2. Therefore these asymptotic

expansions suggest the optimality of the characterization (2.4) for the dissipative structure
in the framework of Theorem 2.1.

Finally in this last section, we briefly consider the dispersive effect for the one-dimen-
sional systems (4.8) and (4.12). From Proposition 5.1 (resp. Proposition 5.2) we observe
that the solution of (4.8) (resp. (4.12)) contains the function

e�ðbþiaÞn2t ðresp: egt�icn2t Þ
as an approximation form in the high frequency region, where b > 0 and a 2 R with
a 6¼ 0 (resp. Re g < 0 and c 2 R with c 6¼ 0). Thus we expect that the dispersive effect
appears in the solutions but it is not verified quantitatively.
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