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Abstract: In this paper, we establish the unique existence and some decay properties of a global
solution of a free boundary problem of the incompressible Navier–Stokes equations in Lp in time
and Lq in space framework in a uniformly H2

∞ domain Ω ⊂ RN for N ≥ 4. We assume the unique
solvability of the weak Dirichlet problem for the Poisson equation and the Lq-Lr estimates for the
Stokes semigroup. The novelty of this paper is that we do not assume the compactness of the boundary,
which is essentially used in the case of exterior domains proved by Shibata. The restriction N ≥ 4 is
required to deduce an estimate for the nonlinear term G(u) arising from div v = 0. However, we
establish the results in the half space RN

+ for N ≥ 3 by reducing the linearized problem to the problem
with G = 0, where G is the right member corresponding to G(u).

Keywords: free boundary problem; Navier–Stokes equation; global well-posedness; general domain

1. Introduction

A free boundary problem for the viscous incompressible Navier–Stokes equations
describes the motion of a fluid in time-dependent domains, such as a drop of water,
an ocean of infinite extent and finite or infinite depth, or liquid around a bubble. The
present paper is concerned with the unique existence and decay of a global solution to
these problems without taking account of surface tension. The mathematical problem is
defined as finding a time-dependent domain Ω(t) in the N-dimensional Euclidean space
RN where t ≥ 0 is the time variable, and the velocity field v = (v1(x, t), . . . , vN(x, t))T,
where MT is the transposed M, and the pressure q = q(x, t) satisfying the incompressible
Navier–Stokes equation

∂tv + (v · ∇)v − Div S(v, q) = 0, div v = 0 in Ω(t), 0 < t < T,
S(v, q)νt = 0, v · νt = Vn on ∂Ω(t), 0 < t < T,
v|t=0 = v0 in Ω = Ω(0)

(1)

for a given initial velocity field v0 = (v01(x), . . . , v0N(x))T. Here, the initial domain Ω is a
general uniformly H2

∞ domain. We denote the unit outer normal vector to the boundary
∂Ω(t) by νt and the velocity of the evolution of ∂Ω(t) by Vn. The stress tensor S(v, q)
is given by S(v, q) = µD(v)− qI, where D(u) is the doubled deformation tensor D(v)
whose (j, k) component is defined by ∂kvj + ∂jvk with ∂j = ∂/∂xj, µ > 0 is a positive
constant representing the coefficient of viscosity, and I is the N × N identity matrix. We
set div v = ∑N

j=1 ∂jvj and, for an N × N matrix field M whose (j, k) component is Mjk, we

define Div M as the N component vector the j-th component of which is ∑N
k=1 ∂k Mjk. In

this paper, we establish the unique existence theorem of a solution globally in time and
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decay properties of the solution by assuming the Lq-Lr estimates for the Stokes semigroup
and applying the maximal Lp-Lq regularity for the time-shifted Stokes problem due to [1].
Moreover, we obtain the global well-posedness and decay properties in the half-space RN

+

with N ≥ 3.
The free boundary problem (1) has been studied extensively in the following two cases:

(1) the motion of an isolated liquid mass, and
(2) the motion of the incompressible fluid occupying an infinite ocean.

We mention the studies on the well-posedness globally in time and decay properties in
order. In case (1), where the initial domain Ω is bounded, the unique existence of a global
solution was established under the assumptions that the initial velocity v0 is small and
orthogonal to the rigid space {Ax + b | A + AT = O} in the frameworks by Solonnikov [2],
in Lp framework, and by Shibata [3] in Lp-Lq framework. When surface tension is taken
into account, the same result was also proved by Solonnikov [4] in L2 framework under the
same assumptions and the additional assumption that the domain Ω is close to a ball. In
this case, the boundary condition should be

S(v, q)νt = cσHνt, v · νt = Vn on ∂Ω(t),

where H is the doubled mean curvature of ∂Ω(t) and cσ > 0 is the coefficient of surface
tension. This result was also obtained in Hölder spaces by Padula and Solonnikov [5] and,
in Lp in time and Lq in space setting by Shibata [6]. In case (2), the domain is the layer-like
domain given by the form

Ω(t) = {x = (x′, xN)
T ∈ RN |

x′ = (x1, · · · , xN−1)
T ∈ RN−1, −b(x′) < xN < η(x′, t)},

with a free surface on the upper boundary xN = η(x′, t) and a fixed bottom on the lower
one xN = −b(x′). Here, the boundary condition on the lower boundary is zero-Dirichlet:

v = 0 on xN = −b(x′).

In this domain, in L2 framework, the global well-posedness was established by
Beale [7] with surface tension and by Sylvester [8], Tani and Tanaka [9], and Guo and
Tice [10] without surface tension. Moreover, Beale and Nishida [11] and Hataya and
Kawashima [12] proved some decay properties of the solution constructed in [7]. In
Lp-Lq framework, Saito [13] showed the global well-posedness without surface tension.
Hataya [14] and Guo and Tice [15] obtained the unique existence and decay properties of a
global solution periodic in the horizontal direction in L2 framework.

The unique existence of a global solution to (1) has been studied also in other domains.
In exterior domains, Shibata [1] proved the global well-posedness without surface tension
in Lp-Lq setting. In the half-space, the global well-posedness was obtained by Ogawa

and Shimizu [16] without surface tension in Ẇ1(0, ∞; Ḃ
−1+ n

p
p,1 (RN

+)) ∩ L1(0, ∞; Ḃ
1+ n

p
p,1 (RN

+)).
This result and decay properties were developed by Saito and Shibata [17] with surface
tension in Lp-Lq framework. However, in the half-space and without taking account of
surface tension, similar results in the Lp-Lq framework have not been shown because of
the non-compactness of the boundary ∂Ω. The analysis in Lp-Lq framework seems more

convenient than that in L1-Ḃ
−1+ n

p
p,1 framework to address the lower derivative terms when

we show the global well-posedness in other domains such as cylinder, which remain as
subject for further study. This is the key motivation of this paper.

In the present paper, in Lp-Lq framework, we establish the global well-posedness and
decay properties of (1) in the half space for a sufficiently small initial velocity v0. Moreover,
we obtain the same results in general domains by using the maximal Lp-Lq regularity for
the time-shifted Stokes problem, which was developed due to Shibata [1], and by assuming
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the Lq-Lr estimates for the Stokes semigroup. We also assume that the initial domain
Ω ⊂ RN is a uniformly H2

∞ domain and that the weak Dirichlet problem for the Poisson
equation admits a unique solution, which are satisfied in the domains mentioned above.
Because the domain is not compact, we cannot expect an exponential decay of the solution
of the Stokes problem, and the decay should be only of polynomial order. This forces us
to restrict the dimension N and the exponents p and q of the framework Lp-Lq, especially,
when estimating a nonlinear term G(u) arising from div v = 0. In exterior domains,
the global well-posedness was shown by relaxing the restriction from the compactness
of the boundary ∂Ω. Nevertheless, we find the global well-posedness is valid even if the
boundary ∂Ω is not compact. Moreover, in general domains, we obtain this result for
N ≥ 4 if the Stokes semigroup decays as in the half space. Moreover, we establish the
same result for N ≥ 3 in the half space by some reduction of the Stokes problem to the case
G = 0, where G is the right member corresponding to G(u). Here, we take advantage of
a good estimate obtained only in half space. (The further details, the reader is referred to
Lemma 4.)

The remainder of this paper is organized as follows. In the next section, we state our
main results on the global well-posedness of (1) and decay properties of the solution in
general domains with N ≥ 4 and in the half-space with N ≥ 3. Section 3 is devoted to the
proof of the results in general domains. The strategy is to prolong the local solution by use
of the a priori estimate. To obtain this estimate, we show an estimate for the Stokes problem
in Section 3.1 and estimates for nonlinear terms in Section 3.2. In Section 4, we show that
the reduction mentioned above allows us to take N = 3 in these results if Ω = RN

+ . The
reduction will be performed in Section 4.2 while Sections 4.1 and 4.3 are devoted to the
proof of Lq-Lr estimates and estimates of the nonlinearities, respectively. Finally, Section 5
concludes the paper.

2. Main Results

In this section, we introduce notation and several functional spaces and then present
the statements of our main results.

We denote the set of all natural numbers and real numbers by N and R, respectively.
Let

< t >= (1 + t2)1/2

for t ∈ R. Given a scalar function and an N-vector function f = ( f1(x), · · · , fN(x)), let

∇ f = (∂1 f , · · · , ∂N f )T, ∇f = (∂j fi)1≤i,j≤N

∇2 f = (∂α f | |α| = 2), ∇2f = (∂α f j | |α| = 2, j = 1, · · · , N).

For a domain D, scalar functions f , g and N-vector functions f, g, we define the normal
part fν and tangential part fτ of f as

fν = ν · f, fτ = f − fνν

and let

( f , g)D =
∫

D
f (x)g(x) dx, (f, g)D =

∫
D

f(x) · g(x) dx,

where a · b = ∑N
i=1 aibi for a = (a1, · · · , aN)

T and b = (b1, · · · , bN)
T. For a Banach space

X with a norm ∥ · ∥X and d ∈ N, the d-product of X is denoted by Xd, and the norm is
expressed as ∥ · ∥X instead of ∥ · ∥Xd for brevity. The space of all bounded linear operators
from X to X is denoted by L(X).

Let p, q ∈ [1, ∞], m ∈ N ∪ {0} and s ∈ R, and let D be a domain and X a Banach
space. The symbols Lq(D; X), Hm

q (D; X) and Bs
p,q(D) denote the X-valued Lebesgue space,

X-valued Sobolev spaces and Besov space, respectively, and we set Lq(D) = Lq(D;R) and



Mathematics 2022, 1, 0 4 of 38

Hm
q (D) = Hm

q (D;R). Note that H0
q (D; X) = Lq(D; X) and H0

q (D) = Lq(D). By C∞
0 (D),

denote the set of all C∞ functions whose supports are compact and contained in D. We
define the functional spaces

H1
q,0(D) = {θ ∈ H1

q (D) | θ|∂Ω = 0},

Ĥ1
q,0(D) = {θ ∈ Lq,loc(Ω) | ∇θ ∈ Lq(Ω)N , θ|∂Ω = 0},

Ĥ−1
q (Ω) = dual of Ĥ1

q′ ,0(Ω),

H1/2
p (R; X) = {G ∈ Lp(R; X) | ∂1/2

t G ∈ Lp(R; X)}.

Here,

∂1/2
t f (t) = F−1[|τ|1/2F[ f ](τ)]

and the Fourier transform F and its inverse transform F−1 are defined by

F [ f ](τ) =
∫ ∞

−∞
e−itτ f (t) dt, F−1[ f ](t) =

1
2π

∫ ∞

−∞
eiτt f (τ) dτ

for a function f defined on R.
To describe the nonlinear terms, for m-vector u = (u1, · · · , um) and n-vector

v = (v1, · · · , vn), we let (u, v) = (u1, · · · , um, v1, · · · , vn) and define u ⊗ v as the mn
vector whose k-th component is given by uivj, where (i, j) is the k-th couple of the set
{(i′, j′) | 1 ≤ i′ ≤ m, 1 ≤ j′ ≤ n} in lexicographical order. Similarly, for ℓ ∈ N ∪ {0}, we
regard ∇ℓu as the Nℓm-vector the k-th component of which is given by ∂j1 · · · ∂jℓui, where
(j1, · · · , jℓ, i) is the k-th couple of the set {(j′1, · · · , j′ℓ, i′) | 1 ≤ j′1, · · · , j′ℓ ≤ N, 1 ≤ i′ ≤ m}
in lexicographical order. Then, for example, for an ℓ× N3mn matrix

V = (Vk,(j1,j2,j3,i,j))1≤k≤ℓ,1≤j1,j2,j3≤N,1≤i≤m,1≤j≤m,

we can regard V(∇2u ⊗∇v) as the ℓ-vector, with k-th component being

∑
j1,j2,i,j3,j

Vk,(j1,j2,j3,i,j)∂j1 ∂j2 ui∂j3 vj.

Finally, the letter C denotes generic constants and Ca,b,··· stands for constants depending on
the quantities a, b, · · · . Both constants C and Ca,b,··· may vary from line to line.

We reduce the free boundary problem (1) in the time-dependent domain Ω(t) to a
quasilinear problem in the fixed domain Ω. Then, we provide our main results for the latter
problem. To do so, we formulate the problem (1) in Lagrange coordinates instead of Euler
coordinates by employing the Lagrange transformation

x = y +
∫ t

0
u(y, s) ds ≡ Xu(y, t) (2)

u = (u1(y, t), · · · , uN(y, t)) = v(Xu(y, t), t), p(y, t) = π(Xu(y, t), t).

By the argument in Appendix A in [18], the functions u, p satisfy the following equation:
∂tu − Div S(u, p) = f(u), div u = g(u) = div g(u) in Ω × (0, T),
S(u, p)ν = h(u)ν on ∂Ω × (0, T),
u|t=0 = v0 in Ω

(3)
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where the nonlinearities f(u), g(u), g(u) and h(u) are defined by

f(u) = V1
(∫ t

0
∇u ds

)
(∂tu,∇2u) + W

(∫ t

0
∇u ds

)
(
∫ t

0
∇2u ds ⊗∇u),

g(u) = V2
(∫ t

0
∇u ds

)
u,

g(u) = V3
(∫ t

0
∇u ds

)
∇u, h(u) = V4

(∫ t

0
∇u ds

)
∇u,

(4)

with some matrix-valued polynomials V1, V2, V3, V4 and W with Vi(O) = O. The symbol
O stands for the zero matrix.

To establish the global well-posedness of (3) and the decay of the solution, the ap-
propriate decay properties of the solution must be proven for the linearlized problem
associated with (3), which is called the Stokes initial value problem

∂tU − Div S(U,P) = F, div U = G = div G in Ω × (0, T),
S(U,P)ν = H on ∂Ω × (0, T),
U|t=0 = v0 in Ω.

(5)

Nevertheless, the decay properties have not been developed in general domains. In this
paper, we focus on the case

{λ ∈ C \ {0} | | arg λ| < π − ε} ⊂ ρ(Aq) but 0 ̸∈ ρ(Aq)

with ε ∈ (0, π/2), where ρ(Aq) is the resolvent set of the Stokes operator Aq, and we
assume the Lq-Lr estimates for the Stokes semigroup. To obtain decay properties, we
consider a time-shifted problem, (17) below, whose solution decays sufficiently fast, and
then compensate it by estimating the difference of solutions to (5) and the time-shifted
problem from the Lq-Lr estimates.

Below, we state the assumptions of our main theorem in order. We begin with the
assumption that the domain Ω is a uniform H2

∞ domain.

Assumption 1. There exist positive constants α, β and K such that for any x0 = (x0,1, · · · , x0,N) ∈
∂Ω, there exist a coordinate number j and a function h ∈ H2

∞(B′
α(x′0)) with ∥h∥H2

∞(B′
α(x′0))

≤ K
satisfying

Ω ∩ Bβ(x0) = {x ∈ RN | xj > h(x′), ∀x′ ∈ B′
α(x′0)} ∩ Bβ(x0),

∂Ω ∩ Bβ(x0) = {x ∈ RN | xj = h(x′), ∀x′ ∈ B′
α(x′0)} ∩ Bβ(x0),

where

x′ = (x1, · · · , xj−1, xj+1, · · · , xN), x′0 = (x0,1, · · · , x0,j−1, x0,j+1, · · · , x0,N),

B′
α(x′0) = {x′ ∈ RN−1 | |x′ − x′0| < α}, Bβ(x0) = {x ∈ RN | |x − x0| < β}.

We apply the unique solvability of the weak Dirichlet problem for the Poisson equation
to reduce the linearized problem to a problem without the divergence condition. This
unique solvability is known only for q = 2. Therefore, we assume it in the present paper.
This assumption is reasonable because the resolvent estimate for the Stokes resolvent
problem cannot be obtained if the unique solvability does not hold. (See Remark 1.7
in [19].)
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Assumption 2. The following assertion holds: for W1
q (Ω) = Ĥ1

q,0(Ω) or W1
q (Ω) = H1

q,0(Ω).
For any q ∈ (1, ∞) and f ∈ Lq(Ω)N , the problem

(∇θ,∇φ)Ω = (f,∇φ)Ω for all φ ∈ W1
q′(Ω) (6)

admits a unique solution θ ∈ W1
q (Ω) satisfying the estimate

∥∇θ∥Lq(Ω) ≤ C∥f∥Lq(Ω). (7)

Moreover, for any r ∈ (1, ∞), if f ∈ Lr(Ω)N as well as f ∈ Lq(Ω)N , then, u satisfies

(∇θ,∇φ)Ω = (f,∇φ)Ω for all φ ∈ W1
r′(Ω)

and the estimate ∥∇θ∥Lr(Ω) ≤ C∥f∥Lr(Ω).

Remark 1. The unique existence of the weak Dirichlet problem (6) is obtained in the half-space,
bounded domains, exterior domains, perturbed half-spaces, and layer domains. For details and more
examples of domains in which the problem (6) is uniquely solvable, see Example 1.6 in [19].

Define the solution operator Π0
q of the weak Dirichlet problem (6) by

Π0
q : Lq(Ω) → W1

q (Ω) : Π0
qf = θ. (8)

Note that Π0
qf = Π0

r f if f ∈ Lq(Ω)N ∩ Lr(Ω)N .
We now introduce the Stokes semigroup by following the arguments in (Section 4

in [20]), see also [21] (pp. 159, 160). We assume that Assumptions 1 and 2 hold. We consider
the Stokes initial value problem

∂tU − Div S(U,P) = F, div U = 0 in Ω × (0, ∞),
S(U,P)ν = 0 on ∂Ω × (0, ∞),
U|t=0 = v0 in Ω

(9)

for F ∈ Lp(0, ∞; Jq(Ω)) and v0 ∈ Jq(Ω), where Jq(Ω) is the solenoidal space

Jq(Ω) = {U ∈ Lq(Ω)N | (U,∇φ)Ω = 0 for any φ ∈ W1
q′(Ω)}.

Then, div F(t) = 0 a.e. t ∈ (0, ∞) and div v0 = 0. By multiplying div to the first
equation, by the normal component of the boundary condition and by applying div U = 0,
we obtain a system for the pressure P, as given below{

∆P = 0 in Ω,
P = 2µ∂νUν − div U on ∂Ω,

where fν = ν · f, ∂ν f = ν · ∇ f for given functions f = ( f1(x), · · · , fn(x)) and f = f (x). The
solution operator of this system is given by

Πq : H2
q (Ω) → W1

q (Ω) : ΠqU = (2µ∂νUν − div U)− Π0
q∇(2µ∂νUν − div U), (10)

where the operator Π0
q is defined by (8). In fact, θ = P− (2µ∂νUν − div U) obeys{

∆θ = −∆(2µ∂νUν − div U) in Ω,
θ = 0 on ∂Ω,
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whose weak formulation is given by (6) with f = −∇(2µ∂νUν − div U). Then, the Stokes
initial value problem (9) can be reduced to the problem

∂tU − Div S(U, Πq(U)) = F in Ω × (0, ∞),
S(U, Πq(U))ν = 0 on ∂Ω × (0, ∞),
U|t=0 = v0 in Ω.

(11)

Note that the second equation div u = 0 can be recovered by the uniqueness of solutions to
the initial value problem for the heat equation subject to the Dirichlet boundary condition
obeyed by div u (see in [20] (p. 243)). We now define the Stokes operator on Jq(Ω) as

D(Aq) = {U ∈ Jq(Ω) ∩ H2
q (Ω)

N | S(U, Π(U))ν = 0 on ∂Ω},

AqU = −Div S(U, Π(U)).
(12)

Then, (11) is rewritten to the Cauchy problem

∂tU + AqU = F, U|t=0 = v0. (13)

Note that, for any q, r ∈ (1, ∞), AqU = ArU if U ∈ D(Aq) ∩ D(Ar).
The following proposition on the generation of the Stokes semigroup is guaranteed by

Theorem 2.5 in [22]. For the details of the proof, the reader is referred to Lemma 3.7 in [21].

Proposition 1 ([22]). Assume that Assumptions 1 and 2 hold. Then, the Stokes operator Aq

generates an analytic semigroup {e−tAq}t≥0 of class C0 on Jq(Ω) for 1 < q < ∞.

We often write e−tAq f even for f ∈ Jr(Ω) instead of e−tAr f because e−tAq f = e−tAr f
for q, r ∈ (1, ∞) and f ∈ Jq(Ω) ∩ Jr(Ω). In fact, by repeating the argument in [19] in
Jq(Ω) ∩ Jr(Ω) instead of Jq(Ω), we obtain (λ + Aq)−1f = (λ + Ar)−1f. Then, the formula

e−tAq f =
1

2πi

∫
Γ
(λ + Aq)

−1f ds

concludes e−tAq f = e−tAr f.
The Lq-Lr estimates are stated as follows. Because the decay rate changes according to

the domain (see Remark 2), we consider the general rate and, in the statement of the main
theorem, state the type of rate needed to obtain the global well-posedness.

Definition 1. Let the decay rate σm(q, r) be a function defined for m = 0, 1, 2 and q, r ∈ (1, ∞]
with q ≤ r. We say that the Lq-Lr estimates hold for the decay rate σm(q, r) if, for (q, r) satisfying
1 < q ≤ r ≤ ∞ and q ̸= ∞, there exists C = C(q, r) > 0 such that

∥(∂te−tAq f,∇2e−tAq f)∥Lr(Ω) ≤ Ct−σ2(q,r)∥f∥Lq(Ω) (r ̸= ∞)

∥∇me−tAq f∥Lr(Ω) ≤ Ct−σm(q,r)∥f∥Lq(Ω) (m = 0, 1)
(14)

for t ≥ 1 and f ∈ Jq(Ω).

Remark 2.

(1) In RN and RN
+ , the Lq-Lr estimates hold for the decay rate

σm(q, r) =
N
2

(
1
q
− 1

r

)
+

m
2

. (15)
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The second inequality of (14) was studied in Equation (2.3) in [23] in RN , and, in RN
+ , is

proven in Section 4.1 below from the resolvent estimates for the resolvent Stokes problem
provided by to Shibata and Shimizu [24]. The first inequality is obtained as in Section 4.1.

(2) In exterior domain, the Lq-Lr estimates hold for the decay rate

σm(q, r) =


N
2

(
1
q −

1
r

)
+ m

2 m = 0, 1,

min
{

N
2

(
1
q −

1
r − δ0

)
+ 1, N

2q +
1
2

}
m = 2

(16)

for sufficiently small δ0 > 0. The second inequality was proven by Shibata (Theorem 1 in [25])
and first one is shown as in Section 4.1 from the resolvent estimates by Shibata (Theorem 2
in [25]).

The sufficiently fast decay of the solution to the time-shifted Stokes problem
∂tU + λ0U − Div S(U,P) = F, div U = G = div G in Ω × (0, T),
S(U,P)ν = H on ∂Ω × (0, T),
U|t=0 = v0 in Ω

(17)

is justified by Equation (3.600) in [1], which is valid for general domains satisfying Assump-
tions 1 and 2. To provide a statement of it, we define the space for initial velocity by

Dq,p(Ω) = (Jq(Ω), D(Aq))1−1/p,p ⊂ B2(1−1/p)
q,p (Ω)

for p, q ∈ (1, ∞), where (·, ·)1−1/p,p is real interpolation functor.

Remark 3. The space Dq,p(Ω) is characterized as follows. (see Lemma 2.4 in [26])

Dq,p(Ω) =


{v0 ∈ Jq(Ω) ∩ B2(1−1/p)

q,p (Ω) | [D(v0)ν]τ = 0}
if 2(1 − 1/p)− 1/q > 1,

Jq(Ω) ∩ B2(1−1/p)
q,p (Ω) if 2(1 − 1/p)− 1/q < 1.

Theorem 1 ([1]). Let 1 < p, q < ∞ and T ∈ (0, ∞]. Assume Assumptions 1 and 2. For the
right members F, G, G, H, v0, assume that F, v0, and some extensions Gb, Gb, Hb, respectively, of
< t >b G,< t >b G,< t >b H satisfy

v0 ∈ Dq,p(Ω), < t >b F ∈ Lp(0, T; Lq(Ω)N), Gb ∈ H1
p(R; Lq(Ω)N),

Gb ∈ H1/2
p (R; Lq(Ω)) ∩ Lp(R; H1

q (Ω)), Hb ∈ H1/2
p (R; Lq(Ω)N) ∩ Lp(R; H1

q (Ω)N),

the compatibility condition

(Gb(t), φ)Ω = (Gb(t),∇φ)Ω a.e. t ∈ R for any φ ∈ W1
q′(Ω)

and (G, G, H)|t=0 = (0, 0, 0). Then, the problem (17) admits unique solutions

U ∈ H1
p(0, T; Lq(Ω)N) ∩ Lp(0, T; H2

q (Ω)N), P ∈ Lp(0, T;W1
q (Ω) + H1

q (Ω)).

Moreover, for b ≥ 0, the solution satisfies the following estimate:

∥ < t >b ∂tU∥Lp(0, T;Lq(Ω)) + ∥ < t >b U∥Lp(0, T;H2
q (Ω)) + ∥∇P∥Lp(0, T;Lq(Ω))

≤ C(∥ < t >b F∥Lp(0, T;Lq(Ω)) + ∥(Gb, ∂tGb)∥Lp(R;Lq(Ω))

+ ∥∂1/2
t (Gb, Hb)]∥Lp(R;Lq(Ω)) + ∥(Gb, Hb)∥Lp(R;H1

q (Ω)) + ∥v0∥B2(1−1/p)
q,p (Ω)

),

where the constant C is independent of T and dependent on b.
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The following theorem on the global well-posedness of (3) in general domain is one of
our main results.

Theorem 2. Let 2 < p < ∞, 1 < q0 < N < q2 < ∞ and b > 1/p′. Assume that Ω is a
uniformly H2

∞(Ω) domain and that the weak Dirichlet problem is uniquely solvable in W1
q (Ω) for

q ∈ (1, ∞) as stated in Assumptions 1 and 2. Furthermore, assume that the Lq-Lr estimates hold
for a decay rate σm(q, r) defined for m = 0, 1, 2 and (q, r) ∈ (1, ∞) with q ≥ r and satisfying the
following conditions.

(C1) σm(q0, r) and σ0(q2, r) is non-negative and non-decreasing with respect to m and r,
(C2) σ0(q0, q04) > b + 1

p , σ1(q0, q03) > 1 for some q03, q04 ∈ [q0, q2] with 1
q0

= 1
q03

+ 1
q04

.

Then, there exists ϵ > 0 such that for any v0 ∈ ⋂
i=0,2 Dqi ,p(Ω) ⊂ ⋂

i=0,2 B2(1−1/p)
qi ,p (Ω)

with smallness ∑i=0,2 ∥v0∥B2(1−1/p)
qi ,p (Ω)

≤ ϵ, the transformed problem (3) admits unique solutions

u ∈ H1
p(0, ∞; Lq2(Ω)N) ∩ Lp(0, ∞; H2

q2
(Ω)N), p ∈ Lp(0, ∞;W1

q2
(Ω) + H1

q2
(Ω))

possessing the estimate [u](0, ∞) ≤ Cϵ. Here, for an interval (a, b), we let

[u](a,b) = sup
( p̃2,q̃2)∈I2

∥(1 + t)b2( p̃2,q̃2)∂tu∥L p̃2 (a,b;Lq̃2 (Ω))

+ ∑
m=0,1,2

sup
( p̃m ,q̃m)∈Im

∥(1 + t)bm( p̃m ,q̃m)∇mu∥L p̃m (a,b;Lq̃m (Ω)),
(18)

where the power bm( p̃m, q̃m) of the weight is defined as

bm( p̃m, q̃m) =

{
min{σm(q0, q̃m)− 1

p̃m
− δ, b} ( p̃m < ∞)

min{σm(q0, q̃m), b} ( p̃m = ∞)
(19)

with δ > 0 satisfying

δ < min{σ0(q0, q04)− (b + 1/p), σ1(q0, q03)− 1, b − 1/p′}

and the index set Im is the set of all ( p̃m, q̃m) ∈ {p, ∞} × [q0, ∞] satisfying

( p̃2, q̃2) ∈ {p} × [q0, q2],

( p̃1, p̃1) ∈ ({p} × [q0, ∞]) ∪ ({∞} × [q0, q2]),

( p̃0, p̃0) ∈ ({p} × [q0, ∞]) ∪ ({∞} × [q0, ∞]).

(20)

Moreover, the solution has the decay property

∥∇mu(t)∥Lr(Ω) = O(t−min{σm(q0,r),b}) (21)

for all r ∈ [q0, ∞] (m = 0) and r ∈ [q0, q2] (m = 1).

Remark 4. In the exterior domain, Shibata [1] developed the global well-posedness for the dimension
N ≥ 3 by the compactness of the boundary ∂Ω of the domain. In fact, he changed the transformation
from (2) so that the supports of the nonlinear terms lay near ∂Ω. Then, the supports are bounded
thanks to the compactness of ∂Ω. This improves the decay of the nonlinear terms from the Lq-Lr
estimates by lifting up the exponent r of Lr(Ω). In this paper, we make full use of the decay arising
from the derivative (m/2 appearing in (15) or (16)) instead and obtain the global well-posedness.

The condition (C2) in Theorem 2 requires us to take N ≥ 4 even if the decay rate
σm( p̃, q̃) is as fast as that in the half-space, or more specifically satisfies (15). This condition
is required to estimate the nonlinear term G(u) arising from div v = 0, see Remark 6.
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However, by reducing the Stokes Equation (5) to the problem with (G, G) = (0, 0) (see
Section 4.2), we establish the results also for N = 3 in the half-space.

Theorem 3. Let 2 < p < ∞, 1 < q0 < N < q2 < ∞, b > 1/p′. Assume

b +
1
p
<

N
2q0

.

Then, the global well-posedness and decay property stated in Theorem 2 hold with Ω = RN
+ and

with δ > 0 in the definition (19) of bm( p̃m, q̃m) being

δ <
1
2

(
N

2q0
− (b +

1
p
)

)
. (22)

3. Proof of Theorem 2

In this section, we develop the global well-posedness and decay properties of the
solution of the transformed problem (3) in general domains stated in Theorem 2.

The strategy to prove the global well-posedness is to prolong the local solution by
proving an a priori estimate. The unique existence of the local solution, which is stated as
follows, is guaranteed by a similar argument to that in Theorem 2.4 in [3].

Theorem 4 ([3]). Let 2 < p < ∞, N < q < ∞ and T > 0. Assume Assumptions 1 and 2 hold.
Then, there exists an ϵ > 0 depending on T such that, for any v0 ∈ Dq,p(Ω) ⊂ B2(1−1/p)

q,p (Ω) with
smallness condition ∥v0∥B2(1−1/p)

q,p (Ω)
≤ ϵ, the quasilinear problem (3) admits a unique solution

u ∈ H1
p(0, T; Lq(Ω)) ∩ Lp(0, T; H2

q (Ω)), p ∈ Lp(0, T;W1
q (Ω) + H1

q (Ω))

possessing the estimate

∥∂tu∥Lp(0, T;Lq(Ω)) + ∥u∥Lp(0, T;H2
q (Ω)) + ∥∇p∥Lp(0, T;Lq(Ω)) ≤ Cϵ

with some positive constant C > 0 independent of T and ϵ.

Then, by the same argument as in, e.g., Subsection 3.8.6 in [1], it suffices to prove that
the a priori estimate

[u](0, T) ≤ C(I + [u]2(0, T)) (23)

holds for any fixed T > 0 when the transformed problem (3) admits a unique solution u on
(0, T) sufficiently small in the norm [·](0, T). Here, we have defined

I = ∑
i=0,2

∥v0∥B2(1−1/p)
qi ,p (Ω)

(24)

and C > 0 is a constant independent of u and T.
To prove the a priori estimate (23), we show

[u](0, T) ≤ CN (f(u), g(u), g(u), h(u)ν, v0) (25)

in Section 3.1 and

N (f(u), g(u), g(u), h(u)ν, v0) ≤ C(I + [u]2(0, T)) (26)



Mathematics 2022, 1, 0 11 of 38

in Section 3.2. Then, we obtain the global well-posedness of the transformed problem (3)
and the estimate

[u](0, T) ≤ Cϵ

of the solution u. Here, we have let

N (F, G, G, H, v0)

= ∑
i=0,2

(
∥ < t >b F∥Lp(0, T;Lqi (Ω)) + ∥(ET [< t >b G], ∂tET [< t >b G])∥Lp(R;Lqi (Ω))

+ ∥∂1/2
t ET [< t >b (G, H)]∥Lp(R;Lqi (Ω))

+ ∥ET [< t >b (G, H)]∥Lp(R;H1
qi (Ω)) + ∥v0∥B2(1−1/p)

qi ,p (Ω)

)
,

where the extention operator ET is defined by

ET f (t) =


f (t) 0 < t < T,
f (2T − t) T ≤ t < 2T,
0 otherwise

(27)

for a function f defined on [0, T) with f |t=0 = 0. Note that

∥∂ℓt∇mET [ f ]∥Lp(R;Lq(Ω)) ≤ C∥∂ℓt∇m f ∥Lp(0, T;Lq(Ω)) (ℓ = 0, 1, m ∈ N∪ {0}) (28)

for p, q ∈ [1, ∞] by

∂tET [ f ](t) =


∂t f (t) 0 < t < T,
−∂t f (2T − t) T < t < 2T,
0 otherwise.

The decay properties (21) are obtained by

∥ < t >bm(∞,q̃m) ∇mu∥L∞(0, T;Lq̃m (Ω)) ≤ C[u](0, T) ≤ Cϵ (29)

if m = 0, 1 and (∞, q̃m) satisfies (20).

3.1. Estimate for the Stokes Problem in the General Domain

In this subsection, we prove the estimate (25). Because u can be regarded as the
solution to the Stokes problem (5) with

(v0, F, G, G, H) = (v0, f(u), g(u), g(u), h(u)),

it suffices to prove the corresponding estimate (30) in the following theorem. To do so, we
combine the maximal regularity Theorem 1 with

(Gb, Gb, Hb) = (ET [< t >b G], ET [< t >b G], ET [< t >b H])

and Lq-Lr estimates (14) for the decay rate σm( p̃, q̃) with the condition (C1) in Theorem 2.

Theorem 5. Let 1 < p, q < ∞ and T ∈ (0, ∞]. Assume that Assumptions 1 and 2 hold, and that
the Lq-Lr estimates holds for the decay rate σm(q, r) defined for m = 0, 1, 2 and for (q, r) ∈ (1, ∞)
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with q ≥ r and satisfying the condition (C1) in Theorem 2. For any v0 ∈ Dq,p(Ω) and right
members (F, G, G, H) defined on (0, T) satisfying

< t >b F ∈ Lp(0, T; Lq(Ω)N), ET [< t >b G] ∈ H1
p(R; Lq(Ω)N),

ET [< t >b G] ∈ H1/2
p (R; Lq(Ω)) ∩ Lp(R; H1

q (Ω)),

ET [< t >b H] ∈ H1/2
p (R; Lq(Ω)N) ∩ Lp(R; H1

q (Ω)N)

and the compatibility condition

(G(t), φ)Ω = (G(t),∇φ)Ω for any φ ∈ W1
q′(Ω),

the Stokes problem (5) admits unique solutions

U ∈ H1
p(0, T; Lq(Ω)N) ∩ Lp(0, T; H2

q (Ω)N), P ∈ Lp(0, T;W1
q (Ω) + H1

q (Ω)).

Moreover, the solutions possess the estimate

[U](0, T) ≤ CbN (F, G, G, H, v0) (30)

for b ≥ 0, where Cb > 0 is a constant independent of T.

To prove Theorem 5, it suffices to construct a solution to (5) with the estimate

∥ < t >b2( p̃2,q̃2) ∂tU∥L p̃2 (0, T;Lq̃2 (Ω)) ≤ CbN (F, G, G, H, v0),

∥ < t >bm( p̃m ,q̃m) ∇mU∥L p̃m (0, T;Lq̃m (Ω)) ≤ CbN (F, G, G, H, v0)
(31)

for any m = 0, 1, 2 and ( p̃m, q̃m) satisfying (20) because the uniqueness is obtained by
Theorem 3.2 in [3] and because (30) can be obtained by (31) and the definition (18) of [u].
To this end, we consider the time-shifted Stokes system (17) to deduce a sufficient decay of
the solution and, then consider the system for the difference of the solutions to (17) and
the Stokes system (5). We estimate the solution to the former system by the maximal Lp-Lq
regularity stated in Theorem 1 and, to the latter, by the Lq-Lr estimates (14) of the Stokes
semigroup for the decay rate σm(q, r) with condition (C1).

Divide the solutions U and P of the Stokes equation (5) into three parts as

U = U1 + U2 + U3 and P = P1 +P2 +P3 (32)

so that each part satisfies the following equation for sufficiently large λ1
∂tU1 + λ1U1 − Div S(U1,P1) = F, div U1 = G in Ω × (0, ∞),
S(U1,P1)ν = H on ∂Ω × (0, ∞),
U1|t=0 = v0 in Ω,

(33)


∂tU2 + λ1U2 − Div S(U2,P2) = λ1U1, div U2 = 0 in Ω × (0, ∞),
S(U2,P2)ν = 0 on ∂Ω × (0, ∞),
U2|t=0 = 0 in Ω,

(34)


∂tU3 − Div S(U3,P3) = λ1U2, div U3 = 0 in Ω × (0, ∞),
S(U3,P3)ν = 0 on ∂Ω × (0, ∞),
U3|t=0 = 0 in Ω.

(35)
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Remark 5. Note that the right-hand side of the first Equation of (35), λ1U2, belongs to D(Aq)
while that of (34), λ1U1, in general does not. This is why we divide the solutions into three parts
rather than two parts as in Shibata [1] (p. 448), which is important in estimating

∇2U3(t) =
∫ t

0
∇2e−(t−s)Aq λ1U2(s) ds.

In fact, the right-hand side will have a singularity on s = t if we estimate it only by the pointwise
estimate of the semigroup as∥∥∥∥∫ t

0
∇2e−(t−s)Aq λ1U2(s) ds

∥∥∥∥
Lq(Ω)

≤
∫ t

0
∥∇2e−(t−s)Aq λ1U2(s)∥Lq(Ω) ds

≤ C
∫ t

0
(t − s)−1∥U2(s)∥Lq(Ω) ds.

We overcome this difficulty by the observations that ∇2 and Aq are comparable and that we can
exchange Aq and e−tAq thanks to U2 ∈ D(Aq).

Aqe−tAq U2 = e−tAq AqU2. (36)

First, we prove the estimate for the solution U3 to (35) for m = 0, 1, 2 and ( p̃m, q̃m)
with (20)

∥ < t >b2( p̃2,q̃2) ∂tU3∥L p̃2 (0,T;Lq̃2 (Ω)) ≤ C ∑
i=0,2

∥ < t >b U2∥Lp(0, T;H2
qi (Ω)),

∥ < t >bm( p̃m ,q̃m) ∇mU3∥L p̃m (0,T;Lq̃m (Ω)) ≤ C ∑
i=0,2

∥ < t >b U2∥Lp(0, T;H2
qi (Ω)).

(37)

Let us decompose the domains of the norms in the left-hand side as (0, T) = (0, 2]∪ (2, T).
Then, it suffices to show

∥ < t >b2( p̃2,q̃2) ∂tU3∥L p̃2 (0,2;Lq̃2 (Ω)) ≤ C ∑
i=0,2

∥ < t >b U2∥Lp(0, T;H2
qi (Ω)),

∥ < t >bm( p̃m ,q̃m) ∇mU3∥L p̃m (0,2;Lq̃m (Ω)) ≤ C ∑
i=0,2

∥ < t >b U2∥Lp(0, T;H2
qi (Ω)),

(38)

∥ < t >b2( p̃2,q̃2) ∂tU3∥L p̃2 (2,T;Lq̃2 (Ω)) ≤ C ∑
i=0,2

∥ < t >b U2∥Lp(0, T;H2
qi (Ω)),

∥ < t >bm( p̃m ,q̃m) ∇mU3∥L p̃m (2,T;Lq̃m (Ω)) ≤ C ∑
i=0,2

∥ < t >b U2∥Lp(0, T;H2
qi (Ω)).

(39)

To obtain the estimates of U3, we first prove the estimate (39) of U3 on (2, T). Initially,
we prove the second inequality of (39), and we show the first inequality in (51) below. For
this purpose, we decompose U3 as

U3(t) =
∫ t

0
e−Aq(t−s)λ1U2(s) ds

=

(∫ t/2

0
+

∫ t−1

t/2
+

∫ t

t−1

)
e−Aq(t−s)λ1U2(s) ds

= U31(t) + U32(t) + U33(t)

(40)
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by setting

U31(t) =
∫ t/2

0
e−Aq(t−s)λ1U2(s) ds, U32(t) =

∫ t−1

t/2
e−Aq(t−s)λ1U2(s) ds,

U33(t) =
∫ t

t−1
e−Aq(t−s)λ1U2(s) ds

to use the relation

s < t − s ∼ t when 0 < s < t/2 and t > 2,
t − s < s ∼ t and t − s > 1 when t/2 < s < t − 1 and t > 2,
t − s < s ∼ t and t − s < 1 when t − 1 < s < t and t > 2.

(41)

Then, we show the second inequality of (39) with U3 replaced by U3i for each i = 1, 2, 3.
We first estimate U33. To overcome the singularity on s = t (see Remark 5), we apply

the following lemma and employ the formula Aqe−tAq U2 = e−tAq AqU2, which is obtained
owing to U2 ∈ D(Aq).

Lemma 1. Let 1 < q < ∞. The norms associated with D(Aq) and H2
q (Ω) are equivalent, that is,

there exists C > 0 satisfying

C−1∥u∥H2
q (Ω) ≤ ∥(u, Aqu)∥Lq(Ω) ≤ C∥u∥H2

q (Ω) for any u ∈ D(Aq).

Proof. By the definition (12) of Aq and (10) of Πq, and the estimate (7) for Π0
q, we get

∥(u, Aqu)∥Lq(Ω) ≤ C∥u∥H2
q (Ω). To prove the other estimate, we set f = (λ0 + Aq)u for

sufficiently large λ0 > 0. Then, similarly to the argument to derive the reduced Stokes
equation (11), u and p = Πqu satisfy{

λ0u − Div S(u, p) = f, div u = 0 in Ω
S(u, p)ν = 0 in ∂Ω.

(42)

Thus, by the uniqueness and the estimate

∥u∥H2
q (Ω) ≤ C∥f∥Lq(Ω)

for (42) due to Theorem 1.5 (1) in [19] and by f = (λ0 + Aq)u, we obtain the desired
estimate.

Now, to obtain the estimate of U3 on (2, T), we show the estimate for the third part
U33 of the solution Formula (40) of U3: for m = 0, 1, 2 and ( p̃m, q̃m) satisfying (20),

∥ < t >bm( p̃m ,q̃m) ∇mU33∥L p̃m (2,T;Lq̃m (Ω)) ≤ C ∑
i=0,2

∥ < t >b U2∥Lp(0, T;H2
qi (Ω)). (43)



Mathematics 2022, 1, 0 15 of 38

Because t − s < s ∼ t and bm( p̃m, q̃m) ≤ b, see the relation (41) and the definition (19)
of bm( p̃m, q̃m), we obtain

∥ < t >bm( p̃m ,q̃m) ∇mU3∥L p̃m (2,T;Lq̃m (Ω))

=

∥∥∥∥< t >bm( p̃m ,q̃m) ∇m
∫ t

t−1
e−Aq̃m (t−s)λ1U2(s) ds

∥∥∥∥
L p̃m (2,T;Lq̃m (Ω))

≤ C
∥∥∥∥∇m

∫ t

t−1
e−Aq̃m (t−s)λ1 < s >b U2(s) ds

∥∥∥∥
L p̃m (2,T;Lq̃m (Ω))

≤ C
∥∥∥∥∫ t

t−1
∥∇me−Aq̃m (t−s) < s >b U2(s)∥Lq̃m (Ω) ds

∥∥∥∥
L p̃m (2,T)

≤ C ∑
i=0,2

∥∥∥∥∫ t

t−1
∥e−Aqi (t−s) < s >b U2(s)∥H2

qi (Ω) ds
∥∥∥∥

L p̃m (2,T)
,

where we have used the Sobolev embedding and (20) in the last inequality. We apply
Lemma 1 and the Formula (36) to estimate the right-hand side as follows:∥∥∥∥∫ t

t−1
∥e−Aqi (t−s) < s >b U2(s)∥H2

qi (Ω) ds
∥∥∥∥

L p̃m (2,T)

≤ C
∥∥∥∥∫ t

t−1
∥(e−Aqi (t−s) < s >b U2(s), Aqi e

−Aqi (t−s) < s >b U2(s))∥Lqi (Ω) ds
∥∥∥∥

L p̃m (2,T)

= C
∥∥∥∥∫ t

t−1
∥(e−Aqi (t−s) < s >b U2(s), e−Aqi (t−s) < s >b Aqi U

2(s))∥Lqi (Ω) ds
∥∥∥∥

L p̃m (2,T)
.

This term is estimated as follows from ∥e−Aqt∥L(Lqi (Ω)) ≤ C (0 ≤ t ≤ 1), Young’s inequality,
and Lemma 1.∥∥∥∥∫ t

t−1
∥(e−Aqi (t−s) < s >b U2(s), e−Aqi (t−s) < s >b Aqi U

2(s))∥Lqi (Ω) ds
∥∥∥∥

L p̃m (2,T)

≤ C
∥∥∥∥∫ t

t−1
∥(< s >b U2(s),< s >b Aqi U

2(s))∥Lqi (Ω) ds
∥∥∥∥

L p̃m (2,T)

≤ C
∥∥∥∥∫R 1(0,1)(t − s)1(0,T)(s)∥ < s >b (U2(s), Aqi U

2(s))∥Lqi (Ω) ds
∥∥∥∥

L p̃m (2,T)

≤ C∥1(0,1)∥Lr(R)∥1(0,T)(s) < s >b (U2(s), Aqi U
2(s))∥Lp(R;Lqi (Ω))

= C∥1∥Lr(0,1)∥ < s >b (U2(s), Aqi U
2(s))∥Lp(0, T;Lqi (Ω))

≤ C ∑
i=0,2

∥ < t >b U2∥Lp(0, T;H2
qi (Ω)),

(44)

where the exponent r is defined by 1/r + 1/p = 1/ p̃m + 1 and 1A is the characteristic
function on a set A. In this way, we obtain the estimate (43).

We next prove the estimate for the first part U31 of the solution Formula (40) of U3:
for m = 0, 1, 2 and ( p̃m, q̃m) with (20),

∥ < t >bm( p̃m ,q̃m) ∇mU31∥L p̃m (2,T;Lq̃m (Ω)) ≤ C ∑
i=0,2

∥ < t >b U2∥Lp(0,T;H2
qi (Ω)). (45)
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By the assumption on the Lq-Lr estimate for the decay rate σm(q, r) with the conditions
(C1) in Theorem 2, as well as by s ≤ t − s ∼ t, see (41), and Hölder’s inequality,

∥∇mU31∥Lq̃m (Ω)

=

∥∥∥∥∇m
∫ t/2

0
e−Aq(t−s)λ1U2(s) ds

∥∥∥∥
Lq̃m (Ω)

≤
∫ t/2

0
∥∇me−Aq(t−s)λ1U2(s)∥Lq̃m (Ω) ds

≤ C
∫ t/2

0
(t − s)−σm(q0,q̃m)∥U2(s)∥Lq0 (Ω) ds

≤ C < t >−σm(q0,q̃m)
∫ t/2

0
< s >−b ∥ < s >b U2(s)∥Lq0 (Ω) ds

≤ C < t >−σm(q0,q̃m) ∥ < s >−b ∥Lp′ (0,T)∥ < s >b U2(s)∥Lp(0,T;Lq0 (Ω))

(46)

for t ∈ (2, T). By multiplying each term by < t >bm( p̃m ,q̃m) and taking L p̃m(2, T) norm,
we obtain

∥ < t >bm( p̃m ,q̃m) ∇mU31∥L p̃m (2,T;Lq̃m (Ω))

≤ C∥ < t >bm( p̃m ,q̃m)−σm(q0,q̃m) ∥L p̃m (2,T)

× ∥ < s >−b ∥Lp′ (0,T)∥ < s >b U2(s)∥Lp(0, T;Lq0 (Ω))

≤ C∥ < s >b U2(s)∥Lp(0,T;Lq0 (Ω))

(47)

because

∥ < t >bm( p̃m ,q̃m)−σm(q0,q̃m) ∥L p̃m (2,T)

= ∥ < t >min{σm(q0,q̃m)− 1
p −δ,b}−σm(q0,q̃m) ∥Lp(2, T) ≤ ∥ < t >− 1

p −δ ∥Lp(0, ∞) ≤ C ( p̃m = p)

∥ < t >bm( p̃m ,q̃m)−σm(q0,q̃m) ∥L p̃m (2,T)

= ∥ < t >min{σm(q0,q̃m),b}−σm(q0,q̃m) ∥L∞(2, ∞) ≤ ∥1∥Lp(0, T) = 1 ( p̃m = ∞)

by the definition (19) and ∥ < s >−b ∥Lp′ (0,T) < ∞ from b > 1
p′ . Therefore, we obtain (45).

Finally, we show the following estimate for the second part U32 of the solution
Formula (40) for m = 0, 1, 2 and ( p̃m, q̃m) with (20).

∥ < t >bm( p̃m ,q̃m) ∇mU32∥L p̃m (2,T;Lq̃m (Ω)) ≤ C ∑
i=0,2

∥ < t >b U2∥Lp(0, T;H2
qi (Ω)). (48)

This is obtained as follows. By the assumption on the Lq-Lr estimate (14) for the decay
rate σm(q, r) with the condition (C1) in Theorem 2,

∥ < t >bm( p̃m ,q̃m) ∇mU32∥L p̃m (2,T;Lq̃m (Ω))

=

∥∥∥∥< t >bm( p̃m ,q̃m) ∇m
∫ t−1

t/2
e−Aq(t−s)λ1U2(s) ds

∥∥∥∥
L p̃m (2,T;Lq̃m (Ω))

≤
∥∥∥∥< t >bm( p̃m ,q̃m)

∫ t−1

t/2
∥∇me−Aq(t−s)λ1U2(s)∥Lq̃m (Ω) ds

∥∥∥∥
L p̃m (2,T)

≤ C
∥∥∥∥< t >bm( p̃m ,q̃m)

∫ t−1

t/2
(t − s)−σm(q0,q̃m)∥U2(s)∥Lq0 (Ω) ds

∥∥∥∥
L p̃m (2,T)

.
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By t − s ≤ s ∼ t, (see (41)) we get

< t >bm( p̃m ,q̃m) =< t >−(b−bm( p̃m ,q̃m))< t >b≤ C(t − s)−(b−bm( p̃m ,q̃m)) < s >b . (49)

Defining r by 1/r + 1/p = 1/ p̃m + 1 and denoting the characteristic function of a set A by
1A, by (49) and Young’s inequality, we have

∥∥∥∥< t >bm( p̃m ,q̃m)
∫ t−1

t/2
(t − s)−σm(q0,q̃m)∥U2(s)∥Lq0 (Ω) ds

∥∥∥∥
L p̃m (2,T)

≤ C
∥∥∥∥∫ t−1

t/2
(t − s)−σm(q0,q̃m)+bm( p̃m ,q̃m)−b∥ < s >b U2(s)∥Lq0 (Ω) ds

∥∥∥∥
L p̃m (2,T)

≤ C
∥∥∥∥ ∫

R
1(1,∞)(t − s)(t − s)−σm(q0,q̃m)+bm( p̃m ,q̃m)−b

×1(0, T)(s)∥ < s >b U2(s)∥Lq0 (Ω) ds
∥∥∥∥

L p̃m (2,T)

≤ C∥s−b+bm( p̃m ,q̃m)−σm(q0,q̃m)∥Lr(1,∞)∥ < s >b U2(s)∥Lp(0,T;Lq0 (Ω))

≤ C∥ < s >b U2(s)∥Lp(0,T;Lq0 (Ω))

(50)

because bm( p̃m, q̃m) ≤ σm(q0, q̃m)− 1
p̃m

− δ and b > 1
p′ yield

−b + bm( p̃m, q̃m)− σm(q0, q̃m) < −
(

1 − 1
p

)
− 1

p̃m
= −1

r
,

which implies ∥s−b+bm( p̃m ,q̃m)−σm(q0,q̃m)∥Lr(1,∞) < ∞. Thus, the desired estimate (48) is
proven. Then, by (40), (45), (48) and (43), we obtain the second inequality of (39) as the
estimate for U3 on (2, T).

Then, we prove the first inequality of (39) as the estimate for ∂tU3 on (2, T)

∥ < t >b2( p̃2,q̃2) ∂tU3∥L p̃2 (2,T;Lq̃2 (Ω)) ≤ C ∑
i=0,2

∥ < t >b U2∥Lp(0, T;H2
qi (Ω)) (51)

for any m = 0, 1, 2 and ( p̃2, q̃2) satisfying (20). To do so, we use the fact U3 satisfies
the equation

∂tU3 + AqU3 = λ1U2, U3|t=0 = 0,

which is obtained by the same way we have reduced the Stokes problem (9) to (13), and ob-
tain

∥ < t >b2( p̃2,q̃2) ∂tU3∥L p̃2 (2,T;Lq̃2 (Ω))

≤ ∥ < t >b2( p̃2,q̃2) Aq̃2 U3∥L p̃2 (2,T;Lq̃2 (Ω)) + ∥ < t >b2( p̃2,q̃2) λ1U2∥L p̃2 (2,T;Lq̃2 (Ω))

≤ ∥ < t >b2( p̃2,q̃2) Aq̃2 U3∥L p̃2 (2,T;Lq̃2 (Ω)) + C ∑
i=0,2

∥ < t >b U2∥Lp(0, ∞;Lqi (Ω))
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by (20). Regarding the first term, by the solution Formula (40) of U3,

∥ < t >b2( p̃2,q̃2) Aq̃2 U3∥L p̃2 (2,T;Lq̃2 (Ω))

=

∥∥∥∥< t >b2( p̃2,q̃2) Aq̃2

(∫ t/2

0
+

∫ t−1

t/2
+

∫ t

t−1

)
e−Aq(t−s)λ1U2(s) ds

∥∥∥∥
L p̃2 (2,T;Lq̃2 (Ω))

≤
∥∥∥∥< t >b2( p̃2,q̃2)

∫ t/2

0
∥Aq̃2 e−Aq̃2 (t−s)λ1U2(s)∥Lq̃2 (Ω) ds

∥∥∥∥
L p̃2 (2,T)

+

∥∥∥∥< t >b2( p̃2,q̃2)
∫ t−1

t/2
∥Aq̃2 e−Aq̃2 (t−s)λ1U2(s)∥Lq̃2 (Ω) ds

∥∥∥∥
L p̃2 (2,T)

+

∥∥∥∥< t >b2( p̃2,q̃2)
∫ t

t−1
∥Aq̃2 e−Aq̃2 (t−s)λ1U2(s)∥Lq̃2 (Ω) ds

∥∥∥∥
L p̃2 (2,T)

.

(52)

Because

∂te−tAq f + Aqe−tAq f = 0 (f ∈ Jq(Ω)),

we write Aq̃2 e−Aq̃2 (t−s)λ1U2(s) = −∂te−Aq̃2 (t−s)λ1U2(s) and use the Lq-Lr estimate (14).
Then, the first term and second term of the right-hand side of (52) are estimated by

C
∥∥∥∥< t >b2( p̃2,q̃2)

∫ t/2

0
(t − s)−σ2(q0,q̃2)∥λ1U2(s)∥Lq̃2 (Ω) ds

∥∥∥∥
L p̃2 (2,T)

,

C
∥∥∥∥< t >b2( p̃2,q̃2)

∫ t−1

t/2
(t − s)−σ2(q0,q̃2)∥λ1U2(s)∥Lq̃2 (Ω) ds

∥∥∥∥
L p̃2 (2,T)

,

respectively. We continue the estimate the first term of the right-hand side of (52) in the
same way as in (46) and (47), the second term as in (50), and the third term as in (36)
and (44). Then, we obtain the desired estimate for ∂tU3, and summarizing the arguments
above yields the estimate (39) for U3 on (2, T).

We now show the estimate (38) on (0, 2) for U3, which is defined as the solution
of (35). We apply the maximal regularity locally in time, which is proven due to Shibata
Theorem 3.2 in [3]. We use this for the case (G, G, H, v0) = (0, 0, 0, 0):

Theorem 6 ([3]). Let 1 < p, q < ∞ and T > 0. Under Assumptions 1 and 2, for any

F ∈ Lp(0, T; Lq(Ω)N)

the Stokes problem (5) with (G, G, H, v0) = (0, 0, 0, 0) admits unique solutions

U ∈ H1
p(0, T; Lq(Ω)N) ∩ Lp(0, T; H2

q (Ω)N), P ∈ Lp(0, T;W1
q (Ω) + H1

q (Ω)).

Moreover, the solutions possess the following estimate for some γ0 > 0:

∥∂tU∥Lp(0, T;Lq(Ω)) + ∥U∥Lp(0, T;H2
q (Ω)) + ∥∇P∥Lp(0, T;Lq(Ω)) ≤ Ceγ0T∥F∥Lp(0, T;Lq(Ω)).

In addition, we use the following embedding estimate for any m = 0, 1, 2, ( p̃m, q̃m)
satisfying (20) and u ∈ ⋂

i=0,2(H1
p(0, T; Lqi (Ω)) ∩ Lp(0, T; H2

qi
(Ω))),

∥∇mu∥L p̃m (0, T;Lq̃m (Ω))

≤ ∑
i=0,2

(∥∂tu∥Lp(0, T;Lqi (Ω)) + ∥u∥Lp(0, T;H2
qi (Ω)) + ∥u|t=0∥B2(1−1/p)

qi ,p (Ω)
). (53)

To prove this, consider the following cases.
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(i) p̃m = p and q̃m ∈ [q0, q2] (m = 0, 1, 2),
(ii) p̃m = p and q̃m ∈ (q2, ∞] (m = 0, 1 by (20)),
(iii) p̃m = ∞ and q̃m ∈ [q0, q2] (m = 0, 1 by (20)),
(iv) p̃m = ∞ and q̃m ∈ (q2, ∞] (m = 0 by (20)).

The case (i) is clear. The case (ii) is obtained by the Sobolev embedding

∥∇mu∥Lp(0, T;Lq̃m (Ω)) ≤ C∥u∥Lp(0, T;Hm+1
q2 (Ω))

≤ C ∑
i=0,2

(∥∂tu∥Lp(0, T;Lqi (Ω)) + ∥u∥Lp(0, T;H2
qi (Ω)) + ∥u|t=0∥B2(1−1/p)

qi ,p (Ω)
).

To show (53) for the case (iii) and (iv), we use the embedding

H1
p(0, ∞; X0) ∩ Lp(0, ∞; X1) ⊂ Cb([0, ∞); (X0, X1)1−1/p,p) (54)

for two Banach spaces X0 and X1, where Cb(I; X) stands for the space of the X-valued
bounded continuous functions on I. (see, e.g., Corollary 1.14 in [28]). We also set

u1 = e−tAq u|t=0

so that (u − u1)|t=0 = 0, u = ET [u − u1] + u1 on (0, T) and

∥u1∥H1
p(0, ∞;Lq(Ω)) + ∥u1∥Lp(0, ∞;H2

q (Ω)) ≤ C∥u|t=0∥B2(1−1/p)
p,q (Ω)

(55)

for q ∈ (1, ∞), where ET is the extention function defined by (27). Because p > 2 implies
B2(1−1/p)

q̃m ,p (Ω) ⊂ H1
q̃m
(Ω), by the embedding (54) with (X0, X1) = (Lq̃m(Ω), H2

q̃m
(Ω)), the

estimate (28) of ET and (55), for the case (iii), we have

∥∇mu∥L p̃m (0, T;Lq̃m (Ω)) = ∥∇m(ET [u − u1] + u1)∥L∞(0, T;Lq̃m (Ω))

≤ C(∥ET [u − u1] + u1∥H1
p(0, ∞;Lq̃m (Ω)) + ∥ET [u − u1] + u1∥Lp(0, ∞;H2

q̃m (Ω)))

+ ∥(ET [u − u1] + u1)|t=0∥B2(1−1/p)
q̃m ,p (Ω))

)

≤ C(∥(u − u1, u1)∥H1
p(0, T;Lq̃m (Ω)) + ∥(u − u1, u1)∥Lp(0, T;H2

q̃m (Ω)))

+ ∥u1|t=0∥B2(1−1/p)
q̃m ,p (Ω))

)

≤ C ∑
i=0,2

(∥∂tu∥Lp(0, T;Lqi (Ω)) + ∥u∥Lp(0, T;H2
qi (Ω)) + ∥u|t=0∥B2(1−1/p)

qi ,p (Ω)
).

For the case (iv), by the Sobolev embedding and by the result for the case (iii),

∥u∥L p̃0 (0, T;Lq̃0 (Ω)) ≤ C∥u∥L∞(0, T;H1
q2 (Ω))

≤ C ∑
i=0,2

(∥∂tu∥Lp(0, T;Lqi (Ω)) + ∥u∥Lp(0, T;H2
qi (Ω)) + ∥u|t=0∥B2(1−1/p)

qi ,p (Ω)
).

To summarize, (53) holds.
Then, thanks to (53), U3|t=0 = 0 and Theorem 6, we obtain the estimate (38) as follows.
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∥ < t >b2( p̃2,q̃2) ∂tU3∥L p̃2 (0,2;Lq̃2 (Ω)) + ∑
m=0,1,2

∥ < t >bm( p̃m ,q̃m) ∇mU3∥L p̃m (0,2;Lq̃m (Ω))

≤< 2 >b2( p̃2,q̃2) ∥∂tU3∥L p̃2 (0,2;Lq̃2 (Ω)) + ∑
m=0,1,2

< 2 >bm( p̃m ,q̃m) ∥∇mU3∥L p̃m (0,2;Lq̃m (Ω))

≤ C ∑
i=0,2

(∥∂tU3∥Lp(0,2;Lqi (Ω)) + ∥U3∥Lp(0,2;H2
qi (Ω)))

≤ Ce2γ0 ∑
i=0,2

∥U2∥Lp(0,2;Lqi (Ω)) ≤ C ∑
i=0,2

∥ < t >b U2∥Lp(0, T;H2
qi (Ω)).

Combining this with (39), we obtain the estimate (37) for U3.
Finally, we prove the estimate for U1 and U2, which are defined of the solution to (33)

and (34), respectively. That is, for m = 0, 1, 2 and ( p̃m, q̃m) with (20),

∥ < t >b2( p̃2,q̃2) ∂tU1∥L p̃2 (0, T;Lq̃2 (Ω)) ≤ CN (F, G, G, H, v0),

∥ < t >bm( p̃m ,q̃m) ∇mU1∥L p̃m (0, T;Lq̃m (Ω)) ≤ CN (F, G, G, H, v0),
(56)

∥ < t >b2( p̃2,q̃2) ∂tU2∥L p̃2 (0, T;Lq̃2 (Ω)) ≤ C ∑
i=0,2

∥ < t >b U1∥Lp(0, T;Lqi (Ω)),

∥ < t >bm( p̃m ,q̃m) ∇mU2∥L p̃m (0, T;Lq̃m (Ω)) ≤ C ∑
i=0,2

∥ < t >b U1∥Lp(0, T;Lqi (Ω)).
(57)

Let k = 1, 2. By bm( p̃m, q̃m) ≤ b and (20),

∥ < t >b2( p̃2,q̃2) ∂tUk∥L p̃2 (0, T;Lq̃2 (Ω)) ≤ ∥ < t >b ∂tUk∥Lp(0, T;Lq̃2 (Ω)).

Moreover, noting that

∂t(< t >b Uk(t)) = bt < t >b−2 Uk(t)+ < t >b ∂tUk(t),

by bm( p̃m, q̃m) ≤ b and (53), we obtain

∥ < t >bm( p̃m ,q̃m) ∇mUk∥L p̃m (0, T;Lq̃m (Ω))

≤ ∥ < t >b ∇mUk∥L p̃m (0, T;Lq̃m (Ω))

≤ C ∑
i=0,2

(∥∂t(< t >b Uk)∥Lp(0, T;Lqi (Ω))

+ ∥ < t >b Uk∥Lp(0, T;H2
qi (Ω)) + ∥Uk|t=0∥B2(1−1/p)

qi ,p (Ω)
)

≤ C ∑
i=0,2

(∥ < t >b ∂tUk∥Lp(0, T;Lqi (Ω))

+ ∥ < t >b Uk∥Lp(0, T;H2
qi (Ω)) + ∥Uk|t=0∥B2(1−1/p)

qi ,p (Ω)
).

Thus,

∥ < t >b2( p̃2,q̃2) ∂tUk∥L p̃2 (0, T;Lq̃2 (Ω)) + ∑
m=0,1,2

∥ < t >bm( p̃m ,q̃m) ∇mUk∥L p̃m (0, T;Lq̃m (Ω))

≤ C ∑
i=0,2

(∥ < t >b ∂tUk∥Lp(0, T;Lqi (Ω)) + ∥ < t >b Uk∥Lp(0, T;H2
qi (Ω)) + ∥Uk|t=0∥B2(1−1/p)

qi ,p (Ω)
)
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and, by the maximal regularity stated in Theorem 1 and by (U1, U2)|t=0 = (v0, 0), the
right-hand side is estimated as follows.

∑
i=0,2

(∥ < t >b ∂tU1∥Lp(0, T;Lqi (Ω))

+ ∥ < t >b U1∥Lp(0, T;H2
qi (Ω)) + ∥U1|t=0∥B2(1−1/p)

qi ,p (Ω)
))

≤ CN (F, G, G, H, v0),

∑
i=0,2

(∥ < t >b ∂tU2∥Lp(0, T;Lqi (Ω))

+ ∥ < t >b U2∥Lp(0, T;H2
qi (Ω)) + ∥U2|t=0∥B2(1−1/p)

qi ,p (Ω)
))

≤ CN (λ1U1, 0, 0, 0, 0) = λ1 ∑
i=0,2

∥ < t >b U1∥Lp(0, T;Lqi (Ω)).

(58)

Therefore, we obtain (56) and (57).
Now, we can conclude (31) as follows. By (32), (37), (56) and (57),

∥ < t >b2( p̃2,q̃2) ∂tU∥L p̃2 (0,T;Lq̃2 (Ω)) + ∑
m=0,1,2

∥ < t >bm( p̃m ,q̃m) ∇mU∥L p̃m (0,T;Lq̃m (Ω))

≤ ∑
k=1,2,3

(∥ < t >b2( p̃2,q̃2) ∂tUk∥L p̃2 (0,T;Lq̃2 (Ω))

+ ∑
m=0,1,2

∥ < t >bm( p̃m ,q̃m) ∇mUk∥L p̃m (0,T;Lq̃m (Ω)))

≤ C
(
N (F, G, G, H, v0) + ∑

i=0,2
(∥ < t >b U1∥Lp(0, T;Lqi (Ω)) + ∥ < t >b U2∥Lp(0, T;H2

qi (Ω)))

)
and the second term and the third term of the right-hand side are estimated by CN (F, G, G, H, v0)
from (58).

3.2. Estimate for the Nonlinear Terms in General Domain

In this subsection, we prove (26).
We begin with the estimate of u itself and the term

∫ t
0 ∇u(s) ds.

Lemma 2. Let q03 and q04 the exponents given in the condition (C2) in Theorem 2.

(a) The expression

∥∇mu∥L∞(0, T;Lq̃m (Ω)) ≤ [u](0, T)

holds if m = 0, 1 and (∞, q̃m) satisfy (20).
(b) The statement

∥ < t >b ∂tu∥L p̃2 (0, T;Lq̃2 (Ω)) ≤ C[u](0, T),

∥ < t >b ∇mu∥L p̃m (0, T;Lq̃m (Ω)) ≤ C[u](0, T)

holds for m = 0, 1, 2 and ( p̃m, q̃m) ∈ Im satisfying (20) and q̃m ≥ q04.
(c) There holds ∥∥∥∥∫ t

0
∇mu(s) ds

∥∥∥∥
L∞(0, T;Lq̃m (Ω))

≤ C[u](0, T)

if m = 1, 2 and (p, q̃m) ∈ Im satisfy (20) and q̃m ≥ min{q04, q03}.
(d) There holds ∥W(

∫ t
0 ∇u ds)∥L∞(0, T;L∞(Ω)) ≤ C for any polynomial W.
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Proof.

(a) Because σm(q0, q̃m) ≥ 0 and b > 1/p′ > 0 implies

bm(∞, q̃m) = min{σm(q0, q̃m), b} ≥ 0,

by the definition (18) of [u](0, T), we obtain

∥∇mu∥L∞(0, T;Lq̃m (Ω)) ≤ ∥ < t >bm(∞,q̃m) ∇mu∥L∞(0, T;Lq̃m (Ω)) ≤ [u](0, T).

(b) By the conditions (C1) and (C2) in Theorem 2, (20) and q̃m ≥ q04

bm(p, q̃m) = min{σm(q0, q̃m)−
1
p
− δ, b} ≥ min{σ0(q0, q04)−

1
p
− δ, b}

≥ min{(b + 1
p
)− 1

p
, b} = b (if p̃m = p),

bm(∞, q̃m) = min{σm(q0, q̃m), b} ≥ min{σ0(q0, q04), b}

≥ min{b +
1
p

, b} ≥ b (if p̃m = ∞)

(59)

and, so, by the definition (18) of [u](0, T), we obtain the desired estimate.
(c) By the conditions (C1) and (C2) in Theorem 2, (20) and q̃m ≥ min{q03, q04},

−bm(p, q̃m) ≤ −σm(q0, q̃m) +
1
p
+ δ ≤ −σ1(q0, q03) +

1
p
+ δ

< −1 +
1
p
= − 1

p′
(if p̃m = p),

−bm(∞, q̃m) ≤ σm(q0, q̃m) ≤ −σ1(q0, q03)

< −1 < − 1
p′

(if p̃m = ∞)

when q̃m ≥ q03 and, by (59) and b > 1/p′,

−bm( p̃m, q̃m) ≤ −b < −1/p′

when q̃m ≥ q04. This implies ∥ < s >−bm( p̃m ,q̃m) ∥Lp′ (0, ∞) ≤ C and thus, by Hölder’s
inequality, we have∥∥∥∥∇m

∫ t

0
u(s) ds

∥∥∥∥
L∞(0, T;Lq̃m (Ω))

≤
∫ T

0
∥∇mu(s)∥Lq̃m (Ω) ds

=
∫ T

0
< s >−bm(p,q̃m) ∥ < s >bm(p,q̃m) ∇mu(s)∥Lq̃m (Ω) ds

≤ ∥ < s >−bm(p,q̃m) ∥Lp′ (0, ∞)∥ < s >bm(p,q̃m) ∇mu(s)∥Lp(0, T;Lq̃m (Ω))

≤ C[u](0, T).

(d) This property is immediately obtained from (c) with m = 1, q̃1 = ∞.
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The main step to estimate the nonlinear terms is to take the exponents p1, p2, r1 and r2
to apply Lemma 2 and Hölder’s inequality

∥ f g∥Lp(0, T;Lr(Ω)) ≤ ∥ f ∥Lp1 (0, T;Lr1 (Ω))∥g∥Lp2 (0, T;Lq2 (Ω))

when
1
p
=

1
p1

+
1
p2

,
1
r
=

1
r1

+
1
r2

.
(60)

We begin with the estimate of f(u). By the definition (4) of the nonlinear terms and
Lemma 2 (d), for i = 0, 2,

∥ < t >b f(u)∥Lp(0, T;Lqi (Ω)) ≤ C
∥∥∥∥< t >b

∫ t

0
∇u ds ⊗ (∂tu,∇2u)

∥∥∥∥
Lp(0, T;Lqi (Ω))

+ C
∥∥∥∥< t >b

∫ t

0
∇2u ds ⊗∇u

∥∥∥∥
Lp(0, T;Lqi (Ω))

.
(61)

The first term is estimated by C[u]2(0, T) by Lemma 2 as follows. When i = 0, by Hölder’s
inequality (60) and Lemma 2, we get∥∥∥∥< t >b

∫ t

0
∇u ds ⊗ (∂tu,∇2u)

∥∥∥∥
Lp(0, T;Lq0 (Ω))

≤
∥∥∥∥∫ t

0
∇u ds

∥∥∥∥
L∞(0, T;Lq03 (Ω))

∥∥∥< t >b (∂tu,∇2u)
∥∥∥

Lp(0, T;Lq04 (Ω))

≤ C[u]2(0, T).

(62)

The estimate with i = 2 is obtained by replacing q03 and q04, respectively, with ∞ and q2
in (62) as follows. By Hölder’s inequality (60) and Lemma 2,∥∥∥∥< t >b

∫ t

0
∇u ds ⊗ (∂tu,∇2u)

∥∥∥∥
Lp(0, T;Lq2 (Ω))

≤
∥∥∥∥∫ t

0
∇u ds

∥∥∥∥
L∞(0, T;L∞(Ω))

∥∥∥< t >b (∂tu,∇2u)
∥∥∥

Lp(0, T;Lq2 (Ω))

≤ C[u]2(0, T).

(63)

Next, we estimate the second term of the right-hand side in (61). When i = 0, Hölder’s
inequality (60) and Lemma 2 yield∥∥∥∥< t >b

∫ t

0
∇2u ds ⊗∇u

∥∥∥∥
Lp(0, T;Lq0 (Ω))

≤
∥∥∥∥∫ t

0
∇2u ds

∥∥∥∥
L∞(0, T;Lq03 (Ω))

∥∥∥< t >b ∇u
∥∥∥

Lp(0, T;Lq04 (Ω))

≤ C[u]2(0, T).

(64)

The case i = 2 is proved by replacing q03 and q04 with q2 and ∞ in (64), respectively. Thus,
we conclude ∑i=0,2 ∥f(u)∥Lp(0, T;Lqi (Ω)) ≤ C[u](0, T).

We next estimate the term g(u). By the estimate (28) for ET , the definition (4) of the
nonlinear terms and Lemma 2 (d), for i = 0, 2,

∥ET [< t >b g(u)]∥Lp(R;Lqi (Ω)) ≤ C
∥∥∥∥< t >b

∫ t

0
∇u ds ⊗ u

∥∥∥∥
Lp(0, T;Lqi (Ω))

. (65)
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When i = 0, by Hölder’s inequality (60) and Lemma 2, the right-hand side can be estimated
as ∥∥∥∥< t >b

∫ t

0
∇u ds ⊗ u

∥∥∥∥
Lp(0, T;Lq0 (Ω))

≤
∥∥∥∥∫ t

0
∇u ds

∥∥∥∥
L∞(0, T;Lq03 (Ω))

∥∥∥< t >b u
∥∥∥

Lp(0, T;Lq04 (Ω))

≤ C[u]2(0, T).

(66)

The estimate for i = 2 can be obtained by replacing q03 and q04, respectively, with q2 and ∞.

Remark 6. We must assume

σ1(q0, q03) > 1, σ0(q0, q04) > b + 1/p > 1 (67)

for some q03 and q04 with 1/q0 = 1/q03 + 1/q04 to estimate ∥ < t >b g(u)∥Lp(0, T;Lq0 (Ω))

independently of T at least simply by applying Hölder’s inequality.
In fact, by Hölder’s inequality, the right-hand side of (65) is estimated by∥∥∥∥< t >b

∫ t

0
∥∇u∥Lr1 (Ω) ds∥u(t)∥Lr2 (Ω)

∥∥∥∥
Lp(0, T)

for some r1, r2 ∈ [q0, ∞] with 1/q0 = 1/r1 + 1/r2. To estimate this term, we must show
∥ < t >b ∥u∥Lr2 (Ω)∥Lp(0, T) ≤ C since

∫ t
0 ∥∇u∥Lr1 (Ω) ds does not decay as t → ∞. To obtain

this result and
∫ t

0 ∥∇u∥Lr1 (Ω) ds ≤ C, roughly, we need

∥∇u(t)∥Lr1 (Ω) = o(t−1),

(< t >b ∥u(t)∥Lr2 (Ω))
p = o(t−1) i.e. ∥u(t)∥Lr2 (Ω) = o(t−(b+1/p))

(68)

as t → ∞. The same decay is needed for the solution U of (5) but, even if (F, G, G, H) = (0, 0, 0, 0),
i.e., U = e−tAq v0, we only have

∥∇U(t)∥Lr1 (Ω) = o(t−σ1(q0,r1)), ∥U(t)∥Lr2 (Ω) = o(t−σ0(q0,r2)). (69)

Furthermore, because we deal with the case (F, G, G, H) ̸= (0, 0, 0, 0) from the maximal regularity
for the time-shifted Stokes problem (17) (see Theorem 1), one can only expect that ∥ < t >b

∇U∥Lp(0, T;Lr1 (Ω)) ≤ C and ∥ < t >b U∥Lp(0, T;Lr2 (Ω)) ≤ C which roughly means,

(< t >b ∥∇U(t)∥Lr1 (Ω))
p = o(t−1) i.e. ∥U(t)∥Lr1 (Ω) = o(t−(b+1/p)),

(< t >b ∥U(t)∥Lr2 (Ω))
p = o(t−1) i.e. ∥U(t)∥Lr2 (Ω) = o(t−(b+1/p)).

Comparing this and (69) to (68), we find that (67) is a necessary condition.
This is why the slowest decay term g(u) forces us to take N ≥ 4 even if the decay rate is as

fast as that in the half-space, that is σm(q, r) = N
2 (

1
q −

1
r ) +

m
2 , by

2 < 1 + b + 1/p < σ1(q0, q03) + σ0(q0, q04)

≤ N
2
(

1
q0

− 1
q03

) +
1
2
+

N
2
(

1
q0

− 1
q04

) =
N

2q0
+

1
2
<

N + 1
2

.
(70)
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We continue the estimate of g(u), in particular, ∑i=0,2 ∥∂tET [< t >b g(u)]∥Lp(R;Lqi (Ω)).
Because the definition (4) of the nonlinear terms implies

∂tg(u) =
N

∑
j,k=1

∂(j,k)V
2
(∫ t

0
∇u ds

)
∂juk ⊗ u + V2

(∫ t

0
∇u ds

)
∂tu (71)

for i = 0, 2, the estimate (28) of ET and Lemma 2 (d) implies

∥∂tET [< t >b g(u)]∥Lp(0, ∞;Lqi (Ω))

≤ C(∥(∂t < t >b)g(u)∥Lp(0, T;Lqi (Ω)) + ∥ < t >b ∂tg(u)∥Lp(0, T;Lqi (Ω)))

≤ C
(
∥bt < t >b−2 g(u)∥Lp(0, T;Lqi (Ω)) +

∥∥∥< t >b ∇u ⊗ u
∥∥∥

Lp(0, T;Lqi (Ω))

+

∥∥∥∥< t >b
∫ t

0
∇u ds ⊗ ∂tu

∥∥∥∥
Lp(0, T;Lqi (Ω))

)
.

(72)

The first term of the right-hand side in (72) can be estimated from bt < t >b−1≤ b < t >b

and (66) and, also, the estimate for the third term was obtained in the estimate of f(u)
(see (62) and (63)). The second term can be estimated as follows. For i = 0, 2, by Hölder’s
inequality (60) and Lemma 2,∥∥∥< t >b ∇u ⊗ u

∥∥∥
Lp(0, T;Lqi (Ω))

≤
∥∥∥< t >b ∇u

∥∥∥
Lp(0, T;L∞(Ω))

∥u∥L∞(0, T;Lqi (Ω)) ≤ C[u]2(0, T).
(73)

To summarize, we have

∑
i=0,2

∥ < t >b (ETg(u), ∂tETg(u))∥Lp(0, T;Lqi (Ω)) ≤ C[u]2(0, T).

We finally prove the estimate of g(u) and H(u):

∑
i=0,2

(∥∂1/2
t ET [< t >b (g(u), h(u)ν)]∥Lp(R;Lqi (Ω))

+ ∥ET [< t >b (g(u), h(u)ν)]∥Lp(R;H1
qi (Ω))) ≤ C[u]2(0, T).

To estimate the first term of the left-hand side, we introduce an extension mapping
ι : L1,loc(Ω) → L1,loc(Ω) satisfying

(e1) For any q ∈ (1, ∞) and f ∈ Hm
q (Ω),ι f ∈ Hm

q (RN) and ∥ι f ∥Hm
q (RN) ≤ C∥ f ∥Hm

q (Ω) hold
for m = 0, 1.

(e2) For any q ∈ (1, ∞) and f ∈ H1
q (Ω), ∥(1 − ∆)−1/2ι(∇ f )∥Lq(RN) ≤ C∥ f ∥Lq(Ω), where

the operator (1 − ∆)s is defined by (1 − ∆)sg = F−1[(1 + |ξ|2)sF[g]], holds for s ∈ R.

Then, by the same fashion as in Appendix A in [3], for p, q ∈ (1, ∞), we have

H1
p(R; H−1

q (Ω)) ∩ Lp(R; H1
q (Ω)) ⊂ H1/2

p (R; Lq(Ω)),

∥∂1/2
t f ∥Lp(R;Lq(Ω)) ≤ C(∥∂t[(1 − ∆)−1/2ι f ]∥Lp(R;Lq(RN)) + ∥ f ∥Lp(R;H1

q (Ω))),
(74)

where

H−1
q (Ω) = dual of Ĥ1

q′ ,0(Ω).
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Thus, by the embedding (74) and the estimate (28) of ET , for i = 0, 2,

∥∂1/2
t ET [< t >b (g(u), h(u)ν)]∥Lp(R;Lqi (Ω))

≤ C(∥∂t[(1 − ∆)−1/2ιET [< t >b (g(u), h(u)ν)]]∥Lp(R;Lqi (Ω))

+ ∥ET [< t >b (g(u), h(u)ν)]∥Lp(R;H1
qi (Ω)))

≤ C(∥∂t[(1 − ∆)−1/2ι < t >b (g(u), h(u)ν)]∥Lp(0, T;Lqi (Ω))

+ ∥ < t >b (g(u), h(u)ν)∥Lp(0, T;H1
qi (Ω)))

and so, by (28) again,

∑
i=0,2

(∥∂1/2
t ET [< t >b (g(u), h(u)ν)]∥Lp(R;Lqi (Ω))

+ ∥ET [< t >b (g(u), h(u)ν)]∥Lp(R;H1
qi (Ω)))

≤ C(∥∂t[(1 − ∆)−1/2ι < t >b (g(u), h(u)ν)]∥Lp(0, T;Lqi (Ω))

+ ∥ < t >b (g(u), h(u)ν)∥Lp(0, T;H1
qi (Ω))).

(75)

To estimate the first term, we apply the following lemma with ( f1, f2, g) = ( f k
1 , f k

2 , gk)
for k = 1, 2 by setting

( f 1
1 , f 1

2 , g1) =

(
< t >b V3

(∫ t

0
∇u ds

)
, 1, u

)
,

( f 2
1 , f 2

2 , g2) =

(
< t >b V4

(∫ t

0
∇u ds

)
, ν, u

) (76)

because g(u) = f 1
1 f 1

2 g1 and h(u)ν = f 2
1 f 2

2 g2 owing to the definition (4) of the nonlin-
ear terms.

Lemma 3. Let 1 < p, q, r1, r2, r3 < ∞ satisfy

1
q
≤ 1

ri
≤ 1

q
+

1
N

(i = 1, 2, 3)

and ι be the extention map introduced above. Then, for f1, f2, g ∈ L1,loc(Ω) and f = f1 f2,
the following estimate holds:

∥∂t[(1 − ∆)−1/2ι( f∇g)]∥Lp(0, T;Lq(RN))

≤ C(∥ f ∂tg∥Lp(0, T;Lq(Ω)) + ∥(∂t f )∇g∥Lp(0, T;Lr1 (Ω))

+ ∥(∇ f1) f2∂tg∥Lp(0, T;Lr2 (Ω)) + ∥ f1(∇ f2)∂tg∥Lp(0, T;Lr3 (Ω))).

Proof. We follow the idea in the proof of Lemma 3.3 in [3]. We rewrite

∂t[(1 − ∆)−1/2ι( f∇g)]

= (1 − ∆)−1/2ι(∂t f∇g) + (1 − ∆)−1/2ι( f∇∂tg)

= (1 − ∆)−1/2ι(∂t f∇g) + (1 − ∆)−1/2ι[∇( f ∂tg)]− (1 − ∆)−1/2ι(∇ f ∂tg).

= (1 − ∆)−1/2ι(∂t f∇g) + (1 − ∆)−1/2ι[∇( f ∂tg)]

− (1 − ∆)−1/2ι[(∇ f1) f2∂tg]− (1 − ∆)−1/2ι[ f1(∇ f2)∂tg], .
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and then we obtain

∥∂t[(1 − ∆)−1/2ι( f∇g)]∥Lp(0, T;Lq(RN))

≤ C(∥(1 − ∆)−1/2ι(∂t f∇g)∥Lp(0, T;Lq(RN))

+ ∥(1 − ∆)−1/2ι[∇( f ∂tg)]∥Lp(0, T;Lq(RN))

+ ∥(1 − ∆)−1/2ι[(∇ f1) f2∂tg]∥Lp(0, T;Lq(RN))

+ ∥(1 − ∆)−1/2ι[ f1(∇ f2)∂tg]∥Lp(0, T;Lq(RN))).

The second term is estimated by the property (e2) of the extension mapping ι as

∥(1 − ∆)−1/2ι[∇( f ∂tg)]∥Lp(0, T;Lq(RN)) ≤ ∥ f ∂tg∥Lp(0, T;Lq(Ω))

and, from Sobolev’s inequality, the other terms are estimated as follows.

∥(1 − ∆)−1/2ι(∂t f∇g)∥Lp(0, T;Lq(RN))

≤ C∥(1 − ∆)−1/2ι(∂t f∇g)∥Lp(0, T;H1
r1 (R

N)) ≤ C∥∂t f∇g∥Lp(0, T;Lr1 (Ω)),

∥(1 − ∆)1/2ι[(∇ f1) f2∂tg]∥Lp(0, T;Lq(RN))

≤ C∥(1 − ∆)−1/2ι[(∇ f1) f2∂tg]∥Lp(0, T;H1
r2 (R

N)) ≤ C∥(∇ f1) f2∂tg∥Lp(0, T;Lr2 (Ω)),

∥(1 − ∆)1/2ι[ f1(∇ f2)∂tg]∥Lp(0, T;Lq(RN))

≤ C∥(1 − ∆)−1/2ι[ f1(∇ f2)∂tg]∥Lp(0, T;H1
r3 (R

N)) ≤ C∥ f1(∇ f2)∂tg∥Lp(0, T;Lr3 (Ω)).

This completes the proof.

From now on, we estimate the first term of the right-hand side in (75). Define
( f k

1 , f k
2 , gk) for k = 1, 2 by (76) so that g(u) = f 1

1 f 1
2 g1 and h(u)ν = f 2

1 f 2
2 g2. Set f k = f k

1 f k
2 .

Then, by Lemma 3 with ( f1, f2, g, f ) = ( f k
1 , f k

2 , gk, f k), the first term of the right-hand side
in (75) is estimated as

∑
i=0,2

∥∂t[(1 − ∆)−1/2ι < t >b (g(u), h(u)ν)]∥Lp(0, T;Lqi (Ω))

≤ C ∑
k=1,2, i=0,2

(∥ f k∂tgk∥Lp(0, T;Lqi (Ω)) + ∥(∂t f k)∇gk∥Lp(0, T;Lqi (Ω))

+ ∥(∇ f k
1 ) f k

2 ∂tg∥Lp(0, T;Lq0 (Ω)) + ∥(∇ f k
1 ) f k

2 ∂tg∥Lp(0, T;Lq2/2(Ω))

+ ∥ f k
1 (∇ f k

2 )∂tgk∥Lp(0, T;Lqi (Ω))).

(77)

Noting that f k = f k
1 f k

2 and that f k
2 is independent of t, we have

∂t f k
1 = f k

2 ∂tV2+k
(∫ t

0
∇u ds

)
= f k

2

N

∑
i,j=1

∂(i,j)V
2+k

(∫ t

0
∇u ds

)
∂iuj ⊗ u + V2+k

(∫ t

0
∇u ds

)
∂tu.
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Thus, for q ∈ [1, ∞] and k = 1, 2, Hölder’s inequality (60) and Lemma 2 (d) yield

∥ f k∂tgk∥Lp(0, T;Lq(Ω)) ≤ C
∥∥∥∥∫ t

0
∇u ds⊗ < t >b ∂tu

∥∥∥∥
Lp(0, T;Lq(Ω))

,

∥(∂t f k)∇gk∥Lp(0, T;Lq(Ω))

≤ C(
∥∥∥∥∫ t

0
∇u ds⊗ < t >b ∇u

∥∥∥∥
Lp(0, T;Lq(Ω))

+ ∥∇u⊗ < t >b ∇u∥Lp(0, T;Lq(Ω))),

∥(∇ f k
1 ) f k

2 ∂tgk∥Lp(0, T;Lq(Ω)) ≤ C
∥∥∥∥∫ t

0
∇2u ds⊗ < t >b ∂tu

∥∥∥∥
Lp(0, T;Lq(Ω))

,

∥ f k
1 (∇ f k

2 )∂tgk∥Lp(0, T;Lq(Ω)) ≤ C
∥∥∥∥∫ t

0
∇u ds⊗ < t >b ∂tu

∥∥∥∥
Lp(0, T;Lq(Ω))

and so, by combining these estimates with (77), we have

∥∂t[(1 − ∆)−1/2ι < t >b (g(u), h(u)ν)]∥Lp(0, T;Lq0 (Ω))

≤ C ∑
i=0,2

(∥∥∥∥∫ t

0
∇u ds⊗ < t >b ∂tu

∥∥∥∥
Lp(0, T;Lqi (Ω))

+

∥∥∥∥< t >b
∫ t

0
∇u ds ⊗∇u

∥∥∥∥
Lp(0, T;Lqi (Ω))

+
∥∥∥∇u⊗ < t >b ∇u

∥∥∥
Lp(0, T;Lqi (Ω))

+

∥∥∥∥∫ t

0
∇2u ds⊗ < t >b ∂tu

∥∥∥∥
Lp(0, T;Lq0 (Ω))

+

∥∥∥∥∫ t

0
∇2u ds⊗ < t >b ∂tu

∥∥∥∥
Lp(0, T;Lq2/2(Ω))

)
.

(78)

The first term of the right-hand side in (78) has been estimated by C[u]2(0, T) in (62)
and (63). Here, we estimate the second term. When i = 0, by Hölder’s inequality (60) and
Lemma 2, ∥∥∥∥< t >b

∫ t

0
∇u ds ⊗∇u

∥∥∥∥
Lp(0, T;Lq0 (Ω))

≤
∥∥∥∥∫ t

0
∇u ds

∥∥∥∥
L∞(0, T;Lq03 (Ω))

∥∥∥< t >b ∇u
∥∥∥

Lp(0, T;Lq04 (Ω))
≤ C[u]2(0, T).

(79)

The estimate for i = 2 can be obtained by replacing q03 and q04 with q2 and ∞, respectively.
The third term of the right-hand side in (78) can be estimated by Hölder’s inequality (60)
and Lemma 2 as follows: for i = 0, 2,∥∥∥< t >b ∇u ⊗∇u

∥∥∥
Lp(0, T;Lqi (Ω))

≤ C∥ < t >b ∇u∥Lp(0, T;L∞(Ω))∥∇u∥L∞(0, T;Lqi (Ω)) ≤ C[u]2(0, T).
(80)
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We next estimate the fourth term of the right-hand side in (78). By Hölder’s inequality (60)
and Lemma 2,∥∥∥∥< t >b

∫ t

0
∇2u ds ⊗ ∂tu

∥∥∥∥
Lp(0, T;Lq0 (Ω))

≤
∥∥∥∥∫ t

0
∇2u ds

∥∥∥∥
L∞(0, T;Lq03 (Ω))

∥∥∥< t >b ∂tu
∥∥∥

Lp(0, T;Lq04 (Ω))
≤ C[u]2(0, T).

(81)

Finally, the fifth term of the right-hand side in (78) can be estimated by Hölder’s inequal-
ity (60) and Lemma 2 as∥∥∥∥< t >b

∫ t

0
∇2u ds ⊗ ∂tu

∥∥∥∥
Lp(0, T;Lq2/2(Ω))

≤
∥∥∥∥∫ t

0
∇2u ds

∥∥∥∥
L∞(0, T;Lq2 (Ω))

∥∥∥< t >b ∂tu
∥∥∥

Lp(0, T;Lq2 (Ω))
≤ C[u]2(0, T).

(82)

The estimate for the second term ∥ < t >b (g(u), h(u)ν)∥Lp(0, T;H1
qi (Ω)) of the right-

hand side in (75) remains to be shown. By the definition (4) of the nonlinear terms and
Lemma (2) (d), for i = 0, 2,

∥ < t >b (g(u), h(u)ν)∥Lp(0, T;H1
qi (Ω))

≤ C
(∥∥∥∥< t >b

∫ t

0
∇u ds ⊗∇u

∥∥∥∥
Lp(0, T;Lqi (Ω))

+

∥∥∥∥< t >b
∫ t

0
∇2u ds ⊗∇u

∥∥∥∥
Lp(0, T;Lqi (Ω))

+

∥∥∥∥< t >b
∫ t

0
∇u ds ⊗∇2u

∥∥∥∥
Lp(0, T;Lqi (Ω))

)
,

(83)

and so, as we have estimated these terms in (62), (64) and (79), we obtain

∥ < t >b (g(u), h(u)ν)∥Lp(0, T;H1
qi (Ω)) ≤ C[u]2(0, T).

To summarize, we conclude (26).

4. Proof of Theorem 3

In this section, we prove the global well-posedness and the decay property in RN
+ with

N ≥ 3. To obtain the global well-posedness, for T > 0, assuming the unique existence of a
solution u of (3) with Ω = RN

+ on (0, T), we show an analogue of the estimate (31) for the
Stokes problem and an analogue of the estimate (26) for the nonlinear term.

The difficulty in obtaining the result for N = 3 arises from the estimate of ∥ < t >b

g(u)∥Lp(0, T;Lq0 (Ω)) because g(u) has the slowest decay of the nonlinear terms. However,
this term is just an additional term appearing when we apply the maximal regularity to the
time-shifted Stokes problem (17). This observation enables us to overcome this difficulty
by reducing the Stokes problem to the problem with (G, G) = (0, 0) before applying it; we
subtract a function K0G satisfying div K0G = G = div G from the solution. The function
K0G is constructed by solving the Poisson equation and, thanks to Ω = RN

+ , K0G has
homogeneous estimates with respect to the derivative order, see (90) below. Owing to this,
in Section 4.2, we obtain the estimate

[u](0, T) ≤ C(NRN
+
(f(u), g(u), g(u), h(u)ν, v0) + [K0g(u)](0, T)) (84)
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in RN
+ , which corresponds to (25) but the first term of the right-hand side does not include

the crucial norm ∥ < t >b g(u)∥Lp(0, T;Lq0 (Ω)). Here,

NRN
+
(f(u), g(u), g(u), h(u), v0)

= ∑
i=0,2

(
∥ < t >b f(u)∥Lp(0, T;Lqi (Ω)) + ∥∂tET [< t >b g(u)]∥Lp(R;Lqi (Ω))

+ ∥∂1/2
t ET [< t >b (g(u), h(u)ν)]∥Lp(R;Lqi (Ω))

+ ∥ET [< t >b (g(u), h(u)ν)]∥Lp(R;H1
qi (Ω)) + ∥v0∥B2(1−1/p)

qi ,p (Ω)

)
.

In Section 4.3, we show that the second term [K0g(u)](0, T) is harmless and obtain the
analogue of (26),

NRN
+
(f(u), g(u), g(u), h(u), v0) + [K0g(u)](0, T) ≤ C(I + [u]2(0, T)), (85)

where the norm I of v0 is defined by (24). Then, we have

[u](0, T) ≤ Cϵ

and, in the same way as in (29), we obtain the decay property (21).

4.1. The Lq-Lr Estimates

In this subsection, to employ the same argument as in Section 3, we prove the Lq-Lr
estimates for the decay rate

σm(q, r) =
N
2

(
1
q
− 1

r

)
+

m
2

. (86)

Proposition 2. Define σm(q, r) by (86). Then, for (q, r) satisfying 1 < q ≤ r ≤ ∞ and q ̸= ∞,
there exists C = C(q, r) > 0 such that

∥(∂te−tAq f,∇2e−tAq f)∥Lr(RN
+) ≤ Ct−σ2(q,r)∥f∥Lq(RN

+) (r ̸= ∞)

∥∇me−tAq f∥Lr(RN
+) ≤ Ct−σm(q,r)∥f∥Lq(RN

+) (m = 0, 1)
(87)

for t ≥ 1 and f ∈ Jq(RN
+).

Proof. We first consider the case r = q. Let ϕ ∈ (0, π/2), 1 < q < ∞ and f ∈ Jq(RN
+). By

the resolvent estimates for the resolvent Stokes equation in RN
+ obtained in Theorem 4.1

in [24], uλ = (λ + Aq)−1f satisfies

|λ|∥uλ∥Lq(RN
+) + |λ|1/2∥∇uλ∥Lq(RN

+) + ∥∇2uλ∥Lq(RN
+) ≤ C∥f∥Lq(RN

+) (88)

for λ ∈ C \ {0} with | arg λ| < π − ϕ/2. By this and the properties of analytic semigroup,
we obtain

∥∂te−tAq f∥Lr(RN
+) ≤ Ct−σ2(q,q)∥f∥Lq(RN

+),

∥e−tAq f∥Lr(RN
+) ≤ Ct−σ0(q,q)∥f∥Lq(RN

+)

(89)

Moreover, the resolvent estimate (88) and the change of variable λt = λ′ in the formula

e−tAq f =
∫

Γ
eλt(λ + Aq)

−1f dλ,
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where Γ is suitable contour from ∞e−(π−ϕ)i to ∞e(π−ϕ)i, yield

∥∇me−tAq f∥Lr(RN
+) ≤ Ct−σm(q,q)∥f∥Lq(RN

+) (m = 1, 2).

This and (89) imply (87).
We now show the result for the case 0 < 1/r − 1/q ≤ 1/N from the Gagliardo–Nirenberg

interpolation inequality. If we define the even extension operator Ee : L1,loc(Rn) →
L1,loc(RN

+) as

Ee f (x′, xN) =

{
f (x′, xN) xN > 0,
f (x′,−xN) xN < 0

and set

α = N
(

1
q
− 1

r

)
,

from the Gagliardo–Nirenberg interpolation inequality and the result for the case r = q,

∥∇me−tAq f∥Lr(RN
+) ≤ ∥Ee∇me−tAq f∥Lr(RN)

≤ C∥∇Ee∇me−tAq f∥α
Lq(RN)∥Ee∇me−tAq f∥1−α

Lq(RN)

≤ C∥∇m+1e−tAq f∥α
Lq(RN

+)
∥∇me−tAq f∥1−α

Lq(RN
+)

≤ Ct−
m+1

2 α− m
2 (1−α)∥f∥Lq(RN

+)

= Ct−
N
2

(
1
q −

1
r

)
− m

2 ∥f∥Lq(RN
+)

for m = 0, 1. By combining this with the result for r = q ̸= ∞, we also obtain

∥∂te−tAq f∥Lr(RN
+) + ∥∇2e−tAq f∥Lr(RN

+)

≤ Ct−1∥e−(t/2)Aq f∥Lr(RN
+) ≤ Ct−

N
2

(
1
q −

1
r

)
−1∥f∥Lq(RN

+).

Finally, the estimate for the case 1/r − 1/q > 1/N can be obtained by repeating use of
the result for the case 1/r − 1/q ≤ 1/N.

4.2. Estimate for the Stokes Problem in the Half Space

In this subsection, we show a theorem analogous to Theorem 5 for Ω = RN
+ by

reducing the Stokes problem to the problem with (G, G) = (0, 0). To state the theorem and
to execute the reduction, we introduce a solution operator K0 to the divergence equation,
which is proved for example in Lemma 4.1 (1) in [27] by solving the Poisson equation.

Lemma 4 (e.g., [27]). Let 1 < q < ∞. There exists an operator K0 : H1
q (RN

+) ∩ Ĥ−1
q (RN

+) →
H2

q (RN
+)

N such that, for g ∈ H1
q (RN

+)∩ Ĥ−1
q (RN

+), K0g satisfies the divergence equation div v = g
and the estimate

∥K0g∥Lq(RN
+) ≤ C∥g∥Ĥ−1

q (RN
+), ∥∇K0g∥Lq(RN

+) ≤ C∥g∥Lq(RN
+),

∥∇2K0g∥Lq(RN
+) ≤ C∥∇g∥Lq(RN

+).
(90)

The following theorem is the main theorem of this subsection. Note that (84) is
obtained immediately by (92) below if we assume the unique existence of the solution u
to (3) on (0, T).
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Theorem 7. Let 1 < p, q < ∞ and T ∈ (0, ∞]. Define bm( p̃m, q̃m) by (19) for the decay rate
σm(q, r) and δ given by (22) and (86), respectively. For any v0 ∈ Dq,p(RN

+) and right members
(F, G, G, H) defined on (0, T) satisfying

< t >b F ∈ Lp(0, T; Lq(RN
+)

N), ET [< t >b G] ∈ H1
p(R; Lq(RN

+)
N),

ET [< t >b G] ∈ H1/2
p (R; Lq(RN

+)) ∩ Lp(R; H1
q (RN

+)),

ET [< t >b H] ∈ H1/2
p (R; Lq(RN

+)
N) ∩ Lp(R; H1

q (RN
+)

N),

with the compatibility condition

(G(t), φ)RN
+
= −(G(t),∇φ)RN

+
for any φ ∈ Ĥ1

q′ ,0(R
N
+), (91)

the Stokes problem (5) admits unique solutions

U ∈ H1
p(0, T; Lq(RN

+)
N) ∩ Lp(0, T; H2

q (RN
+)

N), P ∈ Lp(0, T; Ĥ1
q,0(RN

+) + H1
q (RN

+)).

Moreover, the solutions possess the estimate

[u](0, T) ≤ CbNRN
+
(F, G, G, H, v0) (92)

for b ≥ 0, where the constant Cb > 0 is independent of T.

Proof. It suffices to construct a solution of (5) possessing the estimate

∥ < t >b2( p̃2,q̃2) ∂tU∥L p̃2 (0, T;Lq̃2 (R
N
+))

≤ CbNRN
+
(F, G, G, H, v0) + ∥ < t >b2( p̃2,q̃2) ∂tK0G∥L p̃2 (0, T;Lq̃2 (R

N
+)),

∥ < t >bm( p̃m ,q̃m) ∇mU∥L p̃m (0, T;Lq̃m (RN
+))

≤ CbNRN
+
(F, G, G, H, v0) + ∥ < t >bm( p̃m ,q̃m) ∇mK0G∥L p̃m (0, T;Lq̃m (RN

+)),

(93)

for any m = 0, 1, 2 and ( p̃m, q̃m) satisfying (20). For almost everywhere t ∈ (0, T), because
the compatibility condition (91) yields

|(G(t), φ)RN
+
| = |(G(t),∇φ)RN

+
| ≤ ∥G(t)∥Lq(RN

+)∥∇φ∥Lq′ (RN
+) for any φ ∈ Ĥ1

q′ ,0(R
N
+),

we have G(t) ∈ Ĥ−1
q′ (RN

+) and ∥G(t)∥Ĥ−1
q (RN

+) ≤ ∥G(t)∥Lq(RN
+) and so, by Lemma 4, we

have div K0G = G and

∥K0G(t)∥Lq(RN
+) ≤ C∥G(t)∥Ĥ−1

q (RN
+) ≤ C∥G(t)∥Lq(RN

+),

∥∇K0G(t)∥Lq(RN
+) ≤ C∥G(t)∥Lq(RN

+),

∥∇2K0G(t)∥Lq(RN
+) ≤ C∥∇G(t)∥Lq(RN

+).
(94)

For the solutions U and P of the Stokes problem (5), if we set U = K0G + Ur, Ur and P

obey the system
∂tUr − Div S(Ur,P) = Fr, div Ur = 0 in RN

+ × (0, T),
S(Ur,P)ν = Hr on ∂RN

+ × (0, T),
Ur|t=0 = v0 in RN

+ ,
(95)

where the right members Fr and Hr are defined by

Fr = F − ∂tK0G + Div (µD(K0G)), Hr = H − µD(K0G)ν.
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Note the right member v0 of the initial condition does not change as K0[G]|t=0 = K0[G|t=0] =
0. As (91) is valid for (G, G) = (∂tG, ∂tG), we similarly have

∥∂tK0G(t)∥Lq(RN
+) = ∥K0∂tG(t)∥Lq(RN

+) ≤ C∥∂tG(t)∥Lq(RN
+)

and then, this and (94) imply

∥ < t >b Fr∥Lp(0, T;Lq(RN
+)) ≤ C∥ < t >b (F, ∂tG,∇G)∥Lp(0, T;Lq(RN

+)),

∥∂1/2
t ET [< t >b Hr]∥Lp(R;Lq(RN

+)) + ∥ET [< t >b Hr]∥Lp(R;H1
q (RN

+))

≤ ∥∂1/2
t ET [< t >b (H, G)]∥Lp(R;Lq(RN

+)) + ∥ET [< t >b (H, G)]∥Lp(R;H1
q (RN

+)).

In the half-space, Assumptions 1 on the W2
∞ domain are satisfied and, on Assumption 2,

the unique solvability of the weak Dirichlet problem (6) is well known. Furthermore,
by Proposition 2, the Lq-Lr estimates holds for the decay rate σm(q, r) and σm(q, r) satisfies
the condition (C1) in Theorem 2. Thus, we can apply Theorem 5 to the system (95) and
show that (95) admits unique solutions

Ur ∈ H1
p(0, T; Lq(RN

+)
N) ∩ Lp(0, T; H2

q (RN
+)

N), P ∈ Lp(0, T; Ĥ1
q,0(RN

+) + H1
q (RN

+)),

which possesses the estimate

∥ < t >b2( p̃2,q̃2) ∂tU∥L p̃2 (0, T;Lq̃2 (R
N
+))

≤ CNRN
+
(Fr, 0, 0, Hr, v0) ≤ CNRN

+
(F, G, G, H, v0)

and, similarly, ∥ < t >bm( p̃m ,q̃m) ∇mU∥L p̃m (0, T;Lq̃m (RN
+)) ≤ NRN

+
(F, G, G, H, v0). Combining

this and U = K0G + Ur concludes the solvability of (5) and the estimates (93), which
completes the proof.

4.3. Estimate for the Nonlinear Terms in the Half Space

In this subsection, we prove (85). Let 2 < p < ∞, 1 < q0 < N < q2 < ∞, b > 1/p′.
Define bm( p̃m, q̃m) by (19) for the decay rate σm(q, r) and δ > 0 given by (86) and (22),
respectively. We assume that the transformed problem (3) admits a unique solution u on
(0, T) and [u](0, T) is sufficiently small. It suffices to show

NRN
+
(f(u), g(u), g(u), h(u), v0) ≤ C(I + [u]2(0, T)) (96)

and

∥ < t >b2( p̃2,q̃2) ∂tK0g(u)∥L p̃2 (0, T;Lq̃2 (R
N
+)) ≤ C(I + [u]2(0, T)),

∥ < t >bm( p̃m ,q̃m) ∇mK0g(u)∥L p̃m (0, T;Lq̃m (RN
+)) ≤ C(I + [u]2(0, T))

(97)

for m = 0, 1, 2 and ( p̃m, q̃m) satisfying (20). In fact, (97) and the definition (18) imply
[K0g](0, T) ≤ C(I + [u]2(0, T)) and, by this and (96), we conclude (85).

We first prove the estimate (96). On account of (70) in Remark 6, if N = 3, we cannot
take q03 and q04 with 1/q03 + 1/q04 = 1/q0 satisfying (67). Instead, we define them so that
σ1(q0, q03) > 1 and σ1(q0, q04) > b + 1/p by

σ1(q0, q03) = 1 + δ0, σ1(q0, q04) = b +
1
p
+ δ0 with δ0 =

1
2

(
N

2q0
− (b +

1
p
)

)
(98)
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and then, prove (96) in the similar way as in (26). We first state that, by the same proof, we
have the estimates in Lemma 2 except for the following estimate on the 0-th derivative of u:

∥ < t >b u∥L p̃0 (0, T;Lq̃0 (Ω)) ≤ C[u](0, T) if ( p̃0, q̃0) satisfies (20) and q̃0 ≥ q04

and show that this estimate is valid if < t >b is replaced by < t >b−1/2.

Lemma 5. Let q03 and q04 be the exponents given by (98).

(a) There holds

∥∇mu∥L∞(0, T;Lq̃m (RN
+)) ≤ C[u](0, T)

if m = 0, 1 and (∞, q̃m) satisfy (20).
(b) There holds

∥ < t >b ∂tu∥L p̃2 (0, T;Lq̃2 (R
N
+)) ≤ C[u](0, T),

∥ < t >b ∇mu∥L p̃m (0, T;Lq̃m (RN
+)) ≤ C[u](0, T) (m = 1, 2),

∥ < t >b−1/2 u∥L p̃0 (0, T;Lq̃0 (R
N
+)) ≤ C[u](0, T),

for m = 0, 1, 2 and ( p̃m, q̃m) satisfying (20) and q̃m ≥ q04.
(c) There holds ∥∥∥∥∫ t

0
∇mu(s) ds

∥∥∥∥
L∞(0, T;Lq̃m (RN

+))
≤ C[u](0, T)

if m = 1, 2 and (p, q̃m) satisfy (20) and q̃m ≥ min{q04, q03}.
(d) There holds ∥W(

∫ t
0 ∇u ds)∥L∞(0, T;L∞(RN

+)) ≤ C for any polynomial W.

Proof. We only need to prove the last estimate in (b). We obtain

b0(p, q̃0) = min{σ0(q0, q04)−
1
p
− δ, b}

= min{b +
1
p
+ δ2 −

1
2
− 1

p
− δ, b} ≥ b − 1

2
( p̃0 = 1/p)

b0(∞, q̃0) = min{σ0(q0, q04), b}

= min{b +
1
p
+ δ2 −

1
2

, b} ≥ b − 1
2

( p̃0 = ∞)

by (98). Thus,

∥ < t >b−1/2 u∥L p̃0 (0, T;Lq̃0 (R
N
+)) ≤ ∥ < t >b0( p̃0,q̃0) u∥L p̃0 (0, T;Lq̃0 (R

N
+)) ≤ C[u](0, T)

by the definition (19) of bm( p̃m, q̃m), which implies the desired estimate.
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The desired estimate (96) is obtained as follows. By the estimates (61) for f(u), (72) for
∂tET [< t >n g(u)], (75), (78) and (83) for (g(u), h(u)), we have

NRN
+
(f(u), g(u), g(u), h(u), v0)

≤ C ∑
i=0,2

(∥∥∥∥< t >b
∫ t

0
∇u ⊗ (∂tu,∇2u)

∥∥∥∥
Lp(0, T;Lqi (R

N
+))

+ ∑
m=1,2

∥∥∥∥< t >b
∫ t

0
∇mu ⊗∇u

∥∥∥∥
Lp(0, T;Lqi (R

N
+))

+

∥∥∥∥bt < t >b−2
∫ t

0
∇u ⊗ u

∥∥∥∥
Lp(0, T;Lqi (R

N
+))

+

∥∥∥∥< t >b
∫ t

0
∇2u ⊗ ∂tu

∥∥∥∥
Lp(0, T;Lq0 (R

N
+))

+

∥∥∥∥< t >b
∫ t

0
∇2u ⊗ ∂tu

∥∥∥∥
Lp(0, T;Lq2/2(RN

+))

+ ∑
m=0,1

∥ < t >b ∇u ⊗∇mu∥Lp(0, T;Lqi (R
N
+))

)
.

(99)

The 0-th derivative of u appears only in the terms∥∥∥∥bt < t >b−2
∫ t

0
∇u ⊗ u

∥∥∥∥
Lp(0, T;Lqi (R

N
+))

, ∥ < t >b ∇u ⊗ u∥Lp(0, T;Lqi (R
N
+))

and the second one is estimated by C[u](0, T) from Lemma 5 (a) as in (73). The estimate for
the first term with i = 0 is shown from Lemma 5 as∥∥∥∥bt < t >b−2

∫ t

0
∇u ⊗ u

∥∥∥∥
Lp(0, T;Lq0 (R

N
+))

≤ C
∥∥∥∥∫ t

0
∇u

∥∥∥∥
Lp(0, T;Lq03 (R

N
+))

∥ < t >b−1 u∥Lp(0, T;Lq04 (R
N
+)) ≤ C[u]2(0, T)

and the estimate with i = 2 is obtained by replacing q03 and q04 with q2 and ∞ in this
calculation. The other terms of the right-hand side in (99) are estimated by C[u]2(0, T)
as we have the same estimates for ∂tu, ∇u and ∇2u as in Section 3, see (62), (79), (64),
(81), (82), (80). Then, we have the desired estimate (96).

In the remainder of this paper, we prove that the additional term [K0g(u)](0, T) is
harmless by showing the estimate (97). We first show the first inequality and second
inequality with m = 0 in (97). As (91) with (G, G) = (g(u), g(u)) implies

∥[K0g(u)](t)∥Lq(RN
+) ≤ C∥[g(u)](t)∥Lq(RN

+) a.e.t ∈ (0, T),

by the definition (4) of the nonlinearities, Hölder’s inequality (60) and Lemma 5 (d), we have

∥ < t >b0( p̃0,q̃0) K0g(u)∥L p̃0 (0, T;Lq̃0 (R
N
+))

≤ C∥ < t >b0( p̃0,q̃0) g(u)∥L p̃0 (0, T;Lq̃0 (R
N
+))

≤ C
∥∥∥∥< t >b0( p̃0,q̃0)

∫ t

0
∇u ds ⊗ u

∥∥∥∥
L p̃0 (0, T;Lq̃0 (R

N
+))
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and, by (60) again and by Lemma 5, the right-hand side is estimated as∥∥∥∥< t >b0( p̃0,q̃0)
∫ t

0
∇u ds ⊗ u

∥∥∥∥
L p̃0 (0, T;Lq̃0 (R

N
+))

≤ C
∥∥∥∥∫ t

0
∇u ds

∥∥∥∥
L∞(0, T;L∞(RN

+))
∥ < t >b0( p̃0,q̃0) u∥L p̃0 (0, T;Lq̃0 (R

N
+)) ≤ C[u]2(0, T).

(100)

Similarly, as (91) with (G, G) = (∂tg(u), ∂tg(u)) implies

∥[∂tK0g(u)](t)∥Lq(RN
+) ≤ C∥[K0∂tg(u)](t)∥Lq(RN

+) ≤ C∥[∂tg(u)](t)∥Lq(RN
+) a.e.t ∈ (0, T),

by (71),

∥ < t >b2( p̃2,q̃2) ∂tg(u)∥L p̃2 (0, T;Lq̃2 (R
N
+))

≤ C∥ < t >b2( p̃2,q̃2) ∂tg(u)∥L p̃2 (0, T;Lq̃2 (R
N
+))

≤ C∥ < t >b2( p̃2,q̃2) ∇u ⊗ u∥L p̃2 (0, T;Lq̃2 (R
N
+))

+ C
∥∥∥∥< t >b2( p̃2,q̃2)

∫ t

0
∇u ds ⊗ ∂tu

∥∥∥∥
L p̃2 (0, T;Lq̃2 (R

N
+))

.

We can estimate the second term by C[u]2(0, T) in the same way as in (100). The estimate for
the first term can be obtained by (73) with qi = q̃2 combined with b2( p̃2, q̃2) ≤ b and (20):∥∥∥< t >b2( p̃2,q̃2) ∇u ⊗ u

∥∥∥
L p̃2 (0, T;Lq̃2 (R

N
+))

≤
∥∥∥< t >b ∇u ⊗ u

∥∥∥
Lp(0, T;Lq̃2 (R

N
+))

≤ C[u]2(0, T).

The second inequality with m = 1 of (97) is proven as follows: by (94) with G = g(u),
the definition (4) of the nonlinearities, Hölder’s inequality (60) and Lemma 5 (d),

∥ < t >b1( p̃1,q̃1) ∇K0g(u)∥L p̃1 (0, T;Lq̃1 (R
N
+))

≤ C∥ < t >b1( p̃1,q̃1) g(u)∥L p̃1 (0, T;Lq̃1 (R
N
+))

≤ C
∥∥∥∥< t >b1( p̃1,q̃1)

∫ t

0
∇u ds ⊗∇u

∥∥∥∥
L p̃1 (0, T;Lq̃1 (R

N
+))

and the right-hand side is estimated by C[u]2(0, T) in the same manner as in (100).
By (94) with G = g(u), b2( p̃2, q̃2) ≤ b, (20), and estimates (64) and (62), the case m = 2

can be shown as

∥ < t >b2( p̃2,q̃2) ∇2K0g(u)∥L p̃2 (0, T;Lq̃2 (R
N
+))

≤ C∥ < t >b2( p̃2,q̃2) ∇g(u)∥L p̃2 (0, T;Lq̃2 (R
N
+))

≤ C ∑
i=0,2

∥ < t >b ∇g(u)∥Lp(0, T;Lqi (R
N
+))

≤ C
(

∑
i=0,2

∥∥∥∥< t >b
∫ t

0
∇2u ds ⊗∇u

∥∥∥∥
Lp(0, T;Lqi (R

N
+))

+

∥∥∥∥< t >b
∫ t

0
∇u ds ⊗∇2u

∥∥∥∥
Lp(0, T;Lqi (R

N
+))

)
≤ C[u]2(0, T).

To summarize, we obtain (97), and then we can conclude the global well-posedness of
transformed problem (3) and the decay property of the solution in RN

+ including N = 3.
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5. Conclusions

In study, we have proven the global well-posedness for quasi-linear parabolic and
hyperbolic-parabolic equations with non-homogeneous boundary conditions in unbounded
domains, and provided a general framework to solve such problems. In fact, the free
boundary problem treated in this paper is a typical problem for the quasilinear equations
with a non-homogeneous boundary condition, and we can continue to study in the case of
two-phase problems such as incompressible–incompressible, incompressible–compressible
and compressible–compressible viscous fluid flows.
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