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Abstract. The equations governing the motion of a three-dimensional liquid drop moving freely in an unbounded liquid
reservoir under the influence of a gravitational force are investigated. Provided the (constant) densities in the two liquids
are sufficiently close, existence of a steady-state solution is shown. The proof is based on a suitable linearization of the
equations. A setting of function spaces is introduced in which the corresponding linear operator acts as a homeomorphism.
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1. Introduction

Consider a drop of liquid with density ρ1 submerged into an unbounded reservoir of liquid with density
ρ2. Assume the liquids are immiscible. We investigate the motion of the drop under the influence of a
constant gravitational force and surface tension on the interface. Specifically, we shall show existence
of a steady-state solution to the governing equations of motion, provided the difference |ρ1 − ρ2| of the
densities is sufficiently small.

The dynamics of a falling (or rising) drop in a quiescent fluid has attracted a lot of attention in the field
of fluid mechanics. Such flows have been studied extensively both experimentally and numerically with
truly fascinating outcomes (see [3] for a comprehensive overview and further references), but it remains
an intriguing task to analytically validate the observations. The observed dynamics can be characterized
as a series of bifurcations with respect to the Reynolds number as parameter. Broadly speaking, steady-
state solutions are observed for small Reynolds numbers, with bifurcations into oscillating motions as the
Reynolds number increases. Bifurcations into more complex solutions can be observed as the Reynolds
number increases even further.

In the following we investigate steady-state solutions for small Reynolds number, which corresponds
to a small density difference |ρ1 − ρ2|. One of our aims is to develop a framework of function spaces
that can be used not only to study steady states, but also as a foundation for further investigations into
the dynamics described above. In particular, the framework should facilitate a stability analysis of the
steady states, and an investigation of the Hopf-type bifurcations (into oscillating motions) observed in
experiments. For this purpose, it should satisfy certain properties. First and foremost, it should be possible
to identify function spaces within the framework such that the differential operator of the linearized
equations of motion acts as a homeomorphism. Second, the framework should have a natural extension to a
suitable time-periodic framework (recall that a steady-state solution is trivially also time-periodic). Third,
the framework should adequately facilitate a spectral analysis of the operators obtained by linearizing
the equations of motion around a steady state. To meet these criteria, we propose a framework of Sobolev
spaces. Although a setting of Sobolev spaces seems natural, and the most convenient to work with, it is by
no means trivial to identify one that conforms to the problem of a freely falling (or rising) drop. Indeed, one
of the novelties of this article is the introduction of such a Sobolev-space setting that meets at least the first
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and most important criteria, and possibly also the other two, mentioned above, and in which existence of
steady-state solutions can be shown effortlessly for small data. The investigation of steady-state solutions
is not new, though. It was initiated by Bemelmans [5] and advanced by Solonnikov [14,15]. However,
the analysis carried out by Bemelmans and Solonnikov does not lead to a framework of Sobolev
spaces. Indeed, for reasons that will be explained in detail below, the approaches of both Bemelmans
and Solonnikov cannot be adapted to a Sobolev-space setting with the desired properties.

We shall consider the most commonly used model for two-phase flows with surface tension on the
interface. It is assumed both fluids are Navier–Stokes liquids, which are incompressible, viscous, and
Newtonian. It is further assumed that the fluids are immiscible with surface tension on their interface,
which acts in normal direction proportional to the mean curvature. Moreover, we consider a system in
which the drop is a ball BR0 of radius R0 when no external forces act on the system, that is, in its stress
free configuration. If we choose a coordinate system attached to the falling drop, these assumptions lead
to the following equations of motion for a steady state (see Sect. 2 for details on the derivation):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div T(u, p) + ρ (u · ∇u + λ∂3u) = −ρ g e3 in R
3 \ Γη,

div u = 0 in R
3 \ Γη,

�T(u, p)n� = σ H(η)n on Γη,

�u� = 0 on Γη,

u · n = −λe3 · n on Γη,

∣
∣Ω(1)

η

∣
∣ =

4π

3
R3

0, lim
|x|→∞

u(x) = 0.

(1.1)

Here Γη denotes the interface between the two liquids, which we assume to be a closed manifold parame-
terized by a “height” function η : ∂BR0 → R describing the displacement of the drop’s boundary points in
normal direction. The domain Ω(1)

η ⊂ R
3 bounded by Γη describes the domain occupied by the drop, and

the exterior domain Ω(2)
η := R

3\Ω
(1)

η the region of the liquid reservoir. The drop velocity −λe3, λ ∈ R, is
assumed to be directed along the axis of the (constant) gravitational force ge3. The first two equations
in (1.1) are the Navier–Stokes equations written in a moving frame of reference, where u : R3 \ Γη → R

3

denotes the Eulerian velocity field of the liquids, p : R3 \Γη → R the scalar pressure field, and T(u, p) the
corresponding Cauchy stress tensor. The density function ρ : R3 \Γη → R is constant in both components
of R3 \ Γη. The third equation states that the surface tension in normal direction on the interface Γη is
proportional to the mean curvature H, with σ > 0 a constant. The notation �·� is used to denote the
jump of a quantity across Γη. Immiscibility of the two liquids under a no-slip assumption at the interface
is expressed via the fourth and fifth equation. Observe that the normal velocity on the interface then
coincides with that of the moving frame, which moves with the same velocity −λe3 as the falling drop.
The equations are augmented with a volume condition for the drop and the requirement that the liquid
in the reservoir is at rest at spatial infinity in the sixth and seventh equation, respectively.

A key part of our investigation is directed towards finding an appropriate linearization of (1.1) with
respect to the unknowns u, p, λ and η. The canonical linearization, i.e., around the trivial state (0, 0, 0, 0),
leads to the Navier–Stokes equations (1.1)1−2 being replaced with the Stokes system

{−div T(u, p) = f in R
3 \ ∂BR0 ,

div u = 0 in R
3 \ ∂BR0 .

(1.2)

An analysis based on this linearization would have to be carried out in a setting of function spaces
conforming to the properties of the Stokes problem. The Stokes setting of function spaces, however, is
not suitable for an investigation of the exterior domain Navier–Stokes equations in a moving frame. Since
the falling drop, and thus the frame of reference, moves with a nonzero velocity −λe3, the appropriate
linearization of the Navier–Stokes equations (1.1)1−2 is an Oseen system. At least in a setting of Sobolev
spaces, the steady-state exterior-domain Navier–Stokes equations in a moving frame can only be solved in
a framework of spaces conforming to the Oseen linearization. To resolve this issue, we propose to rewrite
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the system (1.1) as a perturbation around a state (u0, p0, λ0, η0) with λ0 �= 0. A subsequent linearization
of (1.1) then yields the Oseen problem

{−div T(u, p) + λ0∂3u = f in R
3 \ ∂BR,

div u = 0 in R
3 \ ∂BR.

(1.3)

The main challenge, and indeed novelty of this article, is the introduction of a suitable state (u0, p0, λ0, η0)
that renders the problem well posed in a framework of classical Sobolev spaces. To this end, we employ
the auxiliary fields introduced by Happel and Brenner [11]. A similar utilization of these auxiliary
fields to linearize a free boundary Navier–Stokes problem set in an exterior domain was first carried out
by Bemelmans, Galdi and Kyed [6].

The starting point of our investigation were the articles [14,15] by Solonnikov, which contain a
number of truly outstanding ideas on how to analyze (1.1). However, Solonnikov overlooks the necessity
of an Oseen linearization as described above. Instead, he employs a Stokes linearization and consequently
a setting of function spaces in which the nonlinear term λ∂3u cannot be correctly treated on the right-hand
side. Our approach resolves this issue.

We derive the steady-state equations of motion for the falling drop and state the main theorem in the
following Sect. 2. In Sect. 3 we collect the basic notation. The aforementioned framework of Sobolev spaces
is then introduced in Sect. 4. Fundamental Lr estimates are established in Sect. 5, and a reformulation of
(1.1) in a fixed reference configuration in Sect. 6. The linearization around a non-trivial state is carried
out in Sect. 7. In Sect. 8 we show in Theorem 8.1 that the operator corresponding to this linearization is
a homeomorphism in our framework of Sobolev spaces, which finally enables us to establish a proof of
the main theorem, namely the existence of a steady-state solution for |ρ1 − ρ2| sufficiently small.

2. Equations of Motion and Statement of the Main Theorem

We derive the system of equations governing the motion of a freely falling drop in a liquid under the
influence of a constant gravitational force. We shall express these equations in a frame of reference with
origin in the barycenter of the drop. More specifically, we denote by ξ(t) the barycenter of the falling drop
with respect to an inertial frame, whose coordinates we denote by y, and express the equations of motion
in barycentric coordinates x(t, y) := y − ξ(t). In these coordinates, the domain Ω(1)

t ⊂ R
3 occupied by

the drop at time t satisfies
∫

Ω
(1)
t

x dx = 0. (2.1)

We let Ω(2)
t := R

3\Ω
(1)

t denote the domain of the surrounding liquid reservoir, and put Ωt := Ω(1)
t ∪ Ω(2)

t .
The surface Γt := ∂Ω(1)

t describes the interface between the two liquids. Moreover, we let μ1, μ2 and
ρ1, ρ2 denote the constant viscosities and densities of the drop and the liquid reservoir, respectively. The
functions

μ :
⋃

t∈R+

{t} × Ωt → R, μ(t, x) :=

{
μ1, x ∈ Ω(1)

t ,

μ2, x ∈ Ω(2)
t ,

ρ :
⋃

t∈R+

{t} × Ωt → R, ρ(t, x) :=

{
ρ1, x ∈ Ω(1)

t ,

ρ2, x ∈ Ω(2)
t ,

then describe the viscosity and density of the liquid occupying the point x at a given time t. Expressed
in a frame of reference attached to the barycenter ξ, the conservation of momentum and mass of both
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liquids is described by the Navier–Stokes system
{

ρ(∂tv + v · ∇v − ξ̇ · ∇v) = div T(v, p) + ρb

div v = 0
in
⋃

t∈R+

{t} × Ωt, (2.2)

where v denotes the Eulerian velocity field in the liquids, p the pressure,

T(v, p) := 2μS(v) − pI, S(v) :=
1
2
(∇v + ∇v�)

the Cauchy stress tensor, and b ∈ R
3 a constant gravitational acceleration. One can decompose the

velocity field and pressure term into

v(1) :
⋃

t∈R+

{t} × Ω(1)
t → R

3, p(1) :
⋃

t∈R+

{t} × Ω(1)
t → R

describing the liquid flow in the drop, and another part

v(2) :
⋃

t∈R+

{t} × Ω(2)
t → R

3, p(2) :
⋃

t∈R+

{t} × Ω(2)
t → R

describing the flow in the reservoir. We employ the notation

�v� := v(1)
∣
∣
Γ

− v(2)
∣
∣
Γ

to denote the jump in a quantity on the interface between the two liquids. Concerning the physical nature
of the interface, we make the basic assumption that slippage between the two liquids cannot occur, i.e.,
a no-slip boundary condition, and that liquid cannot be absorbed in the interface. Consequently, there is
no jump in the velocity field neither in tangential nor in normal direction:

�v� = 0 on
⋃

t∈R+

{t} × Γt. (2.3)

Since the liquids are immiscible, the normal component of the liquid velocity at the interface coincides with
the velocity of the interface itself. If ΦΓ denotes a Lagrangian description of the interface in barycentric
coordinates, the immiscibility condition therefore takes the form

v · n = ∂tΦΓ · n + ξ̇ · n on
⋃

t∈R+

{t} × Γt. (2.4)

In a classical two-phase flow model, surface tension on the interface, i.e., the difference in normal stresses
of the two liquids, is proportional to the mean curvature in normal direction and in balance in tangential
direction:

n · �T(v, p)n� = σH on
⋃

t∈R+

{t} × Γt, (2.5)

(I−n ⊗ n)�T(v, p)n� = 0 on
⋃

t∈R+

{t} × Γt. (2.6)

Since we consider the motion of a drop in a quiescent liquid, the velocity in the reservoir vanishes at
spatial infinity

lim
|x|→∞

v(t, x) = 0. (2.7)

Due to the incompressibility of the liquid drop, its volume is constant. Since we consider a drop that
takes the shape of the ball BR0 in its stress free configuration, this volume is prescribed by

|Ω(1)
t | =

4π

3
R3

0. (2.8)

In conclusion, the system obtained by combining (2.1)–(2.8) governs the motion of a liquid drop falling
freely in a liquid reservoir under the influence of a constant gravitational force.
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In this article we will establish existence of a steady-state solution, that is, a time-independent solution
to (2.1)–(2.8). Such a solution is of course only steady with respect to the chosen frame of reference; in our
case the frame attached to the barycenter. Other types of steady states can be investigated by analyzing
time-independent solutions in other frames. For example, it is conceivable that falling drops can perform
steady rotating motions, which should be investigated by considering the equations of motion in a rotating
frame of reference.

The unknowns in (2.1)–(2.8) are the functions v, p, ξ̇,ΦΓ. The mean curvature H can be computed
from ΦΓ. The viscosities μ1, μ2 > 0, surface tension σ > 0 and the prescribed volume 4π

3 R3
0 of the drop are

constants, which may be chosen arbitrarily. Also the gravitational force b ∈ R
3 is an arbitrary constant,

but upon a re-orientation of the coordinates we may assume without loss of generality that it is directed
along the negative e3 axis, i.e., b = −ge3 with g > 0. The constant densities ρ1, ρ2 > 0 shall be restricted
to pairs whose difference |ρ1 − ρ2| is sufficiently small. In this sense, we treat ρ1 − ρ2 as the data of the
system. Since the geometry

(
Ω(1)

t ,Ω(2)
t ,Γt

)
of the problem is determined by the unknown description ΦΓ

of the interface, (2.1)–(2.8) is a free boundary problem.
As mentioned above, we will establish existence of a steady-state, that is, time-independent, solution

(v, p, ξ̇,ΦΓ) to (2.1)–(2.8). In this case the velocity ξ̇ is a constant vector. We focus on solutions with ξ̇

directed along the axis of gravity, i.e., ξ̇ = −λe3. The steady-state equations of motion then read
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(v · ∇v + λ∂3v) = div T(v, p) − ge3 in Ω,

div v = 0 in Ω,

�v� = 0 on Γ,

v · n = −λe3 · n on Γ,

n · �T(v, p)n� = σH on Γ,

(I−n ⊗ n)�T(v, p)n� = 0 on Γ,

lim
|x|→∞

v(x) = 0, |Ω(1)| =
4π

3
R3

0,

∫

Ω(1)
x dx = 0,

(2.9)

where the interface Γ is an unknown computed from the parameterization ΦΓ. The unknowns in (2.9) are
v, p, λ,ΦΓ.

At the outset, it is clear that (2.9) can have multiple solutions. This is best illustrated by considering
ρ1 = ρ2, in which case the trivial solution with v = 0, λ = 0 and constant pressures p(1), p(2) is a steady-
state solution if σH equals the constant hydrostatic pressure difference p(1)−p(2) between the drop and the
reservoir. Since a constant mean curvature H is realized whenever Ω(1) is a multiple of disjoint balls, we
obtain for each ΦΓ describing one or more spheres a trivial solution by adjusting the hydrostatic pressure
difference accordingly (depending on the fixed volume |Ω(1)|). In the case (2.9) above, the fixed volume of
|Ω(1)| coincides with the volume of the ball BR0 . With constant pressures satisfying p(1) − p(2) = 2

R0
, the

ball BR0 therefore becomes an admissible steady-state drop configuration when ρ1 = ρ2. We shall single
out this configuration for further investigation in the sense that we investigate non-trivial steady-states
with a configuration close to the ball BR0 for ρ1 �= ρ2 with |ρ1 − ρ2| sufficiently small.

From a physical perspective, a smallness condition is only meaningful when expressed in a non-
dimensional form. In order to obtain a dimensionless formulation of (2.9), we choose R0 as characteristic
length scale, V0 :=

√
gR0 as the characteristic velocity, ρ1 + ρ2 as characteristic density, (ρ1 + ρ2)R0V0

as the characteristic viscosity, and (ρ1 + ρ2)R0V
2
0 as the characteristic surface tension. Investigating the

resulting non-dimensional equations of motion, we will establish existence of a non-trivial steady-state
solution with drop configuration close to the unit ball B1. For this purpose, it is convenient to introduce
(in the non-dimensionalized coordinates) the normalized pressures

p(1)(x) : Ω(1) → R, p(1)(x) := p(1)(x) + ρ1 e3 · x − 2σ

p(2)(x) : Ω(2) → R, p(2)(x) := p(2)(x) + ρ2 e3 · x.
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We then obtain the following system of non-dimensional equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(v · ∇v + λ∂3v) = div T(v, p) in Ω,

div v = 0 in Ω,

�v� = 0 on Γ,

v · n = −λe3 · n on Γ,

n · �T(v, p)n� = σ(H + 2) + (ρ1 − ρ2)e3 · x on Γ,

(I−n ⊗ n)�T(v, p)n� = 0 on Γ,

lim
|x|→∞

v(x) = 0, |Ω(1)| =
4π

3
,

∫

Ω(1)
x dx = 0.

(2.10)

Observe that the mean curvature now appears in the form (H + 2) that vanishes if Γ is the unit sphere,
which means that (v, p, λ) = (0, 0, 0) is a trivial solution when ρ1 − ρ2 = 0.

We shall employ a parameterization of Γ over the unit sphere S
2 ⊂ R

3 and subsequently linearize
(2.10). The linearization of the operator σ(H + 2), however, has a non-trivial kernel. To circumvent an
introduction of corresponding compatibility conditions, we employ an idea from [15] and replace the two
equations

n · �T(v, p)n� = σ(H + 2) + (ρ1 − ρ2)e3 · x,

∫

Ω(1)
x dx = 0 (2.11)

in (2.10) with the equations

n · �T(v, p)n� = σ(H + 2) +
1
4π

n ·
∫

Ω(1)
x dx + (ρ1 − ρ2)e3 · x,

∫

Γ

�T(v, p)n�dS = (ρ1 − ρ2)
4π

3
e3.

(2.12)

The resulting system then reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(v · ∇v + λ∂3v) = div T(v, p) in Ω,

div v = 0 in Ω,

�v� = 0 on Γ,

v · n = −λe3 · n on Γ,

(I−n ⊗ n)�T(v, p)n� = 0 on Γ,

n · �T(v, p)n� = σ(H + 2) +
1
4π

n ·
∫

Ω(1)
x dx + (ρ1 − ρ2)e3 · x on Γ,

∫

Γ

�T(v, p)n�dS = (ρ1 − ρ2)
4π

3
e3,

lim
|x|→∞

v(x) = 0, |Ω(1)| =
4π

3
.

(2.13)
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The systems (2.10) and (2.13) are equivalent. Clearly, (2.10) implies (2.13). To verify the reverse impli-
cation, observe that (2.13)5−7 imply

(ρ1 − ρ2)
4π

3
e3 =

∫

Γ

�T(v, p)n�dS =
∫

Γ

(
n · �T(v, p)n�

)
n dS

=
∫

Γ

σ(H + 2)n dS +
1
4π

∫

Γ

n ⊗ n dS

∫

Ω(1)
x dx + (ρ1 − ρ2)

4π

3
e3

=
∫

Γ

σΔΓx dS + 2σ

∫

Γ

n dS +
1
4π

∫

Γ

n ⊗ n dS

∫

Ω(1)
x dx + (ρ1 − ρ2)

4π

3
e3

= 0 + 0 +
1
4π

∫

Γ

n ⊗ n dS

∫

Ω(1)
x dx + (ρ1 − ρ2)

4π

3
e3.

The matrix
∫

Γ
n ⊗ n dS is symmetric positive definite and thus invertible. Consequently, the equation

above implies
∫

Ω(1) x dx = 0. We conclude that (2.13) implies (2.10).
Since we investigate existence of non-trivial steady-states in a drop configuration close to the ball

B1 (in non-dimensionalized coordinates) under the restriction that the difference in densities of the two
liquids is sufficiently small, it is convenient to introduce

ρ̃ := ρ1 − ρ2

as smallness parameter. Moreover, it is convenient to parameterize the interface Γ via a height function
η : S2 → R that describes the drop’s displacement in normal direction with respect to its unit sphere
S

2 ⊂ R
3 stress-free configuration. The geometry then becomes a function of η:

Ω(1) = Ω(1)
η :=

{
rζ
∣
∣ ζ ∈ S

2, 0 ≤ r < 1 + η(ζ)
}
,

Ω(2) = Ω(2)
η :=

{
rζ
∣
∣ ζ ∈ S

2, 1 + η(ζ) < r
}
,

Γ = Γη :=
{
(1 + η(ζ))ζ

∣
∣ ζ ∈ S

2
}
, Ω = Ωη := Ω(1)

η ∪ Ω(2)
η .

The system of steady-state equations of motion finally takes the form
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(v · ∇v + λ∂3v) = div T(v, p) in Ωη,

div v = 0 in Ωη,

�v� = 0 on Γη,

v · n = −λe3 · n on Γη,

(I−n ⊗ n)�T(v, p)n� = 0 on Γη,

n · �T(v, p)n� = σ(H + 2) +
1

16π
n ·
∫

S2
ζ
(
(1 + η(ζ))4 − 1

)
dS + ρ̃e3 · x on Γη,

∫

Γη

�T(v, p)n�dS = ρ̃
4π

3
e3,

∫

S2

(
(1 + η(ζ))3 − 1

)
dS = 0, lim

|x|→∞
v(x) = 0

(2.14)

with respect to unknowns (v, p, λ, η).
As the main result in the article we prove existence of a solution to the steady-state equations of

motion (2.14) under a smallness condition on the density difference ρ̃.

Theorem 2.1 (Main Theorem). There is an ε > 0 such that for 0 < |ρ̃| ≤ ε there is a solution

(v, p, λ, η) ∈ C∞(Ωη)3 × C∞(Ωη) × R × C∞(S2)

to (2.14). The solution is smooth up to the interface, that is,

v
∣
∣
Ω

(2)
η

, p
∣
∣
Ω

(2)
η

∈ C∞(Ω
(2)

η

)
, v

∣
∣
Ω

(1)
η

, p
∣
∣
Ω

(1)
η

∈ C∞(Ω
(1)

η

)
. (2.15)

Moreover, it possesses the integrability properties

∀q ∈ (1, 2) : v ∈ L
2q

2−q (Ωη), ∇v ∈ L
4q

4−q (Ωη), ∂3v,∇2v,∇p ∈ Lq(Ωη), (2.16)
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and admits the representation

v(x) =
4π

3
ρ̃ Γλ

Oseen(x) e3 + O
(|x|− 3

2+ε) as |x| → ∞ (2.17)

for all ε > 0, where Γλ
Oseen denotes the Oseen fundamental solution.1 The solution is symmetric with

respect to rotations leaving e3 invariant:

∀R ∈ SO(3), Re3 = e3 : R�v(Rx) = v(x), p(Rx) = p(x), η(Rx) = η(x), (2.18)

and the velocity λ of the drop’s barycenter is non-vanishing.

By far the most challenging part of proving Theorem 2.1 is to establish the existence of a solution.
As mentioned in the introduction, via a perturbation around a non-trivial state we are able to solve the
system in a setting of Sobolev spaces adopted from the 3D exterior-domain Oseen linearization of the
Navier–Stokes equations. Consequently, we are led to a solution with the integrability properties (2.16).
The symmetry (2.18) follows from the observation that (2.14) is invariant with respect to rotations leaving
e3 invariant. Higher-order regularity is obtained via a standard approach utilizing the ellipticity of (2.14),
while the asymptotic profile (2.17) is a direct consequence of (2.16) and a celebrated result of Babenko
[4] and Galdi [7]. Observe that the coefficient vector in the asymptotic expansion, which at the outset
is given by

∫

Γη

T(v, p)
∣
∣
Ω

(2)
η

n dS,

coincides with the net force 4π
3 ρ̃e3 = ρ̃|Ω(1)

η |e3 acting on the liquid drop, that is, the difference of the
gravitational force and the buoyancy force.

The solution obtained in Theorem 2.1 is locally unique. Specifically, a radius r can be quantified
in terms of the density difference ρ̃ such that the solution is unique in a ball Br in a suitable Banach
space; see Theorem 8.4. The local uniqueness follows directly from Banach’s Fixed Point Theorem. Global
uniqueness for small data is expected, but the energy type estimates required to show this goes beyond
the scope of this article.

3. Notation

We use capital letters to denote global constants in the proofs and theorems, and small letters for local
constants appearing in the proofs.

By BR := BR(0) we denote a ball in R
n centered at 0 with radius R. Moreover, we let

BR := R
3 \ BR, BR,r := BR \ Br, ΩR := Ω ∩ BR, ΩR := Ω ∩ BR

for a domain Ω ⊂ R
n. Additionally, we use S

2 := ∂B1 to denote the unit sphere. By

Ṙ
3 :=

{
(x1, x2, x3) ∈ R

3
∣
∣ x3 �= 0

}

we denote the twofold half space, which is the union of the two domains

Ṙ
3
+ :=

{
(x1, x2, x3) ∈ R

3
∣
∣ x3 > 0

}
, Ṙ

3
− :=

{
(x1, x2, x3) ∈ R

3
∣
∣ x3 < 0

}
.

We use the notation (x′, x3) for a vector x = (x1, x2, x3) ∈ R
3.

Lebesgue spaces are denoted by Lq(Ω) with associated norms ‖·‖q,Ω. By Wk,q(Ω) we denote the
corresponding Sobolev space of order k ∈ N0 with norm ‖·‖k,q,Ω, and we introduce the subspaces

Wk,q
0 (Ω) := C∞

0 (Ω)
‖·‖k,q,Ω

.

1An explicit formula for Γ λ
Oseen can be found in [8, Sect. VII.3] for example.
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Moreover, W−k,q(Ω) and W−k,q
0 (Ω) denote the dual spaces of Wk,q′

(Ω) and Wk,q′
0 (Ω), respectively, where

q′ := q
q−1 . We further introduce homogeneous Sobolev spaces Dk,q(Ω) defined by

Dk,q(Ω) := {u ∈ L1
loc(Ω) | ∇ku ∈ Lq(Ω)},

and the corresponding seminorm

|u|k,q,Ω := ‖∇ku‖q,Ω :=
∑

|α|=k

‖∂αu‖q,Ω.

In general, Dk,p(Ω) is not a Banach space. However, | · |k,q,Ω defines a norm on C∞
0 (Ω), and the completion

Dk,q
0 (Ω) := C∞

0 (Ω)
| · |k,q,Ω

is therefore a Banach space. By Sobolev’s Embedding Theorem, Dk,q
0 (Ω) can be identified with a subspace

of L1
loc(Ω) if kq < 3. We denote its dual space by D−k,q′

0 (Ω). For a sufficiently smooth manifold Γ ⊂ R
3

and s > 0, s �∈ N, we let Ws,q(Γ) denote the Sobolev–Slobodeckij space of order s with norm ‖·‖s,q,Γ.

4. Preliminaries

In this section we introduce a bespoke framework of Sobolev spaces for the investigation of (2.14). For
this purpose we let Ω ⊂ R

3 denote an open set of the same type as in Sect. 2, that is, we assume

Ω(1) ⊂ R
3 is a bounded domain such that Ω(2) := R

3 \ Ω(1) is a domain,

Γ := ∂Ω(1), Ω := Ω(1) ∪ Ω(2) = R
3 \ Γ.

(4.1)

For a function u : Ω → R we use the abbreviations

u(1) := u
∣
∣
Ω(1) , u(2) := u

∣
∣
Ω(2) .

The function n = nΓ denotes the unit outer normal at Γ. If u is sufficiently regular, we set

�u� := u(1)
∣
∣
Γ

− u(2)
∣
∣
Γ
,

where the restrictions to Γ have to be understood in the trace sense. Furthermore, δ(Ω) denotes the
diameter of Ω(1).

When considering a function u : Ω → R, we often have to distinguish between its properties on the
disjoint sub-domains Ω(1) and Ω(2). To this end, function spaces of the type

X :=
{
u : Ω → R

∣
∣ u(1) ∈ X(1), u(2) ∈ X(2)

}

are introduced. Equipped with the norm

‖u‖X := ‖u(1)‖X(1) + ‖u(2)‖X(2) ,

such a space X is isomorphic to the direct sum of the spaces X(1) and X(2). Clearly, X is a Banach space
if X(1) and X(2) are so.

Let q ∈ (1, 3
2

)
and r ∈ (3,∞). For λ0 ∈ R, λ0 �= 0 the space

Xq,r,λ0
Oseen := Xq,r,λ0

Oseen(Ω(2)) :=
{
u ∈ L1

loc(Ω
(2))3

∣
∣ u ∈ L

2q
2−q ∩ D1, 4q

4−q ∩ D2,q ∩ D2,r,

∂3u ∈ Lq ∩ Lr
}

equipped with the norm

‖u‖λ0,Oseen := |λ0|
1
2 ‖u‖ 2q

2−q
+ |λ0|

1
4 ‖∇u‖ 4q

4−q
+ ‖∇2u‖q

+ ‖∇2u‖r + |λ0| ‖∂3u‖q + |λ0| ‖∂3u‖r



   34 Page 10 of 34 T. Eiter et al. JMFM

is the canonical solution space for solutions to the exterior domain Oseen problem
{−div T(u, p) + λ0∂3u = f in Ω(2),

div u = g in Ω(2)
(4.2)

for forcing terms f in Lq
(
Ω(2)
) ∩ Lr

(
Ω(2)
)
; see for example [8, Chapter VII.7]. Let

Xq,r
1,λ0

:=
{
u ∈ L1

loc(R
3)3
∣
∣ u(1) ∈ W2,r, u(2) ∈ Xq,r,λ0

Oseen, �u� = 0
}
,

Xq,r
2 :=

{
p ∈ L1

loc(R
3)
∣
∣ p(1) ∈ W1,r, p(2) ∈ D1,q ∩ D1,r ∩ L

3q
3−q
}
,

Xq,r
3 := R,

Xq,r
4 := W3−1/r,r(Γ),

and

Yq,r
1 := Lq(R3)3 ∩ Lr(R3)3,

Yq,r
2 :=

{
g ∈ L1

loc(R
3)
∣
∣ g(1) ∈ W1,r, g(2) ∈ D1,q ∩ D1,r ∩ L

3q
3−q
}
,

Yq,r
3 := W2−1/r,r(Γ),

Yq,r
2,3 :=

{

(g, h) ∈ Yq,r
2 × Yq,r

3

∣
∣
∣
∣

∫

Ω(1)
g dx =

∫

Γ

h dS

}

,

Yq,r
4 :=

{
h ∈ W1−1/r,r(Γ)3

∣
∣ h · n = 0

}
,

Yq,r
5 := Yq,r

6 := R,

Yq,r
7 := W1−1/r,r(Γ).

The bespoke framework of Sobolev spaces we shall employ in our investigation of (2.14) is then given by

Xq,r
λ0

:= Xq,r
λ0

(Ω) := Xq,r
1,λ0

× Xq,r
2 × Xq,r

3 × Xq,r
4 ,

Yq,r := Yq,r(Ω) := Yq,r
1 × Yq,r

2,3 × Yq,r
4 × Yq,r

5 × Yq,r
6 × Yq,r

7 .

In Theorem 8.1 we show that the operator corresponding to the appropriate linearization of (2.14) maps
Xq,r

λ0
homeomorphically onto Yq,r.

The following embedding is valid:

Proposition 4.1. Let u ∈ Xq,r
1,λ0

with q ∈ (1, 3
2

)
, r ∈ (3,∞), and consider s ∈ [ 2q

2−q ,∞] and t ∈ [ 4q
4−q ,∞].

Then u ∈ Ls(Ω) ∩ D1,t(Ω). If s ≥ 3q
3−2q and t ≥ 3q

3−q , then

‖u‖s + ‖∇u‖t ≤ C‖u‖Xq,r
1,λ0

. (4.3)

If 2q
2−q ≤ s < 3q

3−2q , 4q
4−q ≤ t < 3q

3−q , θs := 2 + 3
s − 3

q and θt := 1 + 3
t − 3

q , then

|λ0|θs‖u‖s + |λ0|θt‖∇u‖t ≤ C‖u‖Xq,r
1,λ0

. (4.4)

Here C = C(q, r, s, t,Ω) > 0.

Proof. The above estimates for the part u(1) of u defined on a bounded domain follows directly from
Sobolev embedding theorems. Concerning the part u(2) defined on an exterior domain, it follows from [8,
Lemma II.6.1] and the Sobolev inequality that

‖∇u(2)‖∞ ≤ c
(|∇u(2)|1,r + ‖∇u(2)‖ 3q

3−q

) ≤ c
(|u(2)|2,r + |u(2)|2,q

) ≤ c‖u‖Xq,r
1,λ0

.

Interpolation with the Sobolev-type inequality

‖∇u‖ 3q
3−q

≤ c‖∇2u‖q ≤ c‖u‖Xq,r
1,λ0

(4.5)

yields estimate (4.3) of ∇u. Estimate (4.4) of ∇u follows by interpolating (4.5) with the trivial estimate
|λ0|

1
4 ‖∇u(2)‖ 4q

4−q
≤ ‖u‖Xq,r

1,λ0
. The estimates (4.3)–(4.4) of u can be verified in a similar manner. �
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5. Auxiliary Linear Problem

Let Ω be a domain of the same type as in Sect. 4, i.e., satisfying (4.1). We further assume that the
boundary Γ is at least Lipschitz. The linear system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−div T(u, p) + λ0∂3u = f in Ω,

div u = g in Ω,

�u� = 0 on Γ,

u · n = h1 on Γ,

(I−n ⊗ n)�T(u, p)n� = h2 on Γ

(5.1)

is an integral part of the linearization of (2.14). It is a two-phase strongly coupled Oseen (λ0 �= 0) or
Stokes (λ0 = 0) system. Since the coupling is strong, the question of existence and uniqueness of solutions
as well as a priori estimates hereof cannot be investigated by means of a simple decomposition into two
classical Oseen/Stokes problems (one for each phase). In the following, we carry out an analysis of (5.1)
in the framework of the Sobolev spaces introduced in the previous section. Existence and uniqueness
of solutions is first shown in a setting of weak solutions. Strong a priori estimates of Agmon–Douglis–
Nirenberg type are subsequently established, first in the half space, and then in the general case via a
localization technique. The main result of the section is contained in Theorems 5.9 and 5.10.

5.1. Weak Solutions

We introduce a weak formulation of (5.1) in the setting of the function spaces:

C :=
{
ϕ ∈ C∞

0 (R3)3
∣
∣ ϕ · n = 0 on Γ

}
,

C :=
{
ϕ ∈ C∞

0 (R3)3
∣
∣ ϕ · n = 0 on Γ, div ϕ = 0

}
,

H := C
|·|1,2 =

{
ϕ ∈ D1,2

0 (R3)3
∣
∣ ϕ · n = 0 on Γ

}
,

H := C
|·|1,2 =

{
ϕ ∈ D1,2

0 (R3)3
∣
∣ ϕ · n = 0 on Γ, div ϕ = 0

}
,

L2
0(R

3) :=
{

p ∈ L2(R3)
∣
∣
∣
∣

∫

Ω(1)
p dx = 0

}

.

In the following, we establish existence and uniqueness as well as higher-order regularity of weak
solutions to (5.1) in this framework. We start with the definition of a weak solution:

Definition 5.1. Let f ∈ H ′, g ∈ L2(R3), h1 ∈ W
1
2 ,2(Γ) and h2 ∈ W− 1

2 ,2(Γ)3. A vector field u ∈ D1,2
0 (R3)3

is called a weak solution to (5.1) if

∀ϕ ∈ C :
∫

R3
2μS(u) : S(ϕ) dx + λ0

∫

R3
∂3u · ϕ dx = 〈f, ϕ〉 + 〈h2, ϕ〉 (5.2)

as well as div u = g in Ω and u · n = h1 on Γ.

Existence of a weak solution u can be shown by standard techniques; we sketch a proof below.

Theorem 5.2. Assume that the boundary Γ is Lipschitz. For every f ∈ H ′, g ∈ L2(R3), h1 ∈ W
1
2 ,2(Γ)

and h2 ∈ W− 1
2 ,2(Γ)3 satisfying

∫

Ω(1)
g dx =

∫

Γ

h1 dS (5.3)

there is a weak solution u ∈ D1,2
0 (R3)3 to (5.1) satisfying

|u|1,2 ≤ C
(‖f‖H ′ + ‖g‖2 + ‖h1‖ 1

2 ,2 + ‖h2‖− 1
2 ,2

)
, (5.4)

where C = C(Γ, λ0).
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Proof. We sketch a proof of existence following [8, Proof of Theorem VII.2.1] based on a Galerkin ap-
proximation. To this end, a Schauder basis {ϕk}∞

k=1 ⊂ C for the function space {ϕ ∈ W1,2(R3) | ϕ · n =
0 on Γ, div ϕ = 0} satisfying

∫

Ω
2μS(ϕk) : S(ϕl) dx = δk,l is constructed. This function space is clearly

separable, whence such a basis can be constructed via a Gram–Schmidt procedure. We consider first
the case (g, h1) = (0, 0). Existence of an approximate solution of order m ∈ N, that is, a vector field
um :=

∑m
l=1 ξlϕl satisfying the equation in (5.2) for all test functions in span{ϕ1, . . . , ϕm}, then follows

directly from the fact that the matrix A ∈ R
m×m, Akl :=

∫

R3 ∂3ϕl · ϕk, is skew symmetric and I + λ0A

therefore invertible. Specifically, the coefficient vector ξ := (I + λ0A)−1F with Fk := 〈f, ϕk〉 + 〈h2, ϕk〉
induces an approximate solution um. Employing um itself as a test function in the weak formulation, one
obtains a uniform bound on ‖S(um)‖2, which, since um is solenoidal, also implies a uniform bound as in
(5.4) on |um|1,2. A weak solution to (5.1) is now obtained as the limit u := limm→∞ um in H . The gen-
eral case of non-vanishing g and h1 follows by a lifting argument. Employing a right inverse of the trace
operator W1,2(R3) → W

1
2 ,2(Γ), we find u1 ∈ W1,2(R3) with u1 = h1 on Γ satisfying ‖u1‖1,2 ≤ c‖h1‖ 1

2 ,2.
The compatibility condition (5.3) ensures that

∫

Ω(1) g − div u1 dx = 0 so that we can find u2 ∈ D1,2
0 (R3)

with div u2 = g − div u1 and satisfying u2 = 0 on Γ as well as (5.4); see for example [8, Theorem III.3.1
and III.3.6]. The ansatz u = v + u1 + u2 now reduces the problem to the case above with respect to the
unknown v. We thus conclude existence of a weak solution. �

A pressure p can be associated to a weak solution u such that (u, p) becomes a solution to (5.1) in the
sense of distributions:

Theorem 5.3. Assume f ∈ H ′. To every weak solution u ∈ D1,2
0 (R3) to (5.1) there is a unique p ∈ L2

0(R
3)

such that

∀ϕ ∈ C :
∫

R3
2μS(u) : S(ϕ) dx + λ0

∫

R3
∂3u · ϕ dx =

∫

R3
p div ϕ dx + 〈f, ϕ〉 + 〈h2, ϕ〉 (5.5)

and

‖p‖2 ≤ C
(‖f‖H′ + ‖g‖2 + ‖h1‖ 1

2 ,2 + ‖h2‖− 1
2 ,2

)
(5.6)

with C = C(Γ) > 0.

Proof. The proof is modification of [8, Lemma VII.1.1]. For arbitrary M ∈ N with M > δ(Ω) we let
HM := {ϕ ∈ H | suppϕ ⊂ BM} and consider the functional

FM : HM → R, FM (ϕ) :=
∫

BM

2μS(u) : S(ϕ) dx + λ0

∫

BM

∂3u · ϕ dx − 〈f, ϕ〉 − 〈h2, ϕ〉,

which is continuous on HM by Sobolev embedding. We further introduce the space

L2
0,M :=

{

p ∈ L2(BM )
∣
∣
∣
∣

∫

Ω(2)∩BM

p dx =
∫

Ω(1)
p dx = 0

}

and the operator div : HM → L2
0,M . The operator is surjective, which is seen by solving for arbitrary

p ∈ L2
0,M the two equations

{
div u(1) = p in Ω(1),

u(1) = 0 on Γ,

{
div u(2) = p in Ω(2) ∩ BM ,

u(2) = 0 on Γ ∪ ∂BM ,

according to [8, Theorem III.3.1]. It follows that the operator and hence also its adjoint div∗ are both
closed. Since u is a weak solution, FM vanishes on the kernel of div and consequently belongs to the image
of div∗. We thus obtain a function pM ∈ L2

0,M such that 〈FM , ϕ〉 :=
∫

BR
pM div ϕ dx. After possibly adding

a constant to p
(2)
M+1, we may assume pM+1 = pM in BM . The sequence {pM}∞

M=1 then induces a pressure
p ∈ L2

loc(R
3) satisfying (5.5) and

∫

Ω(1) pdx = 0. It remains to establish L2(R3) integrability of p. If λ0 = 0,
the functional FM remains continuous if HM is replaced with H. In this case the argument above directly
yields a pressure p ∈ L2

0(R)3 satisfying (5.5). Subsequently choosing a function ϕ ∈ H with div ϕ = p in
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R
3 and |ϕ|1,2 ≤ c‖p‖2, which can be done via [8, Theorem III.3.1 and Theorem III.3.6], one obtains (5.6)

by inserting ϕ into (5.5). If λ0 �= 0, it suffices to observe that (u, p) is a weak solution to an Oseen problem
in the exterior domain Ω(2), whence [8, Theorem VII.7.2] yields p ∈ L2

0(R)3 satisfying (5.5)–(5.6). �

Provided u and p are sufficiently regular, integration by parts in (5.5) reveals that (u, p) is a clas-
sical solution to (5.1). Higher-order regularity of (u, p) can be obtained via a classical approach under
appropriate regularity assumptions on the data:

Theorem 5.4. Let k ∈ N0 and assume that Γ is a Ck+3-smooth closed surface. If

f ∈ Wk,2(Ω)3, g ∈ Wk+1,2(Ω), h1 ∈ Wk+3/2,2(Γ), h2 ∈ Wk+1/2,2(Γ)3,

then a weak solution u ∈ D1,2
0 (R3)3 to (5.1) with associated pressure p ∈ L2

loc(R
3) satisfying (5.5) also

satisfies

u ∈
k⋂

�=0

D�+2,2(Ω), p ∈
k⋂

�=0

D�+1,2(Ω). (5.7)

Proof. The proof is a standard application of a well-known technique based on difference quotients. In
fact, with only minimal modification it is similar to a proof of higher-order regularity for solutions to
the Stokes system with prescribed normal velocity and tangential stress on the boundary; see [16, Proof
of Theorem 2]. For the sake of completeness, we sketch the proof. We include only the case h1 = 0 and
k = 0. The general case h1 �= 0 and k > 0 follows by a simple lifting technique and iteration procedure,
respectively. Since higher-order regularity in Ω away from the boundary Γ is well known for Stokes systems
(see for example [8, Sect. IV.2]), we focus on regularity up to the boundary Γ. To this end, consider an
arbitrary x̃ ∈ Γ and choose a cube Qr(x̃) ⊂ R

3, centered at x̃ with side length r, such that Γ∩Qr(x̃) can
be parameterized by a C3 function ω. Without loss of generality, we may assume that x̃ = 0 and

Γ ∩ Qr(x̃) = Γ ∩ Qr(0) =
{(

x1, x2, ω(x1, x2)
) ∣
∣ (x1, x2) ∈ Q′

r(0)
}
,

where Q′
r(0) ⊂ R

2 is the two-dimensional cube centered around 0, and that ∇ω(0) = 0 as well as
‖∇ω‖∞ → 0 as r → 0. Let χ ∈ C∞

0 (R3) be a cut-off function with χ = 1 on Q r
2
(0) and put

Φ(x) :=
(
x1, x2, x3 − ω(x1, x2)

)
,

U : Qr(0) → R
3, U :=

[∇Φ(χu)
] ◦ Φ−1, P : Qr(0) → R, P := [χp] ◦ Φ−1.

We introduce test functions

W1,2
0,Γ0

(
Qr(0)

)
:= {ψ ∈ W1,2

(
Qr(0)

)3 | ψ = 0 on ∂Qr(0), ψ · n = 0 on Γ0}
with

Γ0 := {x ∈ Qr(0) | x3 = 0}.

The transformed fields (U,P) satisfy the weak formulation

∀ψ ∈ W1,2
0,Γ0

(
Qr(0)

)
:
∫

R3
2μS(U) : S(ψ) dx −

∫

R3
P div ψ dx = 〈F0, ψ〉 + 〈F1,∇ψ〉, (5.8)

where F0 contains up to first-order terms of u and zeroth-order terms of p, and F1 contains first-order terms
of U multiplied with components of ∇ω. The magnitude of the latter terms can be made small by choosing
r small. Difference quotients are denoted by Dh

l U(x) := 1
h

(
U(x + hel) − U(x)

)
. Importantly, difference

quotients D−h
l Dh

l U in tangential direction l = 1, 2 are admissible as test functions in W1,2
0,Γ0

(
Qr(0)

)
and

can therefore be inserted into (5.8), which yields an estimate of ‖S(Dh
l U)‖2 in terms of lower-order norms

of u and p as well as ‖Dh
l P‖2. A similar bound on ‖∇Dh

l U‖2 follows from Korn’s inequality. Choosing
in (5.8) a test function D−h

l ψ ∈ W1,2
0,Γ0

(
Qr(0)

)
with div ψ = Dh

l P, a bound on ‖Dh
l P‖2 in terms of
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lower-order norms of u and p is obtained. Such a test function is constructed by setting ψ := ψ+ in
Q+ := {x ∈ Qr(0) | x3 > 0} and ψ := ψ− in Q− := {x ∈ Qr(0) | x3 < 0} where

{
div ψ+ = Dh

l P in Q+,

ψ+ = 0 on ∂Q+,

{
div ψ− = Dh

l P in Q−,

ψ− = 0 on ∂Q−.

Existence of solutions to the two equations above and the estimates ‖ψ±‖1,2 ≤ c‖Dh
l P‖2 are secured

by [8, Corollary III.5.1]. It follows that ‖∇Dh
l U‖2 + ‖Dh

l P‖2 is uniformly bounded in h, which implies
∂l∇U, ∂lP ∈ L2(Qr(0)) for l = 1, 2. Since div U = G with G containing only zeroth-order terms of
u, ∂2

3U ∈ L2(Qr(0)) follows as a combination of ∂3 div U = ∂3G and the regularity of U ’s tangential
derivatives. Finally, the distributional derivative ∂3P can now be isolated in (5.8) to deduce in each half
of the cube P ∈ W1,2

(
Q+
)

and P ∈ W1,2
(
Q−). It follows that (u, p) ∈ W2,2

(O(1)(x̃)
) × W1,2

(O(1)(x̃)
)

as well as (u, p) ∈ W2,2
(O(2)(x̃)

) × W1,2
(O(2)(x̃)

)
, where O(x̃) is a neighborhood of x̃ and O(1)(x̃) :=

O(x̃) ∩ Ω(1), O(2)(x̃) := O(x̃) ∩ Ω(2). Higher-order regularity of (u, p) up to the boundary Γ is thereby
established. �

Finally, uniqueness of a weak solution to (5.1) can be established. In fact, uniqueness can be obtained
in a much larger class of distributional solutions with even less summability at spatial infinity than
u ∈ L6(R3) satisfied by a weak solution via Sobolev embedding. The theorem below is not optimal in this
respect, but suffices for the purposes of this article.

Theorem 5.5. Let Γ be a C2-smooth closed surface, and let (u, p) ∈ W1,2
loc(R

3)3 × L2
loc(R

3) be a solution
to (5.1) in the sense of (5.5) with u ∈ Lq(R3)3 and p ∈ Lr(R3) for some q, r ∈ (1,∞). If (f, g, h1, h2) =
(0, 0, 0, 0), then u = 0.

Proof. The integrability assumption u ∈ Lq(R3) combined with the fact that (u, p) solves a classical
Stokes (λ0 = 0) or Oseen (λ0 �= 0) problem with homogeneous right-hand side in the exterior domain
Ω(2) implies that u exhibits the same pointwise rate of decay as the three-dimensional Stokes fundamental
solution (λ0 = 0) or the three-dimensional Oseen fundamental solution (λ0 �= 0); see [8, Theorem V.3.2
and Theorem VII.6.2] for example. This means that u(x) = O(|x|−1) as |x| → ∞. Moreover, we obtain
p ∈ O(|x|−2). Let χ ∈ C∞

0 (R) be a cut-off function with χ = 1 for |x| < 1 and χ = 0 for |x| > 2, and put
χR := χ

( |x|
R

)
. Then χRu is admissible as a test function in (5.5), which implies
∫

R3
2μS(u) :

(
χRS(u) + ∇χR ⊗ u + u ⊗ ∇χR

)
dx + λ0

∫

R3
(∂3u · u)χR dx

=
∫

R3
p(∇χR · u)dx.

Utilizing that u = O
(|x|−1), we use Hölder’s inequality to estimate

∣
∣
∣

∫

R3
S(u) : ∇χR ⊗ u dx

∣
∣
∣ ≤ c‖S(u)‖2

(∫

B2R,R

|u|2
R2

dx

) 1
2

≤ cR−1/2 R→∞−→ 0.

Furthermore, in the Oseen case (λ0 �= 0) we even have the better averaged decay estimate
∫

∂Br

|u|2 dS ≤ cr−1;

see [8, Exercise VII.6.1]; which leads to
∣
∣
∣

∫

R3
(∂3u · u)χR dx

∣
∣
∣ =
∣
∣
∣
1
2

∫

R3
|u|2∂3χR dx

∣
∣
∣ ≤ c

∫ 2R

R

∫

∂Br

|u|2
R

dSdr ≤ cR−1 R→∞−→ 0.

Since also
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∣
∣
∣

∫

R3
p(∇χR · u)dx

∣
∣
∣ ≤ c

∫

B2R,R

R−4 dx ≤ cR−1 R→∞−→ 0,

we deduce ‖S(u)‖2 = 0 and thus u = 0. �

5.2. Twofold Half Space

The main challenge towards Lr estimates of solutions to (5.1), i.e., a priori estimates of Agmon–Douglis–
Nirenberg type, is to obtain such estimates in the half-space case under disregard of the lower-order terms
in the equations. The general case then follows via a localization argument. We therefore first consider
the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

div T(u, p) = f in Ṙ
3,

div u = g in Ṙ
3,

�u� = h0 on ∂Ṙ3,

u
∣
∣
R

3
+

· n = h1 on ∂Ṙ3,

(I−n ⊗ n)�T(u, p)n� = h2 on ∂Ṙ3,

(5.9)

where n = −e3. We shall implicitly identify ∂Ṙ3 with R
2. In Theorem 5.8 we establish the a priori Lr

estimate (5.21) for solutions to (5.9).
In the celebrated work [2] of Agmon, Douglis and Nirenberg, a priori Lr estimates for strong

solutions to elliptic systems with boundary values of a certain type were established. Since (5.9) can be
decomposed into two Stokes systems, with a slip and a Dirichlet boundary condition, respectively, that
both fall into the category covered by [2], it might seem at the outset as if Lr estimates such as (5.21)
can be derived from [2]. However, since the two Stokes systems would be strongly coupled, there is no
direct way to derive Lr estimates for the full system (5.9) from [2]. Instead, one can turn to existing Lr

estimates for the resolvent problem corresponding to (5.9). For large resolvent parameters such estimates
were established in [13, Theorem 3.1.4]. In the following, we only utilize Lr estimates for (5.9) in a
localization argument in the proof of Theorem 5.9. In this application, the estimates in [13] would be
sufficient, since in the context of a localization argument the resolvent term is irrelevant. Nevertheless, we
choose to establish in Theorem 5.8 below the classical Agmon–Douglis–Nirenberg Lr estimate for (5.9),
which is also interesting in its own right. We present a new type of proof based on Fourier multipliers
and real interpolation that seems particularly well suited for coupled systems such as (5.9).

The proof of Theorem 5.8 is divided into Lemma 5.6 and Lemma 5.7. For technical reasons, it is conve-
nient to decompose both the data and the solution to (5.9) into one part with lower frequency support and
another part with higher frequency support in tangential directions e1, e2. We shall repeatedly employ the
Fourier transform FR2 with respect to these two directions. To this end, observe that FR2

[
u(·, x3)

]
(ξ′)

is well-defined in the sense of distributions S ′(R3) when u ∈ Lr(R3) for some r ∈ (1,∞), which will be
the case whenever such an expression appears below.

Lemma 5.6. Let r ∈ (1,∞) and b ∈ W2−1/r,r(R2)3 with suppFR2 [b] ⊂ R
2\B1(0). Then there is a solution

(u, p) ∈ W2,r(Ṙ3)3 × W1,r(Ṙ3) to
⎧
⎪⎪⎨

⎪⎪⎩

div T(u, p) = 0 in Ṙ
3,

div u = 0 in Ṙ
3,

u = b on ∂Ṙ3,

(5.10)

which satisfies

‖u‖2,r + ‖p‖1,r ≤ C ‖b‖2−1/r,r, (5.11)
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where C = C(r). Moreover, FR2

[
u(·, x3)

]
(ξ′) and FR2

[
p(·, x3)

]
(ξ′) are supported away from (ξ′, x3) ∈

B1/2(0) × R.

Proof. A solution to (5.10) can be constructed explicitly. To this end, consider first a sufficiently smooth
right-hand side b ∈ S (R2)3 with suppFR2 [b] ⊂ R

2 \ B1/2(0). We employ the notation b̂ := FR2 [b] and
v := (u1, u2), w := u3 as well as bv := (b1, b2) and bw := b3. An application of the Fourier transform FR2

with respect to x′ ∈ R
2 in (5.10) yields

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−μ|ξ′|2v̂ + μ∂2
3 v̂ − iξ′p̂ = 0 in Ṙ

3,

−μ|ξ′|2ŵ + μ∂2
3ŵ − ∂3p̂ = 0 in Ṙ

3,

iξ′ · v̂ + ∂3ŵ = 0 in Ṙ
3,

(v̂, ŵ) = (̂bv, b̂w) on ∂Ṙ3.

(5.12)

Therefore p satisfies |ξ′|2 p̂ − ∂2
3 p̂ = 0 and thus

p̂(ξ′, x3) =

{
A1(ξ′)e−|ξ′|x3 if x3 > 0,

A2(ξ′)e|ξ′|x3 if x3 < 0.

We insert p into (5.12)1 and (5.12)2 and solve the resulting differential equations. Taking into account
the boundary conditions (5.12)4, we obtain

û =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
A1(ξ′)x3

2μ|ξ′|
(−iξ′

|ξ′|
)

+

(
b̂v

b̂w

)]

e−|ξ′|x3 if x3 > 0,

[
A2(ξ′)x3

2μ|ξ′|
(

iξ′

|ξ′|
)

+

(
b̂v

b̂w

)]

e|ξ′|x3 if x3 < 0.

Inserting the above formula for û into (5.12)3, we find that

A1(ξ′) = A2(ξ′) = 2μ
(
sgn(x3)|ξ′ |̂bw − iξ′ · b̂v

)
.

Consequently, a solution to (5.10) is given by

u(x′, x3) := F−1
R2

[
Mb(ξ′, x3) e−|ξ′||x3|],

p(x′, x3) := F−1
R2

[
mb(ξ′, x3) e−|ξ′||x3|],

(5.13)

where

Mb(ξ′, x3) :=

(
sgn(x3)|ξ′ |̂bw − iξ′ · b̂v

)|x3|
|ξ′|

( −iξ′

sgn(x3)|ξ′|
)

+

(
b̂v

b̂w

)

,

mb(ξ′, x3) := 2μ
(
sgn(x3)|ξ′ |̂bw − iξ′ · b̂v

)
.

Although Mb has a singularity, (u, p) as defined above is a well-defined solution, smooth on Ṙ
3 even, due

to the assumption that b̂(ξ′) has support away from 0. In order to provide an estimate for the solution,
we let κ1/4 ∈ C∞

0 (R2) with κ1/4 = 0 on B1/4(0) and κ1/4 = 1 on R
2 \B1/2(0), and consider the truncation

K : S (R2)3 → S (R3)3, K(ϕ) := F−1
R2

[

κ1/4(ξ′)Mϕ(ξ′, x3) e−|ξ′||x3|
]

(5.14)

of the solution operator. The singularity of Mϕ makes it necessary to employ the truncation κ1/4 to ensure
that K is well-defined. We shall use real interpolation to show that K extends to a bounded operator
K : W2−1/r,r(R2) → W2,r(Ṙ3). To this end, we observe for m ∈ N0 and any x3 ∈ R that the symbol
ξ′ �→ (|ξ′||x3|)me−|ξ′||x3| is an Lr(R2)-multiplier. Specifically, one may verify that

sup
x3∈R

sup
ε∈{0,1}2

sup
ξ′∈R2

∣
∣
∣ξ′

1
ε1ξ′

2
ε2∂ε1

ξ′
1
∂ε2

ξ′
2

[
(|ξ′||x3|)me−|ξ′||x3|]

∣
∣
∣ < ∞,
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whence it follows from the Marcinkiewicz Multiplier Theorem (see for example [10, Corollary 6.2.5]) that
the Fourier-multiplier operator with symbol ξ′ �→ (|ξ′||x3|)me−|ξ′||x3| is a bounded operator on Lr(R2)
with operator norm independent of x3, that is,

sup
x3∈R

∥
∥
∥ϕ �→ F−1

R2

[

(|ξ′||x3|)me−|ξ′||x3|FR2 [ϕ]
]∥
∥
∥
L (Lr(R2),Lr(R2))

< ∞. (5.15)

We return to (5.14) and employ (5.15) to deduce

‖∇2
x′K(ϕ)‖L∞

x3
(R;Lr(R2)) ≤ c ‖∇2ϕ‖Lr(R2),

‖∂2
x3

K(ϕ)‖L∞
x3

(Ṙ;Lr(R2)) ≤ c ‖∇2ϕ‖Lr(R2),

‖K(ϕ)‖L∞
x3

(R;Lr(R2)) ≤ c ‖ϕ‖Lr(R2),

where the restriction in the norm of the left-hand side to the twofold real line Ṙ in the second estimate
is required since ∂x3K(ϕ) has a singularity at x3 = 0. It follows that

‖∇2K(ϕ)‖L∞
x3

(R;Lr(R2)) + ‖K(ϕ)‖L∞
x3

(R;Lr(R2)) ≤ c ‖ϕ‖W2,r(R2). (5.16)

This estimate shall serve as an interpolation endpoint. To obtain the opposite endpoint, we again employ
(5.15) to infer

sup
x3∈R

‖|x3| ∇2
x′K(ϕ)‖Lr(R2) ≤ c ‖∇ϕ‖Lr(R2),

sup
x3∈Ṙ

‖|x3| ∂2
x3

K(ϕ)‖Lr(R2) ≤ c ‖∇ϕ‖Lr(R2),

sup
x3∈R

‖|x3| K(ϕ)‖Lr(R2) ≤ c ‖ϕ‖Lr(R2),

where the last estimate relies on the truncation introduced in K. It follows that

‖∇2K(ϕ)‖L1,∞
x3 (Ṙ;Lr(R2)) + ‖K(ϕ)‖L1,∞

x3 (Ṙ;Lr(R2)) ≤ c ‖ϕ‖W1,r(R2). (5.17)

Real interpolation yields
(

L1,∞(
Ṙ; Lr(R2)

)
,L∞(

Ṙ; Lr(R2)
)
)

1−1/r,r

= Lr
(
Ṙ,Lr(R2)

)
,

(

W2,r(R2),W1,r(R2)
)

1−1/r,r

= W2−1/r,r(R2).

Consequently, (5.16) and (5.17) imply

‖K(ϕ)‖W2,r(Ṙ3) ≤ c ‖ϕ‖W2−1/r,r(R2),

whence K extends to a bounded operator K : W2−1/r,r(R2) → W2,r(Ṙ3). Recalling the formula (5.13)
for the solution u to (5.10) and that suppFR2 [b] ⊂ R

2 \ B1/2(0), we clearly have u = K(b). It follows
that ‖u‖2,r ≤ c ‖b‖2−1/r,r. In a completely similar manner, one shows that also ‖p‖1,r ≤ c ‖b‖2−1/r,r.
Thus the lemma follows for this particular choice of b ∈ S (R2). Since any b ∈ W2−1/r,r(R2) with
suppFR2 [b] ⊂ R

2 \ B1(0) can be approximated in W2−1/r,r(R2) by a sequence {bk}∞
k=1 ⊂ S (R2) with

suppFR2 [b] ⊂ R
2 \B1/2(0) via a standard mollifier procedure, we conclude the lemma in its entirety. �

Lemma 5.7. Let r ∈ (1,∞). For all H1 ∈ W2−1/r,r(R2) and H2 ∈ W1−1/r,r(R2)3 with suppFR2 [H1] ⊂
R

2\B1(0), suppFR2 [H2] ⊂ R
2\B1(0) and H2 ·e3 = 0 there exists a solution (u, p) ∈ W2,r(Ṙ3)3×W1,r(Ṙ3)
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to
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

div T(u, p) = 0 in Ṙ
3,

div u = 0 in Ṙ
3,

�u� = 0 on ∂Ṙ3,

u · n = H1 on ∂Ṙ3,

(I−n ⊗ n)�T(u, p)n� = H2 on ∂Ṙ3

(5.18)

that satisfies

‖u‖2,r + ‖p‖1,r ≤ C (‖H1‖2−1/r,r + ‖H2‖1−1/r,r), (5.19)

where C = C(r). Moreover, FR2

[
u(·, x3)

]
(ξ′) and FR2

[
p(·, x3)

]
(ξ′) are supported away from (ξ′, x3) ∈

B1/2(0) × R.

Proof. Put

b :=
(

bv

bw

)

:= F−1
R2

[(
0 − 1

2μ|ξ′|
(
I − ξ′⊗ξ′

2|ξ′|2
)

1 0

)(
Ĥ1

Ĥ2

)]

. (5.20)

Let κ1/4 ∈ C∞
0 (R2) with κ1/4 = 0 on B1/4(0) and κ1/4 = 1 on R

2 \ B1/2(0). Clearly, the truncated
operator

M : S (R2)3 → S (R2)3, M(ϕ) := F−1
R2

[

κ1/4(ξ′)
−1
2|ξ′|
(

I − ξ′ ⊗ ξ′

2|ξ′|2
)

ϕ̂

]

corresponding to the Fourier multiplier appearing in (5.20) extends to a bounded operator M : W1−1/r,r

(R2)3 → W2−1/r,r(R2)3. The assumption Ĥ2 ⊂ R
2 \ B1(0) implies that bv = M(H2). It follows that b ∈

W2−1/r,r(R2)3, and we can therefore introduce the corresponding solution (u, p) ∈ W2,r(Ṙ3)3 ×W1,r(Ṙ3)
to (5.10) from Lemma 5.6. By construction, u · n = H1 on ∂Ṙ3. Moreover, recalling (5.13) we compute

(I−n ⊗ n)�T(u, p)n� = F−1
R2

[(−2μ
(|ξ′|I + ξ′⊗ξ′

|ξ′|
)
b̂v

0

)]

= H2.

Consequently, (u, p) is a solution to (5.18). Employing (5.11) we deduce

‖u‖2,r + ‖p‖1,r ≤ c ‖b‖2−1/r,r ≤ c (‖H1‖2−1/r,r + ‖H2‖1−1/r,r)

and conclude the lemma. �
Theorem 5.8. Let r ∈ (1,∞) and

f ∈ Lr(R3)3, g ∈ W1,r(Ṙ3),

h0 ∈ W2−1/r,r(R2)3, h1 ∈ W2−1/r,r(R2), h2 ∈ W1−1/r,r(R2)3.

Then all solutions (u, p) ∈ W2,r(Ṙ3)3 × W1,r(Ṙ3) to (5.9) satisfy

‖u‖2,r + ‖p‖1,r ≤ C
(‖f‖r + ‖g‖1,r + ‖h0‖2−1/r,r + ‖h1‖2−1/r,r + ‖h2‖1−1/r,r + ‖u‖r

)
, (5.21)

where C = C(r, k) > 0.

Proof. We decompose both the solution and the data into one part with lower and another part with
higher frequency support in tangential directions e1, e2. For this purpose, we introduce cut-off functions
κα ∈ C∞

0 (R2) with κα = 0 on Bα(0) and κα = 1 on R
2 \ B2α(0), and put

u#(x′, x3) := F−1
R2

[
κ1(ξ′)FR2 [u(·, x3)]

]
(x′) ∈ W2,r(Ṙ3)3, u⊥ := u − u#.

Similarly, we introduce p#, p⊥ and f#, g#, h0#, h1#, h2#. Observe that (u#, p#) solves (5.9) with respect
to data (f#, g#, h0#, h1#, h2#). We shall construct another solution satisfying estimate (5.21), and sub-
sequently show that it coincides with (u#, p#). To this end, we let g+

# ∈ W1,r(R3) denote an extension
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of g#

∣
∣
R

3
+

to W1,r(R3). Specifically employing Heesten’s extension operator (see for example [1, Theorem

4.26]) one readily verifies that the extension retains the property that the Fourier transform (in tangential
directions) FR2

[
g+
#(·, x3)

]
(ξ′) is supported away from (ξ′, x3) ∈ B1(0) × R. Consequently,

G+
# := F−1

R3

[−iξ

|ξ|2 FR3

[
g+
#

]
]

∈ W2,r(R3)3

is well defined. Similarly, we introduce an extension of g#

∣
∣
R

3
−

to W1,r(R3) and construct a field G−
# ∈

W2,r(R3)3 as above. Letting

G# :=

{
G+

# in R
3
+,

G−
# in R

3
−,

we then obtain a field G# ∈ W2,r(Ṙ3)3 with div G# = g# in Ṙ
3. Moreover, a straight-forward application

of Marcinkiewicz’s Multiplier Theorem (see for example [9, Corollary 5.2.5]) yields

‖G#‖2,r ≤ c‖g‖1,r.

Now put

V# := F−1
R3

[
1

|ξ|2
(

I − ξ ⊗ ξ

|ξ|2
)

FR3

[
f# − div S(G#)

]
]

,

Q# := F−1
R3

[
ξ

|ξ|2 · FR3

[
f# − div S(G#)

]
]

.

Owing to the fact that G#,div S(G#) ∈ Lr(R3)3 with FR3 [G#] and FR3 [div S(G#)] supported away from
0, the expressions above are well defined and yield functions with V# ∈ W2,r(R3)3 and Q# ∈ W1,r(R3)
satisfying

{
div T(V#, Q#) = f# − div S(G#) in R

3,

div V# = 0 in R
3.

Moreover, another straight-forward application of Marcinkiewicz’s Multiplier Theorem yields

‖V#‖2,r + ‖Q#‖1,r ≤ c
(‖f#‖r + ‖div S(G#)‖r

) ≤ c
(‖f#‖r + ‖g#‖1,r

)
.

Utilizing Lemma 5.6, we construct a solution (W#,Π#) ∈ W2,r(Ṙ3)3 × W1,r(Ṙ3) to
⎧
⎪⎪⎨

⎪⎪⎩

div T(W#,Π#) = 0 in Ṙ
3,

div W# = 0 in Ṙ
3,

�W#� = h0# − �V#� − �G#� on ∂Ṙ3

satisfying

‖W#‖2,r + ‖Π#‖1,r ≤ c
(‖h0#‖2−1/r,r + ‖V#‖2−1/r,r + ‖G#‖2−1/r,r

)
.

Finally, by Lemma 5.7 there is a solution (W̃#, Π̃#) ∈ W2,r(Ṙ3)3 × W1,r(Ṙ3) to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

div T(W̃#, Π̃#) = 0 in Ṙ
3,

div W̃# = 0 in Ṙ
3,

�W̃#� = 0 on ∂Ṙ3,

W̃# · n = h1# − (W# + V# + G#

) · n on ∂Ṙ3,

(I−n ⊗ n)�T(W̃#, Π̃#)n� = h2# − (I−n ⊗ n)�T(W#+V#+G#,Π#+Q#)n� on ∂Ṙ3,
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which obeys

‖W̃#‖2,r + ‖Π̃#‖1,r ≤ c
(‖h1#‖2−1/r,r + ‖h2#‖1−1/r,r + ‖W#‖2−1/r,r + ‖Π#‖1−1/r,r

+ ‖V#‖2−1/r,r + ‖Q#‖1−1/r,r + ‖G#‖2−1/r,r

)
.

It follows that

U# := W̃# + W# + V# + G#, P# := Π̃# + Π# + Q#

is a solution to (5.9) with (f#, g#, h0#, h1#, h2#) as the right-hand side, and that (U#,P#) ∈ W2,r(Ṙ3)3×
W1,r(Ṙ3) satisfies

‖U#‖2,r + ‖P#‖1,r ≤ c
(‖f#‖r + ‖g#‖1,r

+ ‖h0#‖2−1/r,r + ‖h1#‖2−1/r,r + ‖h2#‖1−1/r,r

)
.

(5.22)

Consequently, (U#,P#) and (u#, p#) solve the same equations. Using a classical duality argument, we
shall show that they coincide. To this end, let ϕ ∈ C∞

0 (R3) and put ϕ# := F−1
R2

[
κ1/4(ξ′)FR2 [ϕ(·, x3)]

]
.

Employing the same procedure as above, we construct a solution (z#, q#) ∈ W2,r′
(Ṙ3)3 × W1,r′

(Ṙ3) to
(5.9) with right-hand side (ϕ#, 0, 0, 0, 0). Since by construction both FR2

[
U#(·, x3)

]
(ξ′) and

FR2

[
u#(·, x3)

]
(ξ′) are supported away from (ξ′, x3) ∈ B1/2(0) × R, we compute

∫

R3
(u# − U#) · ϕ dx =

∫

R3
(u# − U#) · ϕ# dx

=
∫

Ṙ3
(u# − U#) · div T(z#, q#) dx

=
∫

Ṙ3
div T(u# − U#, p# − P#) · z# dx = 0.

Since ϕ can be taken arbitrarily, we obtain u# = U#, and in turn from (5.9) also p# = P#. It follows
that also (u#, p#) satisfies (5.22) and thus

‖u#‖2,r + ‖p#‖1,r ≤ c
(‖f‖r + ‖g‖1,r + ‖h0‖2−1/r,r + ‖h1‖2−1/r,r + ‖h2‖1−1/r,r

)
. (5.23)

Finally, from FR2

[
u⊥(·, x3)

]
(ξ′) ⊂ B1(0) × R and FR2

[
p⊥(·, x3)

]
(ξ′) ⊂ B1(0) × R it follows via the

Marcinkiewicz Multiplier Theorem that ‖∇x′∇u⊥‖r+‖∇x′p⊥‖ ≤ c ‖u⊥‖r. Introducing the decomposition
u = u# +u⊥ in (5.9) and isolating ∂3u⊥3 on the left-hand side in (5.9)2, we then infer after differentiation
that ‖∂2

3u⊥3‖r ≤ c‖u⊥‖r. Subsequently isolating ∂3p⊥ in the third coordinate equation of (5.9)1, we
deduce ‖∂3p⊥‖1,r ≤ c‖u⊥‖r. Lastly isolating ∂2

3u⊥1 and ∂2
3u⊥2 in the first and second coordinate equation

of (5.9)1, respectively, we further deduce ‖∂2
3u⊥1‖r + ‖∂2

3u⊥2‖r ≤ c‖u⊥‖r. In conclusion,

‖u⊥‖2,r + ‖∇p⊥‖r ≤ c‖u⊥‖r. (5.24)

Combining (5.23) and (5.24) we conclude (5.21) and thus the theorem. �

5.3. A Priori Estimates for Strong Solutions

We return to the linearized two-phase-flow Navier–Stokes problem (5.1), where Ω is an open set of the
same type as in Sect. 4, i.e., satisfying (4.1). Based on the estimates obtained in the twofold-half-space
case in Theorem 5.8, we shall establish Lr estimates of solutions to (5.1). The Oseen case (λ0 �= 0) and
Stokes case (λ0 = 0) are treated separately in Theorem 5.9 and Theorem 5.10, respectively.

Theorem 5.9. Let Γ be a C5-smooth surface, q ∈ (1, 3
2 ), r ∈ (3,∞) and λ > 0. For every 0 < λ0 ≤ λ and

(f, g, h1, h2) ∈ Yq,r
1 × Yq,r

2,3 × Yq,r
4 there exists a unique solution (u, p) ∈ Xq,r

1,λ0
× Xq,r

2 to (5.1) satisfying
∫

Ω(1)
p(1) dx = 0. (5.25)
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Moreover,

‖u‖Xq,r
1,λ0

+ ‖p‖Xq,r
2

≤ C‖(f, g, h1, h2)‖Yq,r
1 ×Yq,r

2,3×Yq,r
4

, (5.26)

where C = C(Ω, q, r, λ) > 0.

Proof. We first consider data

(f, g, h1, h2) ∈ C∞(Ω) × C∞(Ω) × C5(Γ) × C5(Γ),

supp f and supp g compact in R
3,

∫

Ω(1)
g dx =

∫

Γ

h1 dS,

(5.27)

so that the theorems from Sect. 5.1 can be applied. Recalling the regularity of Γ, Theorems 5.2, 5.3 and
5.4 yield a solution (u, p) ∈ D1,2

0 (R3)3 × L2
0(R

3) to (5.1) satisfying

u ∈
2⋂

�=0

D�+2,2(Ω), p ∈
2⋂

�=0

D�+1,2(Ω).

We fix an R > δ(Ω) and observe that (u, p) ∈ W2,r(Ω2R)3 ×W1,r(Ω2R) by Sobolev embedding. According
to the regularity assumptions, Γ can be covered by a finite number of balls Γ ⊂ ⋃m

i=1 Bri
(xi) each of which

upon a rotation Ri can be mapped to Bri
(0) by a C5-diffeomorphism Φi, that is, Φi◦Ri : Bri

(xi) → Bri
(0),

in such a way that Φi ◦ Ri

(
Γ ∩ Bri

(xi)
)

= {x ∈ Bri
(0) | x3 = 0} and with ‖∇Φi‖∞ arbitrarily small

for sufficiently small radii ri, i = 1, . . . , m. The covering can clearly be augmented with bounded open
sets O1 ⊂⊂ Ω(1) and O2 ⊂⊂ Ω(2)

2R so that ΩR ⊂ ∪m
i=1Bri

(xi) ∪ O1 ∪ O2. Employing a partition of unity
subordinate to such a covering, we can decompose and transform the solution (u, p) into m solutions
(ui, pi) ∈ W2,r(Ṙ3)3 × W1,r(Ṙ3), i = 1, . . . , m, to the twofold half-space Stokes problem (5.9), two
solutions (um+1, pm+1), (um+2, pm+2) ∈ W2,r(R3)3 × W1,r(R3) to a whole-space Stokes problem, and
finally one solution (w, q) ∈ D1,2

0 (R3)3 × L2
0(R

3) to the whole-space Oseen problem
{−div T(w, q) + λ0∂3w = F in R

3,

div w = G in R
3.

(5.28)

In all three cases, the data contain lower-order terms of u and p supported in B2R. Furthermore, the data
in the twofold half-space Stokes equations satisfied by (ui, pi), i = 1, . . . , m, also contain higher-order
terms of u and p supported in B2R and multiplied with components of ∇Φi. By Sobolev embeddings,
we have w ∈ D1,2

0 (R3) ↪→ L6(R3), and it is therefore easy to verify, for example by applying the Fourier
transform in (5.28), that (w, q) coincides with the solution from [8, Theorem VII.4.1] and therefore satisfies

‖w‖Xq,r
1,λ0

+ ‖q‖Xq,r
2

≤ c
(‖F‖Lq(R3)∩Lr(R3) + ‖G‖D1,q(R3)∩L3q/3−q(R3)∩D1,r(R3)

)

≤ c
(‖f‖Yq,r

1
+ ‖g‖Yq,r

2
+ ‖u‖W1,r(Ω2R) + ‖p‖Lr(Ω2R)

) (5.29)

with a constant c = c(q, r, λ) independent of λ0. A similar estimate is satisfied by the solutions (um+1, pm+1)
and (um+2, pm+2) to the whole-space Stokes problems by [8, Theorem IV.2.1]. Moreover, Theorem 5.8
implies that (ui, pi), i = 1, . . . , m, also satisfies the estimate, provided a covering is chosen with ‖∇Φi‖∞
sufficiently small, so that the higher-order terms can be absorbed on the left-hand side. We thus conclude

‖u‖Xq,r
1,λ0

+ ‖p‖Xq,r
2

≤ c
(‖(f, g, h1, h2)‖Yq,r

1 ×Yq,r
2,3×Yq,r

4
+ ‖u‖W1,r(Ω2R) + ‖p‖Lr(Ω2R)

)
, (5.30)

where c = c(Γ, q, r, λ) > 0. It remains to show that the lower-order terms of u and p on the right-hand
side can be neglected. This can be achieved by a standard contradiction argument. Assuming that

∃c > 0 ∀0 < |λ0| < λ ∀solutions (u, p) ∈ Xq,r
1,λ0

× Xq,r
2 w.r.t. data (5.27.) :

‖u‖W1,r(Ω2R) + ‖p‖Lr(Ω2R) ≤ c‖(f, g, h1, h2)‖Yq,r
1 ×Yq,r

2,3×Yq,r
4

(5.31)
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does not hold, one can utilize (5.30) to construct a sequence (λn, un, pn) normalized such that
‖un‖W1,r(Ω2R) + ‖pn‖Lr(Ω2R) = 1 and with λn → λ and (un, pn) weakly convergent in the Banach space

D2,r(Ω) ∩ D2,q(Ω) ∩ L
3q

3−2q (Ω) × D1,q(Ω) ∩ L
3q

3−q (Ω)

to a solution (u, p) to (5.1) with parameter λ ∈ [0, λ] and homogeneous right-hand side. The restriction
q < 3

2 is critical in this step. Theorem 5.5 implies (u, p) = (0, 0), contradicting ‖u‖W1,r(Ω2R)+‖p‖Lr(Ω2R) =

1 obtained due to the compactness of the embeddings D2,r(Ω) ∩ L
3q

3−2q (Ω) ↪→ W1,r(Ω2R) and D1,r(Ω) ∩
L

3q
3−q (Ω) ↪→ Lr(Ω2R). We conclude (5.31). Therefore, the lower-order terms of u and p on the right-hand

side in (5.30) can be neglected, which yields (5.26). Uniqueness of the solution follows from Theorem 5.5,
and the theorem is thereby established for data satisfying (5.27). However, it is easy to verify that data
satisfying (5.27) are dense in the space Yq,r

1 × Yq,r
2,3 × Yq,r

4 . Consequently, the general case follows by a
density argument. �

Theorem 5.10. Let Γ be a C5-smooth closed surface, q ∈ (1, 3
2 ), r ∈ (3,∞) and λ0 = 0. For every

(f, g, h1, h2) ∈ Yq,r
1 × Yq,r

2,3 × Yq,r
4 there exists a unique solution (u, p) to (5.1) with

u(1) ∈ W2,r(Ω(1))3, u(2) ∈ (D2,q(Ω(2)) ∩ D2,r(Ω(2)) ∩ D1, 3q
3−q (Ω(2)) ∩ L

3q
3−2q (Ω(2))

)3
,

p(1) ∈ W1,r(Ω(1)), p(2) ∈ D1,q(Ω(2)) ∩ D1,r(Ω(2)) ∩ L
3q

3−q (Ω(2)),
(5.32)

that satisfies (5.25) and

‖∇2u‖q + ‖∇2u‖r + ‖∇u‖ 3q
3−q

+ ‖u‖ 3q
3−2q

+ ‖∇p‖q + ‖∇p‖r

≤ C‖(f, g, h1, h2)‖Yq,r
1 ×Yq,r

2,3×Yq,r
4

,
(5.33)

where C = C(q, r,Ω) > 0.

Proof. The proof is similar to that of Theorem 5.9, the only difference being that λ0 = 0 in (5.28). This
implies that (w, q) solves a whole-space Stokes problem instead of an Oseen problem. Therefore, we use
[8, Theorem IV.2.1] in this case to obtain estimate (5.33). The rest of the proof is identical to that of
Theorem 5.9. �

6. Reformulation on a Fixed Domain

The steady-state equations of motion as expressed in (2.14) in a frame attached to the barycenter of the
falling drop form a classical free boundary problem. Specifically, the boundary Γ depends on the unknown
height function η. For further analysis it is necessary to refer all unknowns in this so-called current
configuration to a fixed domain reference configuration. This section is devoted to such a reformulation.

As mentioned in the introduction and further elaborated on in Sect. 2, we investigate a falling drop
whose stress-free configuration, i.e., the configuration when the density in the two liquids is the same,
is the unit ball B1 in non-dimensionalized coordinates. Our aim is to establish existence of steady-state
configurations close to the stress-free configuration B1 for small density differences. Canonically, we
therefore choose

Ω0 := R
3 \ S

2

as the fixed liquid reference domain.
In order to refer the equations of motion to Ω0, we first construct a suitable coordinate transformation

Φη based on the height function η. For technical reasons, it is important that Φη retains any rotational
symmetry possessed by η.

Lemma 6.1. Let r ∈ (3,∞). There is an extension operator

E : W3−1/r,r(S2) → W3,r(R3 \ S
2)3
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satisfying TrS2 E(η) = η Id, suppE(η) ⊂ B4 and

‖E(η)‖W3,r ≤ C‖η‖W3−1/r,r . (6.1)

The extension operator is invariant with respect to rotations, that is, for all R ∈ SO(3):

E
(
η(R ·))(x) = R�E(η)(Rx). (6.2)

If r > 3, there is a δ0 > 0 such that for any η ∈ W3−1/r,r(S2) with ‖η‖W3−1/r,r < δ0 the mapping

Φη : R3 → R
3, Φη(x) = x + E(η)(x)

is continuous and maps Ω0 C2-diffeomorphically onto Ω = Ωη with

Φη(S2) = Γη, Φη(B1) = Ω(1)
η , Φη(B1) = Ω(2)

η .

Proof. For η ∈ W3−1/r,r(S2) let Hη ∈ W3,r(B4 \ S
2) denote the unique solution to

{
ΔHη = 0 in B1,

Hη = η on S
2,

⎧
⎪⎨

⎪⎩

ΔHη = 0 in B4 \ B1,

Hη = η on S
2,

Hη = 0 on ∂B4.

(6.3)

Since the Laplace operator is rotational invariant, also the solution Hη is invariant with respect to
rotations of the data η. Let χ ∈ C∞

0 (R) be a cut-off function with χ(s) = 1 for |s| ≤ 2 and χ(s) = 1 for
|s| ≥ 3. Putting

E(η)(x) := χ(|x|)Hη(x)x,

we obtain an operator with the desired properties. Observe that E(η) ∈ W1,r(R3). Therefore, Φη(x) :=
x + E(η)(x) is a well-defined pointwise mapping Φη : R3 → R

3. Since r > 3, the Sobolev embedding
W3,r(R3 \ S

2) ↪→ C2(R3 \ S
2) implies that Φη ∈ C2(Ω0). Moreover, by (6.1) we clearly have det ∇Φη =

det
(
I + ∇E(η)

)
> 0 when ‖η‖W3−1/r,r(S2) is sufficiently small. In this case, Φη is a C2-diffeomorphism

onto its image Ω by the global inverse function theorem of Hadamard. �

We shall use Φη to change the coordinates and consequently express (2.14) in the reference configu-
ration Ω0. To this end, we set

w := v ◦ Φη, q := p ◦ Φη. (6.4)

In order to simplify the notation, we put

Fη := ∇Φη = I + ∇E(η), (6.5)

Jη := det Fη = 1 + div E(η) +
3∑

i=1

3∏

j=1
j �=i

∂jE(η) + det(∇E(η)), (6.6)

Aη := (cof Fη)� =
(
1 + div E(η)

)
I − ∇E(η) + cof(∇E(η))�, (6.7)

and introduce the transformed stress tensor

Tη(w, q) :=
[
μ(∇wF−1

η + F−�
η ∇w�) − qI

]
A�

η =
(
T(v, p) ◦ Φη

)
A�

η . (6.8)

Observe that an application of the Piola identity yields

div Tη(w, q) = Jη

(
div T(v, p)

) ◦ Φη and div(Aηw) = Jη(div w) ◦ Φη.

The normal vector nΓ at Γ expressed in the coordinates of the reference configuration is given by

nΓ ◦ Φη =
A�

η nS2

|A�
η nS2 | ,

and the transformed tangential projection by

Pη := I − |A�
η nS2 |−2

A�
η (nS2 ⊗ nS2)Aη = (I − nΓ ⊗ nΓ) ◦ Φη.
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With this notation, the steady-state equations of motion (2.14) take the following form in the reference
configuration:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
(
(Aηw) · ∇w + λ∇wAηe3

)
= div Tη(w, q) in Ω0,

div(Aηw) = 0 in Ω0,

�w� = 0 on S
2,

Jηw · A�
η nS2

|A�
η nS2 | = −Jηλe3 · A�

η nS2

|A�
η nS2 | on S

2,

Aη Pη�Tη(w, q)nS2� = 0 on S
2,

A�
η nS2

|A�
η nS2 |2

· �Tη(w, q)nS2� =
1

16π

A�
η nS2

|A�
η nS2 | ·

∫

S2
ζ
[
(1 + η(ζ))4 − 1

]
dS

+ σ
(
H + 2

) ◦ Φη + ρ̃(1 + η)e3 · nS2 on S
2,

∫

S2
�Tη(w, q)nS2� |A�

η nS2 |−1
Jη dS = ρ̃

4π

3
e3,

∫

S2

[
(1 + η)3 − 1

]
dS = 0,

lim
|x|→∞

w(x) = 0

(6.9)

with respect to unknowns (w, q, λ, η). We use the notation n = nS2 in the following.
In the next step, we exploit an inherent symmetry in (6.9) and simplify the system by replacing (6.9)7

with

e3 ·
∫

S2
�Tη(w, q)n� |A�

η n|−1
Jη dS = ρ̃

4π

3
.

We shall a posteriori verify that a solution to the simplified system exhibits axial symmetry around e3

and consequently satisfies

ej ·
∫

S2
�Tη(w, q)n� |A�

η n|−1
Jη dS = 0 for j = 1, 2.

Consequently, a solution to the simplified system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
(
(Aηw) · ∇w + λ∇wAηe3

)
= div Tη(w, q) in Ω0,

div(Aηw) = 0 in Ω0,

�w� = 0 on S
2,

Jηw · A�
η nS2

|A�
η nS2 | = −Jηλe3 · A�

η nS2

|A�
η nS2 | on S

2,

Aη Pη�Tη(w, q)nS2� = 0 on S
2,

A�
η nS2

|A�
η nS2 |2

· �Tη(w, q)nS2� =
1

16π

A�
η nS2

|A�
η nS2 | ·

∫

S2
ζ
[
(1 + η(ζ))4 − 1

]
dS

+ σ
(
H + 2

) ◦ Φη + ρ̃(1 + η)e3 · nS2 on S
2,

e3 ·
∫

S2
�Tη(w, q)n� |A�

η n|−1
Jη dS = ρ̃

4π

3
,

∫

S2

[
(1 + η)3 − 1

]
dS = 0,

lim
|x|→∞

w(x) = 0

(6.10)
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with unknowns (w, q, λ, η) is also a solution to (6.9). The analysis in the remaining part of the article is
carried out on the system (6.10).

7. Linearization

A main challenge is to identify a suitable linearization of (6.10) such that the fully nonlinear system can
be solved via a perturbation technique. Indeed, as explained in the introduction, the trivial lineariza-
tion obtained by neglecting all nonlinear terms is not suitable since it leads to a Stokes-type rather
than an Oseen-type problem. Instead, we shall linearize the equations around a non-trivial first-order
approximation.

In order to identify the first-order approximation, we utilize an idea going back to Happel and
Brenner [11] and introduce as auxiliary field a solution to the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div T(U,P) = 0 in Ω0,

div U = 0 in Ω0,

�U� = 0 on S
2,

U · n = −e3 · n on S
2,

(I−n ⊗ n)�T(U,P)n� = 0 on S
2,

lim
|x|→∞

U(x) = 0.

(7.1)

By Theorem 5.10, a solution (U,P) to (7.1) exists with

∀s ∈ (3,∞] : U ∈ Ls(Ω0),

∀s ∈ ( 32 ,∞] : ∇U, P ∈ Ls(Ω0),

∀s ∈ (1,∞) : ∇2U, ∇P ∈ Ls(Ω0).

(7.2)

Moreover, standard regularity theory for the Stokes problem implies that both U and P are smooth in Ω0,
and well-known decay estimates for the 3D exterior domain Stokes problem (see for example [8, Theorem
V.3.2]) yield

U = O(|x|−1), ∇U = O(|x|−2) and P = O(|x|−2) as |x| → ∞. (7.3)

Additionally, both the Stokes operator and the boundary operator on the left-hand side of (7.1) are
invariant with respect to rotations. Since the data on the right-hand side is clearly invariant with respect
to rotations R ∈ SO(3) leaving e3 invariant, the solution (U,P) retains this symmetry:

∀R ∈ SO(3), Re3 = e3 : R�U(Rx) = U(x), P(Rx) = P(x). (7.4)

By adding a constant to P(1), that is, replacing P with

P̃ :=

{
P + C in B1,

P in B1,

we may assume, by choosing the constant C appropriately, that
∫

S2
n · �T(U,P)n�dS = 0. (7.5)
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Moreover, we utilize (7.1)5 to compute

−e3 ·
∫

S2
�T(U,P)n�dS = −

∫

S2

(
e3 · n

)
n · �T(U,P)n�dS

=
∫

S2

(
U · n

)
n · �T(U,P)n�dS =

∫

S2
�U · T(U,P)n�dS

=
∫

Ω0

∇U : T(U,P) + U · div T(U,P) dx

=
∫

Ω0

2μ
∣
∣S(U)

∣
∣2 dx > 0.

(7.6)

We can therefore choose

λ0(ρ̃) :=
(

e3 ·
∫

S2
�T(U,P)n�dS

)−1

ρ̃
4π

3
. (7.7)

This choice of λ0(ρ̃) combined with the fact that the symmetry (7.4) implies

ej ·
∫

S2
�T(U,P)n�dS = 0 (j = 1, 2)

means that (λ0(ρ̃)U, λ0(ρ̃)P, λ0(ρ̃), 0) is a solution to the trivial linearization of (6.10) around the zero
state, that is, to the system obtained by neglecting in (6.10) all nonlinear terms with respect to (w, q, λ, η).
The state (λ0(ρ̃)U, λ0(ρ̃)P, λ0(ρ̃), 0) can therefore be seen as a first-order approximation of the solution
to (6.10).

We shall seek to linearize (6.10) around (λ0(ρ̃)U, λ0(ρ̃)P, λ0(ρ̃), 0). Since ρ̃ �= 0 implies λ0(ρ̃) �= 0, a
linearization around (λ0(ρ̃)U, λ0(ρ̃)P, λ0(ρ̃), 0) would result in an Oseen-type problem. However, a direct
linearization around (λ0(ρ̃)U, λ0(ρ̃)P, λ0(ρ̃), 0) is still precarious since (U,P) is a solution to a Stokes
problem, whence a linearization around this state would bring about right-hand side terms inadmissible
in an Oseen setting. Instead, we introduce a truncation of the state. More specifically, we let χ ∈ C∞

0 (R)
be a cut-off function with χ(r) = 1 for |x| ≤ 1 and χ(r) = 0 for |r| ≥ 2, and define χR ∈ C∞

0 (R3) by
χR(x) := χ

(
R−1|x|) for R > 4. Via the truncated auxiliary fields

UR := χRU, PR := χRP, (7.8)

we finally obtain the state (λ0(ρ̃)UR, λ0(ρ̃)PR, λ0(ρ̃), 0) around which we shall linearize the system (6.10).
Specifically, we let

κ := λ − λ0(ρ̃), u := w − λ0(ρ̃)UR − κUR, p := q − λ0(ρ̃)PR − κPR (7.9)

and investigate (6.10) with respect to the unknowns (u, p, κ, η).
To conclude the linearization, we express the mean curvature H on Γ as a function of η. As in [12,

Sect. 2.2.5], we obtain

H ◦ Φη =
1

1 + η

(
ΔS2η√

g
+ ∇S2

1√
g

· ∇S2η − 2(1 + η)√
g

)

,

where ΔS2 and ∇S2 denote the Laplace–Beltrami operator and the surface gradient on the unit sphere
S

2, respectively, and

g := (1 + η)2 + |∇S2η|2.
Then we have

(H + 2) ◦ Φη = ΔS2η + 2η − GH(η)

with

GH(η) := − 1
1 + η

1 − (1 + η)
√

g√
g

ΔS2η − 1
1 + η

∇S2
1√
g

· ∇S2η +
2 − 2(1 − η)

√
g√

g

containing all the nonlinear terms.
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We are now in a position to express (6.10) as a suitable perturbation of a linear problem with respect
to the unknowns (u, p, κ, η). Indeed, in a setting of velocity fields satisfying �u� = 0 and lim|x|→∞ u(x) = 0
we can express (6.10) equivalently as

Lλ0(ρ̃)(u, p, κ, η) = N R,ρ̃(u, p, κ, η), (7.10)

where the linear operator Lλ0(ρ̃) is given by

Lλ0(ρ̃)(u, p, κ, η) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−div T(u, p) + ρλ0(ρ̃) ∂3u
div u
u · n

(I−n ⊗ n)�T(u, p)n�
κe3 · ∫

S2�T(U,P)n�dS + e3 · ∫
S2�T(u, p)n�dS∫

S2 η dS
σ(ΔS2 + 2)η + 1

4π n · ∫
S2 ηn dS − κn · �T(U,P)n� − n · �T(u, p)n�

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=:

⎛

⎜
⎜
⎝

L1−4(u, p)
L5(u, p, κ)

L6(η)
L7(u, p, κ, η)

⎞

⎟
⎟
⎠

(7.11)

and the nonlinear operator N R,ρ̃ = (N1, . . . ,N7) consists of the components

N1(u, p, κ, η) := (λ0(ρ̃) + κ) div Tη(UR,PR) + div Tη(u, p) − div T(u, p) − ρAηu · ∇u

− ρ(λ0(ρ̃) + κ)
(
AηUR · ∇u + Aηu · ∇UR

)− ρ(λ0(ρ̃) + κ)2AηUR · ∇UR

− ρκ∇uAηe3 − ρλ0(ρ̃)∇u(Aη − I)e3 − ρ(λ0(ρ̃) + κ)2∇URAηe3,

N2(u, p, κ, η) := div((I − Aη)u) − (λ0(ρ̃) + κ) div(AηUR),

N3(u, p, κ, η) :=
(
u + (λ0(ρ̃) + κ)(U + e3)

) · (I − Jη|A�
η n|−1

A�
η

)
n,

N4(u, p, κ, η) := P0�T(u, p)n� − Aη Pη�Tη(u, p)n� − (λ0(ρ̃) + κ)Aη Pη�Tη(U,P)n�,

N5(u, p, κ, η) := (λ0(ρ̃) + κ)e3 ·
∫

S2

(
�T(U,P)n� − �Tη(U,P)n�|A�

η n|Jη

)
dS

+ e3 ·
∫

S2

(
�T(u, p)n� − �Tη(u, p)n�|A�

η n|Jη

)
dS,

N6(u, p, κ, η) := −
∫

S2
η2 +

1
3
η3 dS,

N7(u, p, κ, η) :=
A�

η n

|A�
η n|2

· �Tη(u, p)n� − n · �T(u, p)n� + λ0(ρ̃)
A�

η n

|A�
η n|2

· �Tη(U,P)n�

+ κ

(
A�

η n

|A�
η n|2

· �Tη(U,P)n� − n · �T(U,P)n�

)

− 1
4π

A�
η n

|A�
η n| ·

∫

S2

(3
2
η2 + η3 +

1
4
η4
)
n dS +

1
4π

(
n − A�

η n
|A�

η n|
) ·
∫

S2
η n dS

− ρ̃(1 + η)e3 · n + σGH(η).

8. Main Theorems

The formulation (7.10) is compatible with the framework of function spaces introduced in Sect. 4. More
specifically, we shall show that Lλ0 maps Xq,r

λ0
(Ω0) homeomorphically onto Yq,r(Ω0), and a solution to
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the fully nonlinear problem (7.10) can be established via the contraction mapping principle. We start
with the first assertion:

Theorem 8.1. Let q ∈ (1, 3
2 ), r ∈ (3,∞) and 0 < |λ0| ≤ λ. Then

Lλ0 : Xq,r
λ0

(Ω0) → Yq,r(Ω0)

is a homeomorphism with ‖(Lλ0)−1‖ ≤ C and C = C(q, r, λ) independent of λ0.

Proof. We first show that Lλ0 is onto. To this end, we consider (f, g, h1, h2, a1, a2, h3) ∈ Yq,r(Ω0) and
establish existence of (u, p̃, κ, η) ∈ Xq,r

λ0
(Ω0) such that Lλ0(u, p̃, κ, η) = (f, g, h1, h2, a1, a2, h3). By Theo-

rem 5.9 there is a solution (u, p) ∈ Xq,r
1,λ0

(Ω0) × Xq,r
2 (Ω0) to (5.1) with Ω = Ω0. We put

cp :=
1

|S2|
(

2σa2 −
∫

S2
n · �T(u, p)n� −

∫

S2
h3 dS

)

(8.1)

and replace p with

p̃ :=

{
p + cp in B1,

p in B1.

Then (u, p̃) still solves (5.1), whence

L1−4(u, p̃) = (f, g, h1, h2). (8.2)

Recalling (7.6), we can define

κ :=
(

e3 ·
∫

S2
�T(U,P)n�dS

)−1(

a1 − e3 ·
∫

S2
�T(u, p̃)n�dS

)

(8.3)

and thus obtain

L5(u, p̃, κ) = a1. (8.4)

It remains to solve L6(η) = a2 and L7(u, p, κ, η) = h3 with respect to η. We briefly recall some properties
of the operator ΔS + 2. In particular, it is Fredholm in the setting ΔS + 2 : W3−1/r,r(S2) → W1−1/r,r(S2)
(see for example [17, Theorem 7.4.3]). It is well known, and easy to verify by a direct computation, that
the components of the outer normal n on S

2 span its kernel, that is, ker(ΔS + 2) = span{n1,n2,n3}. We
denote the projection onto this kernel and the corresponding complementary projection by

Pψ :=
1
4π

n ·
∫

S2
ψn dS and P⊥ := Id−P.

The self-adjoint nature of ΔS+2 implies that P is also a projection onto the kernel of its adjoint (ΔS+2)∗.
The Fredholm property thus implies that

ΔS + 2 : P⊥W3−1/r,r(S2) → P⊥W1−1/r,r(S2) homeomorphically. (8.5)

We can therefore introduce

η‖ := P(h3 + κn · �T(U,P)n� + n · �T(u, p̃)n�
)
,

η⊥ := σ−1(ΔS + 2)−1 P⊥
(
h3 + κn · �T(U,P)n� + n · �T(u, p̃)n�

)
,

and obtain a solution η := η‖ + η⊥ ∈ W3−1/r,r(S2) to

L7(u, p̃, κ, η) = h3. (8.6)

Moreover, integrating (8.6) over S2 and recalling both the choice of cp in (8.1) and (7.5), we observe that

L6(η) = a2. (8.7)

From (8.2), (8.4), (8.7) and (8.6) we deduce Lλ0(u, p̃, κ, η) = (f, g, h1, h2, a1, a2, h3) and consequently that
Lλ0 is onto. Uniqueness of the solution (u, p̃, κ, η) is a direct consequence of Theorem 5.9 and (8.5), which
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means that Lλ0 is also injective. The operator is clearly continuous and therefore a homeomorphism.
Furthermore, from Theorem 5.9 we deduce the estimate

‖(u, p̃)‖Xq,r
1,λ0

×Xq,r
2

≤ c
(‖(f, g, h1, h2)‖Yq,r

1 ×Yq,r
2,3×Yq,r

4
+ |cp|

)

≤ c
(‖(f, g, h1, h2)‖Yq,r

1 ×Yq,r
2,3×Yq,r

4
+ ‖a2‖Yq,r

6
+ ‖h3‖Yq,r

7

)

with c = c(q, r, λ) independent of λ0. In turn, we estimate in (8.3)

|κ| = ‖κ‖Xq,r
3

≤ c
(‖(f, g, h1, h2)‖Yq,r

1 ×Yq,r
2,3×Yq,r

4
+ ‖a1‖Yq,r

5
+ ‖a2‖Yq,r

6
+ ‖h3‖Yq,r

7

)

with c = c(q, r, λ) independent of λ0. Since additionally

‖η‖Xq,r
4

≤ ‖η‖‖W3−1/r,r + ‖η⊥‖W3−1/r,r

≤ c
(‖P(h3 + κn · �T(U,P)n� + n · �T(u, p̃)n�

)‖W3−1/r,r

)

+ ‖(ΔS + 2)−1‖‖P⊥
(
h3 + κn · �T(U,P)n� + n · �T(u, p̃)n�

)‖W1−1/r,r

≤ c
(‖h3‖W1−1/r,r + |κ| + ‖�T(u, p̃)n�‖W1−1/r,r

+
∣
∣
∣

∫

S2
h3 dS

∣
∣
∣+
∣
∣
∣

∫

S2
n · �T(u, p̃)n�dS

∣
∣
∣
)

≤ c
(‖h3‖W1−1/r,r + |κ| + ‖(u, p̃)‖Xq,r

1,λ0
×Xq,r

2

)
,

we conclude

‖(u, p̃, κ, η)‖Xq,r
λ0

(Ω0) ≤ c‖(f, g, h1, h2, a1, a2, h3)‖Yq,r(Ω0)

with c = c(q, r, λ) independent of λ0. It follows that ‖(Lλ0)−1‖ ≤ c with c = c(q, r, λ) independent of
λ0. �

The proof that the composition (Lλ0)−1 ◦ N R,ρ̃ is a contraction is prepared in the following two
lemmas. We first establish estimates of the change-of-coordinate matrices.

Lemma 8.2. Let r ∈ (3,∞). There is δ1 > 0 such that for all η1, η2 ∈ W3−1/r,r(S2) with ‖ηj‖W3−1/r,r ≤ δ1

(j = 1, 2) the following estimates are valid:

‖I − Aη1‖W1,∞ ≤ C‖η1‖W3−1/r,r , ‖Aη1 − Aη2‖W1,∞ ≤ C‖η1 − η2‖W3−1/r,r ,

‖I − F−1
η1

‖W1,∞ ≤ C‖η1‖W3−1/r,r , ‖F−1
η1

− F−1
η2

‖W1,∞ ≤ C‖η1 − η2‖W3−1/r,r ,

‖1 − Jη1‖W1,∞ ≤ C‖η1‖W3−1/r,r , ‖Jη1 − Jη2‖W1,∞ ≤ C‖η1 − η2‖W3−1/r,r

where C = C(δ1, r).

Proof. Recalling (6.7), we observe that I−Aη1 contains only terms of first and second order with respect
to components of ∇E(η1). Utilizing that W2,r(R3\S2) is an algebra for r > 3, and the Sobolev embedding
W2,r(R3 \ S

2) ↪→ W1,∞(R3 \ S
2), we deduce

‖I − Aη1‖W1,∞ ≤ c‖I − Aη1‖W2,r ≤ c
(
1 + ‖∇E(η1)‖W2,r

)‖∇E(η1)‖W2,r .

The first assertion of the lemma then follows from (6.1) in Lemma 6.1. The next assertions follows in a
similar manner. Concerning the estimates involving F−1

η1
, we recall from (6.5)–(6.7) that F−1

η1
= J−1

η1
Aη1 .

Consequently, we obtain an estimate of ‖I − F−1
η1

‖W1,∞ as above, provided Jη1 is bounded away from 0.
To this end, we recall (6.6) and choose δ1 so small that Jη1 > 1

2 for ‖η1‖W3−1/r,r ≤ δ1. One may now
verify the rest of the assertions analogously. �

The linearization (7.10) is a result of expressing the velocity field and pressure term as a perturbation
(7.9) around a truncated auxiliary field (UR,PR). The truncation is necessary to avoid right-hand side
terms in (7.10) with inadmissible decay properties. Instead, compactly supported right-hand side terms
appear. Suitable estimates of these terms are established in the following lemma. In particular, the
magnitude of their norms are estimated in terms of the distance R of the truncation χR from the drop
domain:
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Lemma 8.3. Let q ∈ (1, 3
2

)
, r ∈ (3,∞) and δ1 be the constant from Lemma 8.2. For all η1, η2 ∈

W3−1/r,r(S2) with ‖ηj‖W3−1/r,r ≤ δ1 (j = 1, 2)

‖div Tη1(UR,PR)‖Yq,r
1

≤ C(R−3+3/q + ‖η1‖W3−1/r,r),

‖div Tη1(UR,PR) − div Tη2(UR,PR)‖Yq,r
1

≤ C‖η1 − η2‖W3−1/r,r ,

‖div(Aη1UR)‖Yq,r
2

≤ C(R−3+3/q + ‖η1‖W3−1/r,r),

‖div(Aη1UR) − div(Aη2UR)‖Yq,r
2

≤ C‖η1 − η2‖W3−1/r,r ,

(8.8)

where C = C(q, r, δ1). Moreover,

‖Aη1UR · ∇UR‖Yq,r
1

≤ C,

‖Aη1UR · ∇UR − Aη2UR · ∇UR‖Yq,r
1

≤ C‖η1 − η2‖W3−1/r,r ,

‖∇URAη1e3‖Yq,r
1

≤ C,

‖∇URAη1e3 − ∇URAη2e3‖Yq,r
1

≤ C‖η1 − η2‖W3−1/r,r ,

(8.9)

where C = C(q, r, δ1).

Proof. Let η = η1. Recalling from Lemma 6.1 that Aη(x) = Fη(x) = I for |x| ≥ 4, we utilize Lemma 8.2
to estimate

‖div Tη1(UR,PR)‖Yq,r
1

≤ ‖div Tη1(UR,PR) − div T(UR,PR)‖Lq∩Lr + ‖div T(UR,PR)‖Lq∩Lr

≤ ‖μ(∇URF−1
η A�

η −∇UR)+μ(F−�
η ∇U�

R A�
η −∇U�

R )−(PRA�
η −PRI)‖D1,q(B4)∩D1,r(B4)

+ ‖div T(UR,PR)‖Lq∩Lr

≤ c(‖η‖2
W3−1/r,r + ‖η‖W3−1/r,r)(‖∇UR‖W1,q(B4)∩W1,r(B4) + ‖PR‖W1,q(B4)∩W1,r(B4)

+ ‖div T(UR,PR)‖Lq∩Lr ).

Recalling the truncation (7.8), the pointwise decay of the auxiliary fields (7.3), and that supp∇χR ⊂
B2R,R with |∇χR(x)| ≤ cR−1 as well as |∇2χR(x)| ≤ cR−2, we further obtain

‖div T(UR,PR)‖q = ‖div
(
μ(∇[χRU ] + ∇[χRU ]�) − χRP

)‖q

≤ c
(‖R−2U‖Lq(B2R,R) + ‖R−1∇U‖Lq(B2R,R) + ‖R−1P‖Lq(B2R,R)

)

≤ cR−3+3/q.

Since r > q, we obtain an even better estimate for ‖div T(UR,PR)‖r with respect to decay in R, and
thus conclude the first assertion of the lemma. The other inequalities in (8.8) follow in a similar manner.

The most critical estimate in (8.9) is the second one. Employing Lemma 8.2 together with the inte-
grability properties (7.2) and the pointwise decay (7.3) of the auxiliary fields, we conclude

‖Aη1UR · ∇UR − Aη2UR · ∇UR‖Yq,r
1

≤ ‖Aη1 − Aη2‖∞‖χR(U · ∇χR)U + χ2
RU · ∇U‖Lq∩Lr

≤ c‖η1 − η2‖W3−1/r,r

(‖R−1|U |2‖Lq(B2R,R)∩Lr(B2R,R) + ‖U‖L3q∩L3r‖∇U‖L3q/2∩L3r/2

)

≤ c‖η1 − η2‖W3−1/r,r

(
R−3+1/q + R−3+1/r + c

) ≤ c‖η1 − η2‖W3−1/r,r

since R > 4. The remaining estimates in (8.9) are verified in a similar fashion. �

We are now in a position to show existence of a solution to (7.10).

Theorem 8.4. Let q ∈ (1, 4
3

]
, r ∈ (3,∞) and 3

4 < α < 1. There is an ε > 0 such that for all 0 < |ρ̃| < ε
there is an R > 0 and a solution (u, p, κ, η) ∈ Xq,r

λ0(ρ̃)(Ω0) to

Lλ0(ρ̃)(u, p, κ, η) = N R,ρ̃(u, p, κ, η), (8.10)
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which satisfies

‖(u, p, κ, η)‖Xq,r
λ0

≤ |ρ̃|α. (8.11)

This solution is unique in the class of elements in Xq,r
λ0(ρ̃)(Ω0) satisfying (8.11).

Proof. We let R := R(ρ̃) := |ρ̃|−α and show (8.10) by establishing existence of a fixed point of the
mapping

M : Xq,r
λ0(ρ̃)(Ω0) → Xq,r

λ0(ρ̃)(Ω0), M(u, p, κ, η) :=
(Lλ0(ρ̃)

)−1 ◦ N R(ρ̃),ρ̃(u, p, κ, η)

for sufficiently small ρ̃. To ensure that M is well defined, observe that

div(Aηu) = Jη(div(u ◦ (Φη)−1)) ◦ Φη

and

0 =
∫

S2

(
U + e3

) · n dS, 0 =
∫

S2
e3 · Jη|A�

η n|−1
A�

η dS,

which implies
∫

B1

N2(u, p, κ, η) dx =
∫

S2
N3(u, p, κ, η) dS.

Moreover, a change of coordinates yields N4(u, p, κ, η) · n = 0, and we conclude that N R(ρ̃),ρ̃(u, p, κ, η) ∈
Yq,r(Ω0) after establishing the corresponding estimates below. By fixing some λ and choosing ε so small
that |λ0(ρ̃)| ≤ λ, Theorem 8.1 ensures that Lλ0(ρ̃) is invertible from Yq,r(Ω0) onto Xq,r

λ0(ρ̃)(Ω0), and
M therefore well defined. In the next step, we show that M is a contractive self-mapping on the ball
Bρ̃α(0) ⊂ Xq,r

λ0(ρ̃)(Ω0). To this end, consider (u, p, κ, η) ∈ Bρ̃α(0). The most critical part of the proof is
to obtain a suitable estimate of N R(ρ̃),ρ̃(u, p, κ, η). We first utilize Lemma 8.3 and recall from (7.7) that
λ0(ρ̃) depends linearly on ρ̃ to estimate

‖(λ0(ρ̃) + κ) div Tη(UR,PR)‖q ≤ c(|ρ̃| + |ρ̃|α)
(|ρ̃|(3−3/q)α + |ρ̃|α) = o

(|ρ̃|α) as |ρ̃| → 0. (8.12)

An application of Lemma 8.2 yields
‖div Tη(u, p) − div T(u, p)‖q ≤ c‖η‖W3−1/r,r(‖u‖Xq,r

1,λ0
+ ‖p‖Xq,r

2
)

≤ c|ρ̃|2α = o
(|ρ̃|α) as |ρ̃| → 0.

(8.13)

Lemma 8.2 also implies ‖Aη‖∞ ≤ c(δ1). Employing first Hölder’s inequality and then estimate (4.4) from
Proposition 4.1 with t = 2, we obtain

‖ρAηu · ∇u‖q ≤ c‖Aη‖∞‖u‖ 2q
2−q

‖∇u‖2

≤ c|ρ̃|− 1
2 −(1+ 3

2 − 3
q )‖u‖2

Xq,r
1,λ0

≤ c|ρ̃| 3
q −3+2α = o

(|ρ̃|α) as |ρ̃| → 0
(8.14)

since 3
4 < α. Further applications of Hölder’s inequality in combination with the integrability properties

(7.2) of U yield

‖ρ(λ0 + κ)
(
AηUR · ∇u + Aηu · ∇UR

)‖q

≤ (|λ0| + |κ|)‖Aη‖∞
(‖UR‖4‖∇u‖ 4q

4−q
+ ‖u‖ 2q

2−q
‖∇UR‖2

)

≤ c
(|ρ̃| + |ρ̃|α)(|ρ̃|− 1

4 ‖u‖Xq,r
1,λ0

+ |ρ̃|− 1
2 ‖u‖Xq,r

1,λ0

)

≤ c
(|ρ̃| + |ρ̃|α)(|ρ̃|− 1

4 + |ρ̃|− 1
2
)|ρ̃|α = o

(|ρ̃|α) as |ρ̃| → 0

(8.15)

since 1
2 < α. From the integrability properties (7.2) we also obtain UR · ∇UR ∈ Ls(R3) for all s > 1 and

thus

‖ρ(λ0(ρ̃) + κ)2AηUR · ∇UR‖q ≤ c‖Aη‖∞
(|ρ̃| + |ρ̃|α)2 = o

(|ρ̃|α) as |ρ̃| → 0. (8.16)
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We move on to the so-called drift terms. Recalling that Aη = I on Bc
4, we estimate

‖ρκ∇uAηe3‖q ≤ c|ρ̃|α(‖∇u‖Lq(B4) + ‖∂3u‖q) ≤ c|ρ̃|α|ρ̃|α = o
(|ρ̃|α) as |ρ̃| → 0 (8.17)

and similarly

‖ρλ0(ρ̃)∇u(Aη − I)e3‖q ≤ c|ρ̃|2α = o
(|ρ̃|α) as |ρ̃| → 0. (8.18)

Finally, we once more employ Lemma 8.3 to deduce

‖ρ(λ0(ρ̃) + κ)2∇URAηe3‖q ≤ c
(|ρ̃| + |ρ̃|α)2R−2+3/q

= c
(|ρ̃| + |ρ̃|α)2|ρ̃|(2−3/q)α = o

(|ρ̃|α) as |ρ̃| → 0.
(8.19)

Summarizing (8.12)–(8.19), we conclude ‖N1(u, p, κ, η)‖q = o
(|ρ̃|α) as |ρ̃| → 0, which is the most critical

estimate of the proof. With less effort, the same estimate can be established for ‖N1(u, p, κ, η)‖r. Hence,
‖N1(u, p, κ, η)‖Yq,r

1
= o
(|ρ̃|α) as |ρ̃| → 0. The other components N2, . . . ,N7 of N R(ρ̃),ρ̃(u, p, κ, η) are

estimated similarly. In particular, employing that W1,r(S2) is an algebra due to r > 3, the nonlinear term
‖GH(η)‖W1−1/r,r(S2) can be estimated such that we obtain

‖N7(u, p, κ, η)‖Yq,r
7

≤ c
(|ρ̃| + |ρ̃|2 + |ρ̃|3 + |ρ̃|4).

Since α < 1, we deduce ‖N7(u, p, κ, η)‖Yq,r
7

= o
(|ρ̃|α) and thus ‖N (u, p, κ, η)‖Yq,r = o

(|ρ̃|α) as |ρ̃| → 0.

Recalling from Theorem 8.1 that ‖(Lλ0(ρ̃)
)−1‖ is independent of λ0(ρ̃), we conclude that also ‖M‖Xq,r

λ0(ρ̃)
=

o
(|ρ̃|α) as |ρ̃| → 0. Consequently, M is a self-mapping on the ball B|ρ̃|α(0) ⊂ Xq,r

λ0(ρ̃)(Ω0) for sufficiently
small |ρ̃|. Estimates completely similar to the ones above can be used to verify that M is also a contraction
on B|ρ̃|α(0) ⊂ Xq,r

λ0(ρ̃)(Ω0) for sufficiently small |ρ̃|. Therefore, the contraction mapping principle (or
Banach’s Fixed Point Theorem) yields a unique fixed point (u, p, κ, η) in B|ρ̃|α(0) of M, which is clearly
a solution to (8.10) satisfying (8.11). �

Finally, we are able to prove the main theorem of the article.

Proof of Theorem 2.1. Choosing the parameters as in Theorem 8.4, we let (u, p, κ, η) ∈ Xq,r
λ0(ρ̃)(Ω0) denote

the corresponding solution to (8.10).
A boot-strapping argument based on coercive Lr estimates in the whole and half space for the principle

part of the operators L1−4 and L7, furnished by Theorem 5.8 in the former case and well-know estimates
for the classical Laplace operator in the latter case, yields higher-order regularity. More specifically, after
smoothing out the boundary in the L1−4 part of equation (8.10), difference quotients of (u, p) can be
estimated using Theorem 5.8, which implies additional regularity of (u, p). In turn, classical Lr estimates
for the Laplace operator in the 2D whole space yields bounds on difference quotients for η after smoothing
out the interface in the L7 part of equation (8.10). In both cases, we choose ε and thus |ρ̃| sufficiently
small in order to absorb higher-order terms from the right-hand side. Bootstrapping this procedure, we
conclude regularity of arbitrary order for both (u, p) and η, and thereby deduce that the solution is
smooth up to the boundary.

We further claim that the solution is invariant with respect to rotations that leave the e3-axis invariant.
To this end, consider an arbitrary R ∈ SO(3) with Re3 = e3. Define

ũ(x) := R�u(Rx), p̃(x) := p(Rx), κ̃ := κ, η̃(x) := η(Rx).

Utilizing that (7.4) leads to rotation invariance of (UR,PR), and that (6.2) implies Φη̃(x) = R�Φη(Rx),
one readily verifies that (ũ, p̃, κ̃, η̃) ∈ Xq,r

λ0(ρ̃)(Ω0) is another solution to (8.10) satisfying (8.11). The
uniqueness assertion of Theorem 8.4 therefore yields (u, p, κ, η) = (ũ, p̃, κ̃, η̃), and we conclude the claimed
rotational symmetry of the solution.

Now recall from (7.9) that a solution to (7.10) yields a solution (w, q, λ, η) to (6.10). Due to the
rotation symmetry of (w, q, λ, η), we thereby obtain a solution in Xq,r

λ0(ρ̃)(Ω0) to (6.9). Finally recalling
(6.4), we deduce existence of a solution (v, p, λ, η) to (2.14) satisfying (2.15) and (2.18).
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Since v ∈ Xq,r,λ0
Oseen

(
Ω(2)

η

)
, we may “test” the system with v, i.e., multiplication of (2.14)1 by v and

subsequent integration by parts is a valid computation. Under the assumption λ = 0 this computation
yields ρ̃ = 0. Since we are assuming ρ̃ �= 0, we conclude that also λ �= 0.

Finally, since (v, p) solves the classical Navier–Stokes equations in a 3D exterior domain with v ∈
Xq,r,λ0

Oseen

(
Ω(2)

η

)
and λ �= 0, the integrability properties (2.16) and asymptotic structure (2.17) follow from

[8, Theorem X.6.4] and [8, Theorem X.8.1], respectively. �
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