論文

査読有り
2016年11月

GENERALIZED BINOMIAL TRANSFORM APPLIED TO THE DIVERGENT SERIES

ACTA PHYSICA POLONICA B
  • Hirofumi Yamada

47
11
開始ページ
2413
終了ページ
2444
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.5506/APhysPolB.47.2413
出版者・発行元
JAGIELLONIAN UNIV PRESS

The divergent series for a function defined through Lapalce integral and the ground state energy of the quartic anharmonic oscillator to large orders are studied to test the generalized binomial transform which is the renamed version of delta expansion proposed recently. We show that, by the use of the generalized binomial transform, the values of functions in the limit of zero of an argument are approximately computable from the series expansion around the infinity of the same argument. In the Laplace integral, we investigate the subject in detail with the aid of Mellin transform. In the anharmonic oscillator, we compute the strong coupling limit of the ground state energy and the expansion coefficients at strong coupling from the weak coupling perturbation series. The obtained result is compared with that of the linear delta expansion.

Web of Science ® 被引用回数 : 1

リンク情報
DOI
https://doi.org/10.5506/APhysPolB.47.2413
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000392920700006&DestApp=WOS_CPL

エクスポート
BibTeX RIS