論文

査読有り 国際誌
2020年1月

Breast cancer cells promote CD169+ macrophage-associated immunosuppression through JAK2-mediated PD-L1 upregulation on macrophages.

International immunopharmacology
  • Weiqiang Jing
  • ,
  • Xing Guo
  • ,
  • Ganyu Wang
  • ,
  • Yuxuan Bi
  • ,
  • Lihui Han
  • ,
  • Qingfen Zhu
  • ,
  • Chunhong Qiu
  • ,
  • Masato Tanaka
  • ,
  • Yunxue Zhao

78
開始ページ
106012
終了ページ
106012
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.intimp.2019.106012

Macrophages are recognized as one of the major cell types in tumor microenvironment, and macrophage infiltration has been predominantly associated with poor prognosis among patients with breast cancer. Using the murine models of triple-negative breast cancer in CD169-DTR mice, we found that CD169+ macrophages support tumor growth and metastasis. CD169+ macrophage depletion resulted in increased accumulation of CD8+ T cells within tumor, and produced significant expansion of CD8+ T cells in circulation and spleen. In addition, we observed that CD169+ macrophage depletion alleviated tumor-induced splenomegaly in mice, but had no improvement in bone loss and repression of bone marrow erythropoiesis in tumor-bearing mice. Cancer cells and tumor associated macrophages exploit the upregulation of the immunosuppressive protein PD-L1 to subvert T cell-mediated immune surveillance. Within the tumor microenvironment, our understanding of the regulation of PD-L1 protein expression is limited. We showed that there was a 5-fold higher relative expression of PD-L1 on macrophages as compared with 4T1 tumor cells; coculture of macrophages with 4T1 cells augmented PD-L1 levels on macrophages, but did not upregulate the expression of PD-L1 on 4T1 cells. JAK2/STAT3 signaling pathway was activated in macrophages after coculture, and we further identified the JAK2 as a critical regulator of PD-L1 expression in macrophages during coculture with 4T1 cells. Collectively, our data reveal that breast cancer cells and CD169+ macrophages exhibit bidirectional interactions that play a critical role in tumor progression, and inhibition of JAK2 signaling pathway in CD169+ macrophages may be potential strategy to block tumor microenvironment-derived immune escape.

リンク情報
DOI
https://doi.org/10.1016/j.intimp.2019.106012
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/31865052
ID情報
  • DOI : 10.1016/j.intimp.2019.106012
  • PubMed ID : 31865052

エクスポート
BibTeX RIS