TAKAHASHI Futoshi

J-GLOBAL         Last updated: Jul 18, 2019 at 14:43
 
Avatar
Name
TAKAHASHI Futoshi
Affiliation
Osaka City University
Section
Graduate School of Science, Mathematics and Physics Course
Job title
Professor
Degree
Doctor of Science(Tokyo Institutte of Technology)

Profile

I am interested in and studying elliptic partial differential equations with variational structures.

Research Areas

 
 

Academic & Professional Experience

 
Apr 2009
 - 
Today
Professor, Departiment of Science, Osaka City University
 

Education

 
Apr 1990
 - 
Feb 2002
Department of mathematics, Tokyo Institute of Technology
 
Apr 1982
 - 
Mar 1987
College of Arts and Sciences, The university of Tokyo
 

Awards & Honors

 
Dec 2011
Study of nondegenerate critical points on nonlinear elliptic partial differential equations, The 3rd Fukuhara Prize, Mathematical Society of Japan
 

Published Papers

 
SANO Megumi, TAKAHASHI Futoshi
Applicable Analysis   98(10) 1875-1888   2019   [Refereed]
TAKAHASHI Futoshi
Advances in Nonlinear Analysis   8 868-884   2019   [Refereed]
On a weighted Trudinger-Moser type inequality on the whole space and related maximizing problem
Van Hoang Nguyen, Takahashi Futoshi
Differential Integral Equations   31(11-12) 785-806   Oct 2018   [Refereed]
SOME IMPROVEMENTS FOR A CLASS OF THE CAFFARELLI-KOHN-NIRENBERG INEQUALITIES
Sano Megumi, Takahashi Futoshi
DIFFERENTIAL AND INTEGRAL EQUATIONS   31(1-2) 57-74   Jan 2018   [Refereed]
Sano Megumi, Takahashi Futoshi
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS   56(3)    Jun 2017   [Refereed]

Misc

 
Daisuke Naimen, Futoshi Takahashi
   Sep 2018
In this note, we consider the following problem, \begin{equation*}
\begin{cases} -\Delta u=(1+g(x))u^{\frac{N+2}{N-2}},\ u>0\text{ in }B,\\
u=0\text{ on }\partial B, \end{cases} \end{equation*} where Tex and
Tex is a unit b...
Naoki Hamamoto, Futoshi Takahashi
   Aug 2018
In this paper, we prove Hardy-Leray and Rellich-Leray inequalities for
curl-free vector fields with sharp constants. This complements the former work
by Costin-Maz'ya \cite{Costin-Mazya} on the sharp Hardy-Leray inequality for
axisymmetric diverge...
Angelo Alvino, Adele Ferone, Anna Mercaldo, Futoshi Takahashi, Roberta Volpicelli
   Jul 2018
We prove an improved version of the trace-Hardy inequality, so-called Kato's
inequality, on the half-space in Finsler context. The resulting inequality
extends the former one obtained by \cite{AFV} in Euclidean context. Also we
discuss the validit...
Megumi Sano, Futoshi Takahashi
   Mar 2018
In this paper, we show a weighted Hardy inequality in a limiting case for
functions in weighted Sobolev spaces with respect to an invariant measure. We
also prove that the constant in the left-hand side of the inequality is
optimal. As application...
Jaeyoung Byeon, Futoshi Takahashi
   Jul 2017
In this paper, we study Hardy's inequality in a limiting case:
\int_{\Omega} |\nabla u |^N dx \ge C_N(\Omega) \int_{\Omega}
\frac{|u(x)|^N}{|x|^N \left(\log \frac{R}{|x|} \right)^N} dx for functions
Tex, where $\Omega...