TAKAHASHI Futoshi

J-GLOBAL         Last updated: Mar 4, 2019 at 17:28
 
Avatar
Name
TAKAHASHI Futoshi
Affiliation
Osaka City University
Section
Graduate School of Science, Mathematics and Physics Course
Job title
Professor
Degree
Doctor of Science(Tokyo Institutte of Technology)

Profile

I am interested in and studying elliptic partial differential equations with variational structures.

Research Areas

 
 

Academic & Professional Experience

 
Oct 2005
 - 
Today
Professor, Departiment of Science, Osaka City University
 

Education

 
Apr 1990
 - 
Feb 2002
Department of mathematics, Tokyo Institute of Technology
 
Apr 1982
 - 
Mar 1987
College of Arts and Sciences, The university of Tokyo
 

Awards & Honors

 
Dec 2011
Study of nondegenerate critical points on nonlinear elliptic partial differential equations, The 3rd Fukuhara Prize, Mathematical Society of Japan
 

Published Papers

 
On a weighted Trudinger-Moser type inequality on the whole space and related maximizing problem
Van Hoang Nguyen, Takahashi Futoshi
Differential Integral Equations   31(11-12) 785-806   Oct 2018   [Refereed]
SOME IMPROVEMENTS FOR A CLASS OF THE CAFFARELLI-KOHN-NIRENBERG INEQUALITIES
Sano Megumi, Takahashi Futoshi
DIFFERENTIAL AND INTEGRAL EQUATIONS   31(1-2) 57-74   Jan 2018   [Refereed]
Sano Megumi, Takahashi Futoshi
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS   56(3)    Jun 2017   [Refereed]
SUBLINEAR EIGENVALUE PROBLEMS WITH SINGULAR WEIGHTS RELATED TO THE CRITICAL HARDY INEQUALITY
Sano Megumi, Takahashi Futoshi
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS      Aug 2016   [Refereed]
Sano Megumi, Takahashi Futoshi
GEOMETRIC PROPERTIES FOR PARABOLIC AND ELLIPTIC PDE'S   176 241-255   2016   [Refereed]

Misc

 
Daisuke Naimen, Futoshi Takahashi
   Sep 2018
In this note, we consider the following problem, \begin{equation*}
\begin{cases} -\Delta u=(1+g(x))u^{\frac{N+2}{N-2}},\ u>0\text{ in }B,\\
u=0\text{ on }\partial B, \end{cases} \end{equation*} where Tex and
Tex is a unit b...
Naoki Hamamoto, Futoshi Takahashi
   Aug 2018
In this paper, we prove Hardy-Leray and Rellich-Leray inequalities for
curl-free vector fields with sharp constants. This complements the former work
by Costin-Maz'ya \cite{Costin-Mazya} on the sharp Hardy-Leray inequality for
axisymmetric diverge...
Angelo Alvino, Adele Ferone, Anna Mercaldo, Futoshi Takahashi, Roberta Volpicelli
   Jul 2018
We prove an improved version of the trace-Hardy inequality, so-called Kato's
inequality, on the half-space in Finsler context. The resulting inequality
extends the former one obtained by \cite{AFV} in Euclidean context. Also we
discuss the validit...
Megumi Sano, Futoshi Takahashi
   Mar 2018
In this paper, we show a weighted Hardy inequality in a limiting case for
functions in weighted Sobolev spaces with respect to an invariant measure. We
also prove that the constant in the left-hand side of the inequality is
optimal. As application...
Jaeyoung Byeon, Futoshi Takahashi
   Jul 2017
In this paper, we study Hardy's inequality in a limiting case:
\int_{\Omega} |\nabla u |^N dx \ge C_N(\Omega) \int_{\Omega}
\frac{|u(x)|^N}{|x|^N \left(\log \frac{R}{|x|} \right)^N} dx for functions
Tex, where $\Omega...