Complete exceptional surgeries on two-bridge links

Kazuhiro Ichihara

Nihon University
College of Humanities and Sciences

 $\label{local-base} \hbox{base on a joint work with} \\ \mbox{In Dae Jong (Kindai Univ.) \& Hidetoshi Masai (Tokyo.Inst.Tech.)}$

E-KOOK Seminar

Kobe University, August 21, 2019.

Complete exceptional surgeries on two-bridge links

K.Ichihara

Introduction

Dehn surgery

Exceptional surgery

2-bridge links

Definition & Known facts

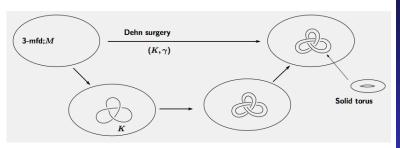
2-bridge links

Outline of Proof

K: a knot in a 3-manifold M

Dehn surgery on K

- 1) remove the open tubular neighborhood of K from M(to obtain the exterior E(K) of K)
- 2) glue a solid torus V back (along a slope γ)



2-bridge links

Outline of Proof

Introduction Dehn surgery

K: a knot in the 3-sphere S^3

For $f: \partial V \to \partial E(K)$ and the meridian m of V, the slope (i.e., isotopy class) γ of the loop f(m) on $\partial E(K)$ is called the surgery slope.

Such a slope on $\partial E(K)$ can be regarded as $r \in \mathbb{Q} \cup \{1/0\}$.

Dehn surgery on links

Dehn surgery & surgery slope for a LINK are defined in the same way.

Hyperbolic Dehn Surgery Theorem

Only finitely many Dehn surgeries on a hyperbolic knot (i.e., knot with hyperbolic complement) yield non-hyperbolic manifolds. [Thurston]

Recall:

Every closed orientable 3-manifold is;

- ► Reducible (containing essential sphere)
- ► Toroidal (containing essential torus)
- ► Seifert fibered (admitting a foliation by circles)
- ► Hyperbolic (admitting Riem.metric of const.curv.−1)

as a consequence of the Geometrization Conjecture including famous Poincaré Conjecture (1904) conjectured by Thurston (late '70s) established by Perelman (2002-03)

Complete exceptional surgeries on two-bridge links

K.Ichihara

Introduction

Dehn surgery

2-bridge links
Definition & Known facts

2-bridge links
Definition & Known facts

Outline of Proof

Essential branched surface

Exceptional surgery

A Dehn surgery on a hyperbolic knot or a link is called exceptional if it yields a non-hyperbolic manifold.

Due to Hyperbolic Dehn Surgery Theorem, each hyperbolic knot has only finitely many exceptional surgeries.

Ultimate Goal

Classify all the exceptional surgeries on hyperbolic knots and links in the 3-sphere S^3 .

Today's target: two-bridge links in S^3 .

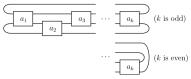
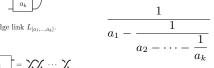


Figure 1. A diagram of a two-bridge link $L_{[a_1,...,a_k]}$.



 $[a_1, ..., a_k] :=$

 $|a_i|$ times right-handed half twists when $a_i > 0$

 $\begin{vmatrix} a_i \\ |a_i| \text{ times left-handed} \\ \text{half twists when } a_i < 0 \end{vmatrix}$

FIGURE 2. The right-handed twists when $a_i > 0$, and the left-handed twists when $a_i < 0$.

Let $L_{[a_1,\ldots,a_k]}$ denote the two-bridge link in S^3 , represented by the diagram above.

Complete exceptional surgeries on two-bridge links

K.Ichihara

Introduction

Dehn surgery

Exceptional surgery

2-bridge links
Definition & Known facts
Result

Known facts (2-bridge links)

Let M_L be a 3-mfd obtained by a Dehn surgery on a component of a 2-bridge link L.

Theorem [Wu (1999)]

If M_L contains an essential disk, annulus, or 2-sphere, then L is equivalent to $L_{[b_1,b_2]}$.

A key ingredient used in [Wu (1999)] is a construction of an essential branched surface, originally given by [Delman].

Theorem [Goda-Hayashi-Song (2009)]

A complete classification of L for which M_L is a non-trivial, non-core torus knot exterior, or a cable knot exterior. A necessary condition of L for which M_L is a prime satellite knot exterior.

Complete exceptional surgeries on two-bridge links

K.Ichihara

Introduction
Dehn surgery
Exceptional surgery
2-bridge links

Definition & Known facts
Result
Outline of Proof

L(r) contains neither essential D nor S.

L(r) contains an essential torus if and only if $L\cong L_{\lceil 2w,v,2u\rceil}$ & r=-w-u with

- 1. $w = 1, u = -1, |v| \ge 2$
- 2. $w \ge 2, |u| \ge 2, |v| = 1$ 3. $w \ge 2, |u| \ge 2, |v| \ge 2$

In all the cases, L(r) is never Seifert fibered, and L(r) is a graph manifold if and only if u,v,w satisfy 1st & 2nd conditions.

If L(r) contains an essential annulus, but contains no essential tori, then L(r) is a Seifert fibered space. L(r) is a Seifert fibered space if and only if, for w > 1, $u \neq 0, -1$,

- 1. $L \cong L_{[3,2u+1]} \& r = u$
- 2. $L \cong L_{[2w+1,3]} \& r = -w 1$
- 3. $L \cong L_{[3,-3]} \& r = -1$
- 4. $L \cong L_{[2w+1,2u+1]} \& r = -w + u$

Key ingredient: W. Floyd and A. Hatcher, The space of incompressible surfaces in a 2-bridge link complement, Trans. Amer. Math. Soc. 305 (1988), 575-599.

K.Ichihara

Introduction

Dehn surgery

2-bridge links
Definition & Known facts
Result

are hyperbolic.

2-bridge links Recult

Outline of Proof

Theorem [I.-Jong-Masai]

If a hyperbolic two-bridge link L admits a complete exceptional surgery with the surgery slopes (γ_1, γ_2) , then $L \& (\gamma_1, \gamma_2)$ are equivalent to one of those given in Table 1–8 (omitted):

Complete exceptional surgery on a hyperbolic link

Dehn surgery on whole components of the link to obtain a

closed non-hyperbolic 3-mfd, and all its proper sub-fillings

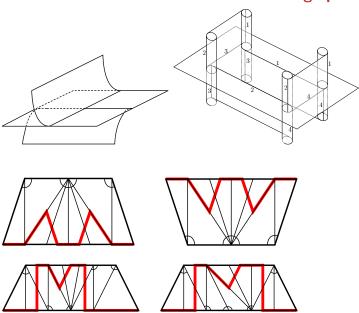
Theorem.

If a non-torus two-bridge link L admits a complete exceptional surgery, then L is equivalent to one of the followings:

- (a-1) $L_{[2m+1,2n-1]}$ with $m \ge 1$, $n \ne 0, 1$.
- (b-1) $L_{[2m,2n,2l]}$ with $m \ge 1$, $|n| \ge 2$, $|l| \ge 2$.
- (b-2) $L_{[2m,2n-1,-2l]}$ with $m \ge 1$, $|n| \ge 2$, $l \ge 1$.
- (b-3) $L_{[2m,2n+1,2l]}$ with $m \ge 1$, $|n| \ge 2$, $l \ge 1$.
- (b-4) $L_{[2m+1,2n,2l-1]}$ with $m \ge 1$, $n \ne 0$, $l \ne 0, 1$.
- (c-1) $L_{[2m+1,2n,-2 \operatorname{sgn}(l),2l-1]}$ with $m \ge 1$, $n \ne 0$, $l \ne 0,1$.
- (c-2) $L_{[2m+1,2n-1,-2\operatorname{sgn}(l),2l]}$ with $m \ge 1$, $n \ne 0,1$, $l \ne 0$.

Here sgn(l) denotes 1 (resp. -1) when l is positive (resp. negative). In addition, in (b-2) and (b-3), if m=1, then n < -2holds.

Essential branched surface & Allowable edge-path



Complete exceptional surgeries on two-bridge links

K.Ichihara

Introduction

Dehn surgery Exceptional surger

2-bridge links

Result

Outline of Proof Essential branched surface

If a non-torus two-bridge link L admits a complete exceptional surgery with the surgery slopes (γ_1,γ_2) , then $L\&(\gamma_1,\gamma_2)$ are equivalent to one of those given in Table1–8:

Link	slopes
$L_{[2,-4,4]}$	(8,0) (8,1) (7,0) (7,1) (1,1)
$L_{[2,4,4]}$	(7,1) (6,0) (6,1)
$L_{[2,4,-4]}$	(3,-3)
$L_{[2,2*B,-2*C]}$	(3 - C,-C - 1)

-[2,2*B,-2*C] (* -,)	
Link	slopes
$L_{[3,-2,-3]}$	(-4,-3) (-4,0) (-3,-4) (-3,0) (-3,1)
"	(0,3) (1,2) (1,3) (2,1) (2,2)
	(3,0) (3,1)
$L_{[3,-2,3]}$	(-3,-3) (-3,-2) (-3,-1) (-2,-3) (-2,-2)
	(-2,-1) (-1,-4) (-1,-3) (-1,-2) (-1,-1)
	(3,-1) (3,6) (4,-1) (4,5) (5,4)
	(-4,-1) (6,3)
$L_{[3,-2,-2*C-1]}$	(-C - 2,-C - 2)
$L_{[3,2,-3]}$	(-3,-1) (-3,0) (-2,-2) (-2,-1) (-1,-3)
	(-1,-2) (0,-3) (3,-1) (3,0) (3,4)
	(4,0) (4,3)
$L_{[3,2,3]}$	(-1,1) (-1,2) (-1,3) (0,1) (0,2)
	(0,3) (1,2) (2,0) (2,1) (3,0)
	(5,0) (5,1) (5,2) (5,3)
$L_{[3,-4,-3]}$	(0,2) (0,3) (1,1) (1,2) (1,4)
	(2,1) (2,3) (3,0) (3,2) (3,3)
	(4,1) (4,2) (4,3)
L _[3 -4 3]	(2,6) (3,4) (3,5) (3,6) (4,5)

Complete exceptional surgeries on two-bridge links

K.Ichihara

Introduction

Dehn surgery

Exceptional surgery

2-bridge links

Definition & Known facts

2-bridge links

Result
Outline of Proof

Outline of Proof

Essential branched surface

Using Computer

To study exceptional surgeries on the links, we further used a computer program developed in;

B.Martelli, C.Petronio, F.Roukema (2014) Exceptional Dehn surgery on the minimally twisted five-chain link

The program relies upon

SnapPy (based on SnapPea): computer software calculates various hyperbolic invariants for 3-manifolds. http://www.math.uic.edu/t3m/SnapPy/

Ingredients

We modified the original codes to use interval arithmetics, and applied the program **hikmot** developed in

Hoffman, Ichihara, Kashiwagi, Masai, Oishi, and Takayasu (2016) **Verified computations for hyperbolic 3-manifolds** http://www.oishi.info.waseda.ac.jp/~takayasu/hikmot/

It can possibly give us a rigorous complete classification of exceptional surgeries on a given hyperbolic link.

Fin.

Complete exceptional surgeries on two-bridge links

K.Ichihara

Introduction

Dehn surgery

Exceptional surgery

2-bridge links

Definition & Known facts Result