論文

査読有り 国際誌
2017年9月7日

Temperature-Sensitive Substrate and Product Binding Underlie Temperature-Compensated Phosphorylation in the Clock.

Molecular cell
  • Yuta Shinohara
  • Yohei M Koyama
  • Maki Ukai-Tadenuma
  • Takatsugu Hirokawa
  • Masaki Kikuchi
  • Rikuhiro G Yamada
  • Hideki Ukai
  • Hiroshi Fujishima
  • Takashi Umehara
  • Kazuki Tainaka
  • Hiroki R Ueda
  • 全て表示

67
5
開始ページ
783
終了ページ
798
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.molcel.2017.08.009

Temperature compensation is a striking feature of the circadian clock. Here we investigate biochemical mechanisms underlying temperature-compensated, CKIδ-dependent multi-site phosphorylation in mammals. We identify two mechanisms for temperature-insensitive phosphorylation at higher temperature: lower substrate affinity to CKIδ-ATP complex and higher product affinity to CKIδ-ADP complex. Inhibitor screening of ADP-dependent phosphatase activity of CKIδ identified aurintricarboxylic acid (ATA) as a temperature-sensitive kinase activator. Docking simulation of ATA and mutagenesis experiment revealed K224D/K224E mutations in CKIδ that impaired product binding and temperature-compensated primed phosphorylation. Importantly, K224D mutation shortens behavioral circadian rhythms and changes the temperature dependency of SCN's circadian period. Interestingly, temperature-compensated phosphorylation was evolutionary conserved in yeast. Molecular dynamics simulation and X-ray crystallography demonstrate that an evolutionally conserved CKI-specific domain around K224 can provide a structural basis for temperature-sensitive substrate and product binding. Surprisingly, this domain can confer temperature compensation on a temperature-sensitive TTBK1. These findings suggest the temperature-sensitive substrate- and product-binding mechanisms underlie temperature compensation.

リンク情報
DOI
https://doi.org/10.1016/j.molcel.2017.08.009
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/28886336
ID情報
  • DOI : 10.1016/j.molcel.2017.08.009
  • PubMed ID : 28886336

エクスポート
BibTeX RIS