Efficacy and Safety of Bone Management Agents Administered at 12 Weeks vs. 4 Weeks in Patients with Bone Metastases: A Systematic Review Junya Sato¹, Makoto Kodaira², Hiroyuki Harada³, Haruo Iguchi⁴, Taichi Yoshida⁵, Hiroyuki Shibata⁵ ¹Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, ²Kodaira Hospital, ³Division of Oral Health Sciences, Graduate School of Medical and Dental University, ⁴Sasebo Kyosai Hospital, ⁵Department of Clinical Oncology, Akita University Graduate School of Medical and Dental University, ⁴Sasebo Kyosai Hospital, ⁵Department of Clinical Oncology, Akita University Graduate School of Medical and Dental University, ⁴Sasebo Kyosai Hospital, ⁵Department of Clinical Oncology, Akita University Graduate School of Medical and Dental University Graduate School of Medical and Dental University, ⁴Sasebo Kyosai Hospital, ⁵Department of Clinical Oncology, Akita University Graduate School of Medical and Dental University Graduate School of Medical Acids Medic Background: Bone Modifying Agents (BMAs) have been used to prevent skeletal-related events (SRE) in cancer patients with bone metastases. In this meta-analysis, efficacy and adverse events (AEs) were studied based on a de-escalation strategy in which the BMA dosing interval was prolonged from 4 to 12 weeks. ## **Selection process for articles** ### **Key Results** - The meta-analysis included three randomized controlled studies (RCTs) of Zoledronic acid hydrate (ZA) (n = 2,663) and six RCTs (n = 141) on BMA other than ZA. - There was no difference in the incidence of SREs when comparing the dosing frequency of 12 versus 4 weeks for BMA (RR = 1.21, 95% CI [0.82-1.78], p = 0.33). - AEs related to treatment discontinuation were significantly less frequent with ZA given every 12 weeks than when given every 4 weeks (RR = 0.51 [0.30-0.89], p = 0.02). - Renal dysfunction leading to grade ≥3 or discontinuation of treatment with ZA occurred significantly less frequently with every 12-week dosing (RR = 0.33 [0.12-0.91], p = 0.03). ### **Details of studies included in the meta-analysis** | Study | Design | N | Disease (history of | ВМА | Study | Primary | Secondary | SRE or SSE* | AEs | Renal dysfunction | ONJ | Hypocalcemia | Others | |--------------------------------|-------------------------------------|-------|--|--|-----------------------------------|--------------------|--|--------------------------------|---|---|---------------------------|---|--| | CALGB | RCT | 1,822 | BMA use) Prostate, Multiple | ZA | period | endpoints
SRE | endpoints BPI, ECOG-PS, | 260/911(29%) | Treatment discontinuation AE: | Increased serum creatinine of ≥0.5 | 18/911(2.0%) | | Others | | -70604 ¹⁾ | non-
inferiority
trial | | myeloma
(8-9% patient used
any BMA) | ZA | 2 year | SKE | ONJ, Renal
dysfunction, SMR | vs 253/911(28%) | 42/911(5%) vs 18/911(2%) | mg/dL: 174/875(20%) vs 137/882(16%) Severe renal dysfunction (Grade ≥3 elevated serum creatinine level): 10/852(1.2%) vs 4/837(0.5%) | vs 9/911(1.0%) | Any grade:
329/866(38%)
vs 298/851(35%)
Grade4:
8/866(1%)
vs 5/851(1%) | | | OPTIMIZE-2 ²⁾ | RCT
non-
inferiority
trial | | Breast (All patient
used ZA and/or PA) | ZA | 1 year | SRE | Bone pain, BPI,
analgesic
consumption),
metabolic bone
markers, Safety | 44/200(22%)
vs 47/203(23%) | Any grade: 189/198(96%) vs
189/202(94%)
Grade 3-4: 94/198(47%) vs
86/202(43%)
Serious AE: 50/198(25%) vs
51/202(25%)
Treatment discontinuation AE:
23/198(12%) vs 18/202(9%) | Any grade: 19/198(10%) vs 16/202(8%) Treatment discontinuation: 6/198(3%) vs 1/202(1%) | 2/198(1%)
vs 0/202(0%) | | Nausea: 59/198(30%)
vs 53/202(26%)
vomiting: 32/198(16%
vs 34/202(17%)
Bone pain:
49/198(25%)
vs 48/202(24%) | | ZOOM ³⁾ | RCT
non-
inferiority
trial | 425 | Breast
(All patient used ZA) | ZA | 1 year | SRE | Bone pain,
analgesic use,
NTx, safety | 33/216(15%)
vs 31/209(15%) | Any grade: 184/216(85%) vs 159/209(76%) Grade 3-4:95/216(44%) vs 92/209(44%) Serious AE: 29/216(13%) vs 21/209(10%) Treatment discontinuation AE: 9/216(4%) vs 2/209(1%) | Any grade: 2/216(1%)
vs 1/209(<1%) | 3/216(1%)
vs 4/209(2%) | | Nausea: 33/216(15%)
vs 24/209(11%)
vomiting: 23/216(11%)
vs 14/209(7%)
Bone pain:
65/216(31%)
vs 56/209(27%) | | REFORM ⁴⁾ | RCT | 30 | Breast
(All patient used PA) | PA | 2year | CTx, BSAP | BPI, FACT-BP | 3/13(23%)
vs 4/17(24%) | | | | | | | REaCT ⁵⁾ | RCT
non-
inferiority
trial | 263 | Breast, Prostate(48% patient used any BMA) | Dmab(56 [%])
ZA(24 [%])
PA(20 [%]) | 2year | HRQoL, QLQ-
C30 | Pain, SSE, tSSE | 12/133(9%)
vs 44/130(34%) * | Treatment discontinuation AE: 22/133 (17%) vs 31/130 (24%) | Any grade: 4/133 ^(3%) vs 4/130 ^(3%) | 1/133(1%)
vs 1/130(1%) | Any grade:
3/133(2%)
vs 3/130(2%) | | | Fizazi.k ⁶⁾ | RCT | 111 | Breast, Prostate
(82% patient used ZA) | | 13W-25W | NTx(13W) | CTx, NTx (25W) | 6/35(17%)
vs 4/35(11%) | | | | | | | Lipton
(2007) ⁷⁾ | RCT | 255 | Breast cancer
(No use BP) | | 13W | NTx | Patient with -65%
decrease in NTx,
SRE, safety | | Any grade: 155/169(92%) vs
76/85(89%)
Serious AE: 28/169(17%) vs
12/85(14%)
Treatment discontinuation AE:
41/169(24%) vs 13/85(15%) | | | | | | Lipton
(2008) ⁸⁾ | RCT | 255 | Breast cancer
(No use BP) | Dmab(q4w or
q12w), BP(ZA,
PA, IN)(q4w) | 13W | NTx | NTx (25W) | | Any grade: 41/43(95%) vs
82/85(96%)
Serious AE: 15/43(35%) vs 29/85
(34%)
Treatment discontinuation AE:
1/43(2%) vs 4/85(5%) | | | | | | REDUCE ⁹⁾ | RCT | 101 | Prostate cancer | | 3.5years
(interim
analysis) | SSE | hypocapnia | | | | | Any grade:
23/57(40%)
vs 15/44(34%) | | Methods: PubMed, Cochrane, ICHUSHI, and CINAHL were searched for articles on BMA dosing intervals from outcomes measured were the incidence of SRE and related various AEs. A quantitative meta-analysis was performed using a random-effects model to calculate relative risk ratios (RR) and 95% confidence intervals (CI). ### Forest plot of studies including ZA only or BMA other than ZA comparing 4-weeks vs 12-weeks dosing schedule | | q12v | / | q4w | | | Risk Ratio | | Risk Ratio | | |-------------------------------------|------------------------|----------------------|---------------|-----------|--------------------------|-----------------------|------|-------------------------------|-----| | Study or Subgroup | Events | Total | Events | Total | Weight | M-H, Random, 95% CI Y | 'ear | M-H, Random, 95% CI | | | 2.1.1 Only ZA | | | | | | | | | | | ZOOM(2013) | 31 | 209 | 33 | 216 | 20.0% | 0.97 [0.62, 1.53] 20 | 013 | - | | | CALGB-70604(2017) | 253 | 911 | 260 | 911 | 26.6% | 0.97 [0.84, 1.13] 20 | 017 | * | | | OPTIMIZE-2(2017) | 47 | 203 | 44 | 200 | 22.3% | 1.05 [0.73, 1.51] 20 | 017 | - | | | Subtotal (95% CI) | | 1323 | | 1327 | 68.9% | 0.98 [0.86, 1.12] | | ♦ | | | Total events | 331 | | 337 | | | | | | | | Heterogeneity: Tau ² = 0 | 0.00; Chi ² | = 0.16, | df = 2 (P | = 0.92 |); $I^2 = 0\%$ | | | | | | Test for overall effect: 2 | Z = 0.26 (F | r = 0.79 |)) | | | | | | | | 2.1.2 BMA other than | ZA | | | | | | | | | | Fizazi(2009) | 4 | 35 | 6 | 35 | 7.7% | 0.67 [0.21, 2.16] 2 | 009 | | | | Addison(2014) | 4 | 17 | 3 | 13 | 6.6% | 1.02 [0.27, 3.78] 20 | 014 | | | | REaCT(2020) | 44 | 130 | 12 | 133 | 16.8% | 3.75 [2.08, 6.77] 20 | 020 | | | | Subtotal (95% CI) | | 182 | | 181 | 31.1% | 1.51 [0.46, 4.97] | | | | | Total events | 52 | | 21 | | | | | | | | Heterogeneity: Tau ² = 0 | 0.84; Chi ² | = 8.42, | df = 2 (P | = 0.01 |); I ² = 76% | | | | | | Test for overall effect: 2 | Z = 0.67 (F | 9 = 0.50 |)) | | | | | | | | Total (95% CI) | | 1505 | | 1508 | 100.0% | 1.21 [0.82, 1.78] | | • | | | Total events | 383 | | 358 | | | | | | | | Heterogeneity: Tau ² = 0 | 0.14; Chi ² | = 19.74 | , df = 5 (F | P = 0.00 | 01); I ² = 75 | % | 0.04 | 0.1 1 10 | 100 | | Test for overall effect: 2 | Z = 0.97 (F | = 0.33 | 3) | | | | 0.01 | Favours [q12w] Favours [q4w] | 100 | | Test for subgroup differ | rences: Ch | i ² = 0 4 | 8. df = 1 | (P = 0.4) | 49) $I^2 = 0\%$ | | | ravours [q 12w] Tavours [q4w] | | | | q12v | V | q4w | , | | Risk Ratio | | Risk Ratio | |--|--|------------------------------------|----------------------------------|-----------------------------------|-------------------------|---|--------|--------------------| | Study or Subgroup | Events | Total | Events | Total | Weight | M-H, Random, 95% C | l Year | M-H, Random, 95% C | | 4.1.1 Only ZA | | | | | | | | | | ZOOM(2013) | 2 | 209 | 9 | 216 | 11.9% | 0.23 [0.05, 1.05] | 2013 | - | | CALGB-70604(2017) | 18 | 911 | 42 | 911 | 26.9% | 0.43 [0.25, 0.74] | 2017 | | | OPTIMIZE-2(2017) | 18 | 202 | 23 | 198 | 26.1% | 0.77 [0.43, 1.38] | 2017 | _ | | Subtotal (95% CI) | | 1322 | | 1325 | 64.9% | 0.51 [0.30, 0.89] | | • | | Total events | 38 | | 74 | | | | | | | Test for overall effect: | - | | • | - 0.19 |); I ² = 40% |) | | | | Test for overall effect: | Z = 2.40 (F | | • | - 0.19 |); 1² = 40% |) | | | | Test for overall effect: 4.1.2 BMA other than | Z = 2.40 (F | P = 0.02 | • | | | | 0000 | | | Test for overall effect: 4.1.2 BMA other than Lipton(2008) | Z = 2.40 (F
ZA
4 | P = 0.02 | 2) 1 | 43 | 7.2% | 2.02 [0.23, 17.55] | | | | Test for overall effect: 4.1.2 BMA other than | Z = 2.40 (F | P = 0.02 | • | | 7.2% | | | • | | Test for overall effect: 4.1.2 BMA other than Lipton(2008) REaCT(2020) | Z = 2.40 (F
ZA
4 | 85
130 | 2) 1 | 43
133 | 7.2%
27.9% | 2.02 [0.23, 17.55]
1.44 [0.88, 2.35] | | • | | Test for overall effect: 4.1.2 BMA other than Lipton(2008) REaCT(2020) Subtotal (95% CI) | Z = 2.40 (F
ZA
4
31 | 85
130
215 | 1
22
23 | 43
133
176 | 7.2%
27.9%
35.1% | 2.02 [0.23, 17.55]
1.44 [0.88, 2.35] | | • | | Test for overall effect: 4.1.2 BMA other than Lipton(2008) REaCT(2020) Subtotal (95% CI) Total events | Z = 2.40 (F
1 ZA
4
31
35
0.00; Chi ² | 85
130
215
= 0.09, | 2)
1
22
23
df = 1 (P | 43
133
176 | 7.2%
27.9%
35.1% | 2.02 [0.23, 17.55]
1.44 [0.88, 2.35] | | • | | Test for overall effect: 4.1.2 BMA other than Lipton(2008) REaCT(2020) Subtotal (95% CI) Total events Heterogeneity: Tau² = | Z = 2.40 (F
1 ZA
4
31
35
0.00; Chi ² | 85
130
215
= 0.09, | 2)
1
22
23
df = 1 (P | 43
133
176
= 0.76 | 7.2%
27.9%
35.1% | 2.02 [0.23, 17.55]
1.44 [0.88, 2.35] | | • | ### Renal dysfunction (grade≥3 or treatment discontinuation) Test for subgroup differences: Chi² = 8.04, df = 1 (P = 0.005), I^2 = 87.6% | | q12v | v | q4w | | | Risk Ratio | | | Risk | Ratio | | |-------------------------------------|------------------------|----------|-----------|--------|------------------------|---------------------|------|------|----------|---------------|-----| | Study or Subgroup | Events | Total | Events | Total | Weight | M-H, Random, 95% CI | Year | | M-H, Ran | dom, 95% CI | | | Only ZA | | | | | | | | | | | | | CALGB-70604(2017) | 4 | 837 | 10 | 852 | 76.9% | 0.41 [0.13, 1.29] | 2017 | | _ | + | | | OPTIMIZE-2(2017) | 1 | 202 | 6 | 198 | 23.1% | 0.16 [0.02, 1.34] | 2017 | | • | + | | | Total (95% CI) | | 1039 | | 1050 | 100.0% | 0.33 [0.12, 0.91] | | | • | - | | | Total events | 5 | | 16 | | | | | | | | | | Heterogeneity: Tau ² = 0 | 0.00; Chi ² | = 0.56, | df = 1 (P | = 0.45 |); I ² = 0% | | | 0.01 | 0.1 | 1 10 | 400 | | Test for overall effect: 2 | Z = 2.15 (F | P = 0.03 | 3) | | | | | 0.01 | | Favours [q4w] | 100 | #### Nausea | | q12v | / | q4w | , | | Risk Ratio | | | | Risk Ratio | | | |-----------------------------------|------------------------|---------|---------------|--------|-------------------------|---------------------|------|------|-------------|------------|-------|-----| | Study or Subgroup | Events | Total | Events | Total | Weight | M-H, Random, 95% CI | Year | | M-H, I | Random, 9 | 5% CI | | | ZOOM(2013) | 14 | 209 | 23 | 216 | 39.3% | 0.63 [0.33, 1.19] | 2013 | | - | - | | | | OPTIMIZE-2(2017) | 34 | 202 | 32 | 198 | 60.7% | 1.04 [0.67, 1.62] | 2017 | | | - | | | | Total (95% CI) | | 411 | | 414 | 100.0% | 0.85 [0.53, 1.39] | | | | • | | | | Total events | 48 | | 55 | | | | | | | | | | | Heterogeneity: Tau ² = | 0.05; Chi ² | = 1.63 | , df = 1 (F | = 0.20 |); I ² = 39% | ,
D | | 0.01 | 0.1 | | 10 | 100 | | Test for overall effect: | Z = 0.64 (| P = 0.5 | 2) | | | | | 0.01 | Favours [q1 | 2w] Favo | | 100 | #### **AEs(any grade)** | | q12v | V | q4w | , | | Risk Ratio | | Risk Ratio | |-----------------------------------|------------------------|--------------|---------------|----------|---------------------------|--------------------|----------|--------------------------------| | Study or Subgroup | Events | Total | Events | Total | Weight | M-H, Random, 95% C | Year | M-H, Random, 95% CI | | 3.1.1 Only ZA | | | | | | | | | | ZOOM(2013) | 159 | 209 | 184 | 216 | 18.9% | 0.89 [0.81, 0.98] | 2013 | • | | OPTIMIZE-2(2017) | 189 | 202 | 189 | 198 | 36.2% | 0.98 [0.93, 1.03] | 2017 | • | | Subtotal (95% CI) | | 411 | | 414 | 55.1% | 0.94 [0.84, 1.05] | | • | | otal events | 348 | | 373 | | | | | | | leterogeneity: Tau² = | 0.00; Chi ² | = 4.40 | , df = 1 (F | P = 0.04 | I_{1}); $I_{2} = 77\%$ | | | | | Test for overall effect: | Z = 1.08 (| P = 0.2 | 8) | | | | | | | 3.1.2 BMA other tha | n ZA | | | | | | | | | Lipton(2007) | 76 | 85 | 155 | 169 | 21.1% | 0.97 [0.89, 1.06] | 2007 | • | | .ipton(2008) | 82 | 85 | 41 | 43 | 23.8% | 1.01 [0.94, 1.09] | 2008 | • | | Subtotal (95% CI) | | 170 | | 212 | 44.9% | 1.00 [0.94, 1.05] | | • | | otal events | 158 | | 196 | | | | | | | Heterogeneity: Tau² = | 0.00; Chi ² | = 0.46 | , df = 1 (F | P = 0.50 |)); $I^2 = 0\%$ | | | | | Test for overall effect: | Z = 0.17 (| P = 0.8 | 7) | | | | | | | Total (95% CI) | | 581 | | 626 | 100.0% | 0.97 [0.92, 1.02] | | • | | Total events | 506 | | 569 | | | | | | | Heterogeneity: Tau ² = | 0.00; Chi ² | = 5.80 | , df = 3 (F | P = 0.12 | 2); I ² = 48% | | <u> </u> | .01 0.1 1 10 10 | | Test for overall effect: | Z = 1.20 (| P = 0.2 | 3) | | | | 0. | .01 | | Test for subgroup diff | erences: C | $hi^2 = 0.7$ | 77, df = 1 | (P = 0. | .38), $I^2 = 0$ | % | | i avoaio [q izw] Tavoaio [q+w] | #### **Renal dysfunction (any grade)** | | q12v | V | q4w | | | Odds Ratio | | | Odds Ratio | | | | |---|-----------------------|--------------------|---------------|--------------------|--------------------------|--|------|------|------------------------------|-----|--|--| | Study or Subgroup | Events | Total | Events | Total | Weight | M-H, Random, 95% CI | Year | | M-H, Random, 95% CI | | | | | 6.1.1 Only ZA | | | | | | | | | | | | | | ZOOM(2013) | 1 | 209 | 2 | 216 | 0.9% | 0.51 [0.05, 5.72] | 2013 | | - <u>-</u> | | | | | CALGB-70604(2017) | 137 | 882 | 174 | 875 | 85.7% | 0.74 [0.58, 0.95] | 2017 | | | | | | | OPTIMIZE-2(2017)
Subtotal (95% CI) | 16 | 202
1293 | 19 | 198
1289 | 10.8%
97.4 % | 0.81 [0.40, 1.63]
0.75 [0.59, 0.94] | 2017 | | • | | | | | Total events | 154 | | 195 | | | | | | | | | | | Heterogeneity: Tau ² = 0 | .00; Chi ² | = 0.15, | df = 2 (P | = 0.93 |); $I^2 = 0\%$ | | | | | | | | | Test for overall effect: Z | = 2.49 (F | P = 0.01 |) | | | | | | | | | | | 6.1.2 BMA other than 2 | ZA | | | | | | | | | | | | | REaCT(2020)
Subtotal (95% CI) | 4 | 130
130 | 4 | 133
133 | 2.6%
2.6% | 1.02 [0.25, 4.18]
1.02 [0.25, 4.18] | 2020 | | | | | | | Total events | 4 | | 4 | | | | | | | | | | | Heterogeneity: Not appl | icable | | | | | | | | | | | | | Test for overall effect: Z | = 0.03 (F | P = 0.97 | ') | | | | | | | | | | | Total (95% CI) | | 1423 | | 1422 | 100.0% | 0.75 [0.60, 0.94] | | | ♦ | | | | | Total events | 158 | | 199 | | | | | | | | | | | Heterogeneity: Tau ² = 0
Test for overall effect: Z | - | | • | = 0.95 |); $I^2 = 0\%$ | | | 0.01 | 0.1 1 10 | 100 | | | | Test for subgroup differ | • | | , | (P = 0.6 | 66), I ² = 0% | % | | | Favours [q12w] Favours [q4w] | | | | #### **Bone pain** | | q12v | / | q4w | , | | Risk Ratio | | Risk Ratio | | |-------------------------------------|------------------------|---------|---------------|----------|-----------------|------------------------|------|------------------------------|-----| | Study or Subgroup | Events | Total | Events | Total | Weight | M-H, Random, 95% CI Ye | ear | M-H, Random, 95% CI | | | ZOOM(2013) | 56 | 209 | 65 | 216 | 56.7% | 0.89 [0.66, 1.20] 20 |)13 | - | | | OPTIMIZE-2(2017) | 48 | 202 | 49 | 198 | 43.3% | 0.96 [0.68, 1.36] 20 |)17 | * | | | Total (95% CI) | | 411 | | 414 | 100.0% | 0.92 [0.73, 1.16] | | • | | | Total events | 104 | | 114 | | | | | | | | Heterogeneity: Tau ² = 0 | 0.00; Chi ² | = 0.10 | , df = 1 (F | P = 0.75 | $5); I^2 = 0\%$ | | 0.01 | 0.1 1 10 | 100 | | Test for overall effect: 2 | z = 0.72 (I | P = 0.4 | 7) | | | | 0.01 | Favours [q12w] Favours [q4w] | 100 | Each incidences were shown to q4w vs q12w. ZA: zoledronic acid, Dmab: denosumab, PA: pamidronic acid, N: Number of patients, AEs: Adverse events, HRQoL: Health-related quality of life, QLQ-C30: The European Organization for Research and Treatment of Cancer QLQ-C30, CTx: crosslinked N-terminal telopeptide type I collagen, BSAP: bone-specific alkaline phosphatase, BPI: brief pain inventory, NTx: type I collagen N-terminal telopeptide, BMA: bone modifying agents; FACT-BP: Functional Assessment of Cancer Therapy Bone Pain, SMR: Skeletal events, SSE: symptomatic skeletal events, tSSE: time to symptomatic skeletal events, ON. osteonecrosis of the jaw, RCT: randomized controlled trial, BP: bisphosphonates 1)JAMA 2017;317:48-58., 2)JAMA Oncol 2017;3:906-12, 3)Lancet Oncol 2013;14:663-70, 4)Springerplus 2014;3:577, 5)Eur J Cancer 2021;142:132-40, 6)J Clin Oncol 2009;27:1564-71, 7)J Clin Oncol 2007;25:4431-7, 8)Clin Cancer Res 2007;14:6690-6, 9)Eur Soc Med Oncol 2014;25(Suppl 4):540 Conclusion: This meta-analysis showed no influence of BMA de-escalation on the incidence of SRE, nevertheless, AEs appeared to reduce with the de-escalated usage of ZA. Prolonging the BMA dosing interval from 4 to a maximum of 12 weeks is a beneficial treatment strategy that reduces the risk of renal dysfunction without increasing SRE.