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A B S T R A C T

Artificially patterned magnonic crystals serve as a promising candidate for the emerging research fields of
magnonics and spintronics. Here, we investigate the spin-wave dispersion in a diatomic nanodot lattice made of
Ni80Fe20 nanodots of two different diameters placed in close proximity to form a binary magnonic crystal with a
complex double-dot unit cell. The frequency dispersion of SW eigenmodes experimentally measured by the
Brillouin light-scattering technique is in good agreement with the numerically calculated band structure derived
from the linearized Landau-Lifshitz equation. Due to the change of the nature of interaction among the dots in
two mutually perpendicular orientation of the applied bias magnetic field, magnonic band structure, including
the slope of the dispersion curves, varies significantly. The anisotropic SW propagation is also studied nu-
merically by local excitation of spin-wave dynamics in this system. This phenomenon is further explained by the
calculated iso-frequency contours. Efficient manipulation of spin waves in this new type of two-dimensional
magnonic crystal is promising for the development of nanoscale magnonic and spintronic devices.

1. Introduction

The rapid development in the emerging research field of ‘magno-
nics’ and ‘magnon-spintronics’ is connected to the possibility of using
spin waves (SWs) as means for low power signal transmission and data
processing. Recently, magnetic nanostructures have emerged as a pro-
mising candidate in the fields of spin-torque- (ST-) and spin-Hall nano-
oscillators (SHNO) [1,2] and magnonic crystals (MCs) [3,4], in addition
to their conventional usage in magnetic storage, memory and sensor
devices. The MCs represent the magnetic counterpart of photonic,
phononic and plasmonic crystals offering unprecedented opportunity to
design and exploit new generation GHz-frequency logic devices [5],
filters [6], phase shifters [7], couplers [8], transistors [9] and high-
sensitivity magnetic sensors [10]. Magnonic devices offer better pro-
spects for miniaturization as SWs operating at GHz or sub-THz fre-
quencies have micrometric or nanometric wavelength. Knowledge of
the nature of SW propagation and magnonic band structure of any MC
is essential to any desired application.

A range of theoretical and experimental studies have surged during
last one decade, which continue to grow at a fast pace on the tailoring

of magnonic spectra and band structure in one- [11,12], pseudo-one
[13], two- [14–17], and three-dimensional [18,19] arrays of magnetic
nanostructures. Recently, efficient control over the magnonic band
structure in dense arrays of width-modulated permalloy nanowires
have been reported [20]. Initial works on SW quantization and pro-
pagation in ferromagnetic nanodot arrays showed neither dispersive
modes nor magnonic band gap formation [21,22]. The SW dynamics in
those systems were mainly governed by the internal fields of the na-
nodots and dipolar interactions between the nanodots. Afterwards, a
few experimental studies showed the evidence of dispersive nature and
propagating character of SW modes in two-dimensional arrays of clo-
sely packed nanodots. Considerable anisotropy concerning the dyna-
mical coupling and the existence of maxima and minima in the dis-
persion curves of the propagating SWs for different bias magnetic field
orientations has been observed in some nanodot arrays of square and
hexagonal symmetry [23–25]. More recently, Graczyk et al., demon-
strated the magnonic band structure and formation of hybridization and
Bragg bandgap in a continuous permalloy film induced by vertical
dynamic coupling with an array of permalloy/Pt nanodots [26].

Newer and more complex structures are nowadays being introduced
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for better functionalities and tunable properties. These include bi-
component magnonic crystals (BMCs) [27–30] and magnonic quasi-
crystals [31,32] which provide more control parameters for tuning the
magnonic bands. Nonetheless, the improved device operations ne-
cessitate more complex fabrication processes, including multistep li-
thography and two-photon photolithography. Binary magnonic crystal
(BMN) is another type of complex magnonic crystal, which can be
fabricated using simpler lithographic technique by placing two different
structures of the same material next to each other forming a complex
base. Hitherto, very few works have been reported on such structures.
BMN in the form of anti-ring or annular antidot lattice, showed some
new modes due to the interaction between the antidot and the central
dot regions [33,34]. Another new structure has been reported where
two antidot sublattices of alternating diameters create non uniform
demagnetizing field which significantly alters the field dependent SW
mode transformation [35].

Recently, we have introduced a new type of BMN in the form of a
diatomic nanodot lattice where two nanodots of different sizes are
placed in close proximity to each other. We have reported the bias-field-
dependent resonant modes and their spatial profiles at q ≈ 0 wave
vector and observed the effect of the double-dot unit cell in its field
dependent SW spectra [36]. In the present study, we have investigated
both experimentally and numerically how the complex double-dot unit
cell engineers the SW dispersion with wave vector in two orthogonal
orientations of the bias magnetic field. The calculated iso-frequency
contours explain the origin of anisotropic propagation of some of the
eigenmodes. Achievement of band tunability in such complex structure
by simply changing the bias field orientation is useful for practical
implementation.

2. Experimental details

A 30-nm-thick circular shaped Ni80Fe20 (permalloy, Py hereafter)
diatomic nanodot array of 500 μmx 500 μm area, characterized by a
complex double-dot unit cell arranged on a rectangular lattice, has been
fabricated on self-oxidized Si [1 0 0] substrate by means of electron-
beam lithography (EBL) and electron-beam evaporation (EBE). The
deposition chamber was maintained at a base pressure of 2×10-8 Torr
during the evaporation and the lithography was performed for a dose
time of 1.0 μs at a beam current of 500 pA. The diameter of the larger
and smaller dot of one unit is about 700 nm and 280 nm, respectively.
The separation between larger and smaller dot (intra-unit) is about
35 nm, while the inter-unit separation is about 170 nm. The corre-
sponding lattice constants are a=1185 nm and b=850 nm, as shown
in the inset of Fig. 1(b). The diameter of the dots and the edge-to-edge
separation between the dots show a maximum of ±5% and ±10%
deviation, respectively.

Dispersion characteristics of thermal SWs in this Py diatomic dot
array was recorded by Brillouin light scattering (BLS) technique. Due to

the interaction between incident photons and magnons (quanta of
SWs), light is scattered inelastically in BLS technique. The BLS spectra
were measured and analyzed in the 180° backscattered geometry using
a monochromatic solid state laser light (wavelength λ=532 nm,
power=130 mW, spot size ≈ 40 μm) and a Sandercock-type (3+3)
pass tandem Fabry-Perot interferometer (JRS Scientific Instruments). As
a consequence of the conservation of momentum during the inelastic
scattering, the in-plane transferred wave vector q depends on the in-
cidence angle of light θ according to the equation: q = (4π/λ)sinθ. The
incident and scattered beams were maintained in a cross polarized
geometry during experiment to minimize the phonon contribution to
the scattered light. The sample was subjected to an in-plane magnetic
field, H=1.0 kOe during the measurements, ensuring magnetic sa-
turation of the sample, as can be inferred from magnetic hysteresis loop
[36]. The BLS spectra were measured in the Damon-Eshbach geometry
where the bias magnetic field and wave vector are mutually perpen-
dicular, both being in the sample plane. The SW dispersion measure-
ments have been done for two different values of φ, namely φ=0° and
90°, as shown in Fig. 1(a). We have recorded the spectra for up to two
Brillouin Zones (BZs), i.e. q=0.73×107 rad/m for φ=0° and
q=0.53× 107 rad/m for φ=90°.

3. Theoretical approach and numerical simulations

We have calculated and interpreted the SW excitation spectra and
dispersion of the diatomic dot lattice by plane wave method (PWM)
[18,27]. In this method the Landau-Lifshitz (LL) equation, i.e. the
equation of motion of the magnetization vector M (r,t) in space and
time is solved under an effective magnetic field Heff :

∂

∂
= − ×

M r M r H rt
t

γμ t t( , ) ( , ) ( , )0 eff (1)

In general Heff is the sum of several components and can be written
as:

= + +H H H Heff ex MS, where H is the uniform applied magnetic
field, = ∇ ∇H r t l r m r t( , ) ( . ( ) ) ( , )ex ex

2 is the exchange field with exchange
length =l A μ M2ex s0

2 , HMS is the magnetostatic field and A is the ex-
change stiffness constant. The exchange field and the magnetostatic
field are space and time dependent. In the linear approximation, the
component of the magnetization vector parallel to the static magnetic
field is constant in time, and its magnitude is much greater than that of
the perpendicular components. So, ≪m r rt M| ( , )| ( )s , where

̂= +M r r m rt M z t( , ) ( ) ( , )S . In our calculations, we have assumed the
static magnetic field to be oriented always along the z axis.
Subsequently, all the periodic functions (both in time and space), in-
cluding the static and dynamic parts of the magnetic fields and mag-
netization components, are mapped onto the Fourier space using
Bloch’s theorem [18]. Thus, the LL equation is converted to an algebraic
eigenvalue problem, which is solved by standard numerical routines to

Fig. 1. (a) Schematic of the BLS measurement in backscattered geometry. The incident and scattered beams and the angle θ between them are shown. The in-plane
orientation (φ) of the applied bias magnetic field H is also shown. (b) MFM image of the array. The inset shows the SEM image of the sample with the parameters.
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find out the eigenvalues (SW frequencies) and eigenvectors (amplitude
of the dynamical component of the magnetization vector) [18,27].

The magnetostatic field is divided into a static (HMS(r)) and dy-
namic (hMS(r,t)) component. The dynamic component of the magneti-
zation vector is dependent on both space and time and has the form:

=m r m rt e( , ) ( ) i πν2 t. The time dependence of the dynamic magneto-
static field has the same form as that of the dynamic component of the
magnetization vector, i.e. hMS(r,t)= hMS(r) ei2πνt. In the reciprocal
space to express the dynamic components of the magnetization and
magnetostatic field we use Bloch’s theorem, which asserts that a solu-
tion of a differential equation with periodic coefficients can be re-
presented as the product of a plane wave with the wave vector q = (qy,
qz) from the first BZ and a periodic function, which can be expanded
into Fourier series:

∑= +m r m G e( ) ( )
G

q
i q G r( ).

(2)

where G = (Gy, Gz) denotes a reciprocal lattice vector of the periodic
structure. The saturation magnetization (Ms) and the squared exchange
length lex

2 are periodic functions of position in MC and hence they can
also be mapped onto the reciprocal space using the Fourier transfor-
mation formulas:

∑=M r M G e( ) ( )s
G

s
iG r.

∑=l r l G e( ) ( )ex
G

ex
iG r2 2 .

where the Fourier coefficients Ms (G) and l G( )ex
2 are determined ana-

lytically. The material parameters used were saturation magnetization
Ms=800 emu.cm−3, anisotropy field Hk=0, Lande g-factor g=2 and
exchange stiffness constant A=1.3×10−6 erg.cm−1. The value of A
was taken from the literature [37], whereas the other parameters were
obtained from ref. 36. To avoid any nonphysical frequency values,
small but finite values of Ms and A are used for the air gap in between
the magnetic materials. We have taken 450 plane waves to ensure a
satisfactory convergence of the eigenvalue problem. The square of the
modulus of the fundamental harmonics of magnetization determines
the intensities calculated from PWM, which is compared with the ex-
perimentally measured peak intensities by BLS.

To provide an illustrative demonstration of how the SW propagation
occurs in the diatomic nanodot array, we have simulated the SW re-
sponse to local microwave excitation for two different orientations of
the in-plane bias magnetic field using OOMMF software [38]. The mi-
cromagnetic simulations have been performed on a 3× 3 dots matrix
after application of a periodic boundary condition. During the simula-
tions the sample is divided into cuboidal cells of dimensions
4× 4×30 nm3 where the lateral cell size is below the exchange length
of Py (≈5.2 nm) to include the exchange interaction effect. The mate-
rial parameters used in micromagnetic simulations are same as those
used in PWM calculation. Initially the static magnetic configuration is
obtained by applying a large enough magnetic field to saturate the
sample magnetization followed by the reduction of the magnetic field
to the bias field value. Then the system was allowed to reach the
equilibrium. After we obtain the static magnetic configuration, we
apply a time-varying field of “sinc” profile (frequency cut-off of 30 GHz)
to launch SWs at the centre of the said array. The excitation is applied
over a square region of 50 nm width.

4. Results and discussions

Fig. 1(a) schematically depicts the experimental BLS set up in con-
ventional backscattered geometry. To study the magnonic band struc-
ture of 2D MCs, we need to change the SW wave vector, as well as its
direction on the sample surface. The angle θ is varied by rotating the
sample in the vertical plane, thus ensuring the variation of the magnon
wave vector q and measurement of SW dispersion along the principal
directions of the BZs of 2D MCs. On the other hand, by varying φ, one
can study the effect of changing the angle between the applied in-plane
magnetic field direction (assumed to be along the average sample
magnetization) and the reference axis of the sample. In our experiment,
we have studied the wave vector dispersion of the SWs in two different
orientations of the in-plane bias magnetic field by varying θ, while
fixing φ at 0° or 90°. Fig. 1(b) shows the magnetic force microscopy
(MFM) image of the sample measured at remanence. A clear magnetic
contrast is observed in the larger dot showing prominent edge de-
magnetized regions, but no such contrast is observed in the smaller dot.

In Fig. 2(a), we present few representative BLS spectra at varying
wave vector for φ= 0° configuration (H=1 kOe) showing the

Fig. 2. (a) The Stokes side of BLS spectra taken at different values of the in-plane transferred wave vector q (denoted in units of 107 rad/m) for φ=0°. The spectra
are horizontally flipped for convenience. Mode numbers are mentioned for corresponding spectra. (b) Relative values of BLS intensities calculated by PWM for
different values of q as shown here. (c) Magnonic band structure for φ=0°. Thin lines are PWM results. Bold lines emphasize intense excitations as predicted by
PWM. Solid circles represent the peaks in the BLS spectra. The dashed vertical line is the boundary of first BZ.
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evolution of the SWmodes with wave vector. The calculated SW spectra
for the corresponding wave vectors and the full SW dispersion for this
sample at the same bias field configuration are shown in Fig. 2(b) and
(c), respectively. In the dispersion presented in Fig. 2(c), the black lines
represent the magnonic bands calculated from PWM, wherein the blue
bold lines indicate the magnonic bands with large PWM intensity. The
experimentally measured BLS intensities are superimposed on the cal-
culated dispersion by red solid circles. The boundary of the first BZ is
indicated by the green dotted vertical line. For φ= 0°, the experi-
mentally obtained BLS spectra are characterized by four well defined
modes as illustrated in Fig. 2(a). The experimental dispersion within the
first BZ show four distinct modes, which are qualitatively reproduced
by the PWM calculation. However, the frequency of mode 1 in the
experiment does not agree well with theory. At the boundary of the first
BZ, another mode M'1 becomes visible in the experiment, whose fre-
quency lies close to the lowest frequency mode with significant in-
tensity in PWM calculation. In addition, another mode gains significant
intensity in PWM calculation at the boundary of the first BZ between
M2 and M3, which is reproduced in the experiment only near the
boundary of the second BZ. Other modes are in good agreement with
theory for the whole range of wave vectors. The first mode (M1) is
dispersionless, while M2 shows a significant dispersion with mirror
symmetry with respect to the first BZ boundary presumably due to
zone-folding. On the contrary, M3 and M4 show rather asymmetric
dispersion with respect to the first BZ boundary. We will attempt to
understand these behaviours by analyzing the SW mode profiles later in
this article.

The experimental and theoretical SW spectra along with the SW
dispersion for up to two BZs in φ= 90° orientation of the applied
magnetic field are shown in Fig. 3(a)–(c). Experimentally four modes
are observed in this orientation. However, the lowest frequency mode
(M1) is not theoretically obtained in this orientation. The mode M2
again shows a dispersive nature with mirror symmetry with respect to
the boundary of the first BZ but its curvature reduces presumably due to
the reduced group velocity of this SW mode in this orientation. The
mode M3 is almost dispersionless both in theory and calculation. M4 is
also dispersionless within the first BZ both in theory and experiment,

while another high intensity mode was visible in PWM calculation
between M3 and M4 within the first BZ, which was not resolved ex-
perimentally. Interestingly M4 in experiment splits at the boundary of
the 1st BZ into two modes (M′4 and M″4) in the second BZ. These two
modes are now well reproduced in PWM calculation. Two additional
modes gain significant intensity in PWM calculation between M′4 and
M″4, which are not resolved in the experiment.

Deeper insight into the SW dynamics is obtained by calculating the
SW mode profiles using the PWM, which correspond to the modulus of
amplitude of the x-component of the dynamic magnetization, of the
relevant experimental modes. Fig. 4(a) and (b) depict the spatial pro-
files of the SW modes at q= 0 (centre of BZ) and q= π/a (boundary of
the 1st BZ) for φ= 0° and Fig. 4(c) and (d) depict the same for φ= 90°.
For φ= 0°, the calculated mode profile of M1 at q=0 shows a back-
ward volume (BV) magnetostatic SW mode with m=3 with the power
distributed over the larger dots in the array in slightly asymmetric
manner within each dot. Previously, it was observed that the frequency
of M1 is more accurately reproduced in micromagnetic simulations only
after incorporation of the edge deformation [36], which could not be
done in the PWM calculation. Hence, precise agreements between the
experimental and theoretical mode frequencies are not obtained for this
mode. We do not observe any substantial changes in the spatial profiles
of M1 at q= π/a. The mode M2 at q= 0 again shows a mixed (n)-
backward volume and (m)-Damon Eshbach (BV-DE) character in the
larger dot with (m, n) as (5, 2). At q= π/a, this mode transforms to (4,
2). For M3, the mode profile in the larger dot for both q= 0 and π/a
have mixed BV-DE character with mode numbers (7, 3) but the overall
power distribution on different lobes changes. On the other hand, in the
smaller dot the mode shows simple BV character with m=2 at both
q=0 and π/a. For mode M4, the BV-DE mode transforms from (6, 4) to
(4, 5) as q changes from 0 to π/a. For φ= 90°, the magnetic field is
directed perpendicular to the diatomic unit and the edge effects become
negligible compared to the former orientation, φ= 0°. Hence, the
lowest frequency mode M1 is not obtained in the simulation. For M2,
we observe BV-like mode with m=4 and 1, in the larger and smaller
dot, respectively at q= 0. Here, power is equally distributed in both
dots. However, at q= π/a, the mode transforms to BV-DE nature in the

Fig. 3. (a) The Stokes side of BLS spectra taken at different values of the in-plane transferred wave vector q (denoted in units of 107 rad/m) for φ=90°. The spectra
are horizontally flipped for convenience. Mode numbers are mentioned for corresponding spectra. (b) Relative values of BLS intensities calculated by PWM for
different values of q as shown here. (c) Magnonic band structure for φ=90°. Thin lines are PWM results. Bold lines emphasize intense excitations as predicted by
PWM. Solid circles represent the peaks in the BLS spectra. The dashed vertical line is the boundary of first BZ.
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larger dot with mode numbers (6, 2) and purely BV nature in the
smaller dot with m=2. In this case the power is concentrated primarily
in the smaller dot. For M3, at q=0, the mode shows a BV-DE character
with mode numbers (7, 2) in the larger dots and a BV-like character
with m=1 in the smaller dot. It transforms to BV-DE mode with (6, 2)
in the larger dot and BV-like mode with m=2 in the smaller dot at
q= π/a. In M3, the power is distributed primarily in the larger dot at
both wave vectors. The mode M4 at q=0, shows a mixed BV-DE nature
with m=9, n=4. The power is mainly concentrated in the larger dot
with comparatively more power at the edges compared to the central
regions of the dot. This mode splits into two modes at the boundary of
the 1st BZ and the power is again concentrated in the larger dot for both
the modes. The lower frequency band M′4 shows mixed BV-DE char-
acteristics (m=8 and n=3). The higher frequency branch M″4 ex-
hibits more complex nature with mixed BV-DE characteristics (m=7,
n=5). In the DE geometry, the spatial distribution shows an asym-
metric nature presumably due to an interaction with the smaller dot;
the latter shows weak power with mode numbers, m=1, n=2.

The usual band diagram representation and the corresponding SW
mode profile are not sufficient to provide a deep insight into the pro-
pagating nature of the system under investigation. To this end, we have
investigated the propagation of the SWs under local excitation for two
mutually perpendicular orientations of the applied bias magnetic field.
Since the lowest frequency mode, which is strongly affected by the
rough edges of the dots, is not well reproduced in the PWM calculations
and the highest frequency modes exhibit a complex nature, we mainly
focus on the uniform mode (M2 for φ=0°, M3 for φ=90°) and the
interacting mode (M3 for φ=0°, M2 for φ=90°) for this study. The
experimental and simulated angular dispersion [39] of the frequency of
the uniform mode and the interacting mode shows a nearly constant
frequency of the uniform mode with negligible angular dispersion but a
sudden transition in the frequency of the interacting mode for φ > 30°.
Consequently, the frequency of the interacting mode is greater than the
uniform mode for φ < 30° and less than the uniform mode for
φ > 30°. Also, the weaker coupling between the elements flattens the
SW dispersion with the wave vector for M3. Fig. 5 shows exemplary
simulation results of the SW propagation of the uniform and the in-
teracting modes under local excitation for φ=0° and 90°. For this the

SW response to microwave excitation, applied at the centre of a 3×3
array using a time-varying field of “sinc” profile, has been simulated
(Fig. 5(a) and (b) for φ= 0° and 5(c) and (d) for φ= 90°). Fig. 5(a)
reveals that M2 (frequency ≈ 9.0 GHz) propagates almost uniaxially in
the DE geometry. The mode M3 (frequency ≈ 10.5 GHz) exhibits a
weak but similar propagation nature in the DE geometry (Fig. 5(b)).
This affirms the anisotropic propagation of SWs (in the DE geometry)
through the diatomic dot array for φ= 0°. On the contrary, for φ= 90°
the dispersion of M2 (frequency ≈ 8.5 GHz) is isotropic throughout the
whole lattice (Fig. 5(c)). However, due to its flatter dispersion the en-
ergy transfer is less compared to the φ= 0° case. For M3 (frequency ≈
9.0 GHz) negligible energy gets transferred due to its almost dis-
persionless behaviour.

To obtain further insight into the origin of the anisotropy of SW
propagation for different bias-field orientations, we have further com-
puted the iso-frequency contours for the uniform mode and the inter-
acting mode. The iso-frequency contours, i.e. the curves of the constant
frequency in the wave vector space are wave counterparts of the Fermi
surfaces [40]. Important indications regarding the preferential direc-
tions of SW propagation are provided by the group velocity, i.e. normal
direction to the iso-frequency contour, which defines the direction of
energy flow within the structure. At a given frequency, the lattice under
investigation may behave in a dispersive fashion along certain direc-
tions, while being non-dispersive in others. A single iso-frequency
contour is obtained by fixing the frequency at a fixed value and then
scanning qx from−π/a to+π/a and qy from−π/b to+π/b. The dis-
persion relations of the diatomic dot lattice in the form of iso-frequency
contours for the M2 and M3 bands in φ= 0° configuration are pre-
sented in Fig. 6(a) and (b). The three-dimensional surface plot of the
said magnonic bands, depicting the steepness of dispersion has also
been shown in Fig. 6(c) and (d).

The dispersion contours of constant frequency corresponding to
both M2 and M3 magnonic bands exhibit anisotropic behaviour in
φ=0° configuration. In M2, a central minima surrounded by hyper-
bolic contours are observed, whereas in M3 a ‘saddle point’ is observed
at the centre of the dispersion surrounded again by hyperbolic contours.
The surface plots of these two bands, as shown in Fig. 6(c) and (d),
confirm that M2 undergoes a steeper dispersion (from 8.8 GHz to

Fig. 4. Spatial profiles of the selected modes for (a) q=0, (b) q= π/a at φ=0° and (c) q=0, (d) q= π/a at φ=90°.
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9.1 GHz) as opposed to the mode M3 (from 10.39 GHz to 10.42 GHz).
On the other hand, Fig. 7 depicts the iso-frequency contours and surface
plots for M2 and M3 bands in φ= 90° configuration. In this case, the
dispersion of M2 band is found to be almost isotropic in nature. But the
steepness of dispersion is lowered as opposed to φ= 0° orientation, as
observed from the surface plot depicted in Fig. 7c (from 8.34 GHz to
8.44 GHz). On the other hand, the iso-frequency contour and the surface
plots of M3 band for φ= 90°, as shown in Fig. 7(b) and (d), reveals a
very shallow dispersion in the magnonic band. Hence, from the iso-
frequency contours, we conclude that SW propagation is anisotropic for
φ=0° but becomes nearly isotropic for φ=90°.

5. Conclusions

In summary, we have performed a combined experimental and
numerical study of magnonic band structure and iso-frequency contours
in magnetostatically coupled diatomic nanodot arrays with a complex
double-dot unit cell. Frequency evolution of several spin eigenmodes as
a function of wave vector in two different orientations of the applied in-
plane magnetic field (φ=0° and 90°) has been studied. A steeper dis-
persion of the uniform mode compared to the interacting mode, whose
frequency is blue shifted with respect to the uniform mode, is found in
φ=0° configuration. Due to weaker interaction among the dots, the

Fig. 5. Power profiles of different SW bands, after application of a local excitation at the central region of the array: (a) M2 at φ=0°, (b) M3 at φ=0°, (c) M2 at
φ=90°, (d) M3 at φ=90°.

Fig. 6. Iso-frequency contours for (a) M2 and (b) M3 bands and the three-dimensional surface plot of (c) M2 and (d) M3 bands in φ=0° configuration.
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dispersion weakens and the nature is reversed for φ=90°. Here, the
red shifted interactive mode is found to be more dispersive than the
uniform mode. A detailed micromagnetic investigation using local ex-
citation and the calculated iso-frequency contours from plane-wave
method further reveal the anisotropic properties of the SW eigenmodes
and its origin. It has been observed that the SW propagation is aniso-
tropic for φ=0° but becomes nearly isotropic for φ=90°. The dy-
namic dipolar coupling between the larger and smaller dots can play a
crucial role by affecting the SW dispersion with wave vector for dif-
ferent orientations of the in-plane magnetic field. This work may lead
towards the design and understanding of new type of reprogrammable
binary magnonic crystal.
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