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 Tunable magnonic properties are demonstrated in two-dimensional magnonic 
crystals in the form of artifi cial ferromagnetic nanodot lattices with variable 
lattice symmetry. An all-optical time-domain excitation and detection of the 
collective precessional dynamics is performed in the strongly magnetostati-
cally coupled Ni 80 Fe 20  (Py) circular dot lattices arranged in different lattice 
symmetry such as square, rectangular, hexagonal, honeycomb, and octagonal 
symmetry. As the symmetry changes from square to octagonal through rec-
tangular, hexagonal and honeycomb, a signifi cant variation in the spin wave 
spectra is observed. The single uniform collective mode in the square lattice 
splits in two distinct modes in the rectangular lattice and in three distinct 
modes in the hexagonal and octagonal lattices. However, in the honeycomb 
lattice a broad band of modes are observed. Micromagnetic simulations 
qualitatively reproduce the experimentally observed modes, and the simu-
lated mode profi les reveal collective modes with different spatial distributions 
with the variation in the lattice symmetry determined by the magnetostatic 
fi eld profi les. For the hexagonal lattice, the most intense peak shows a six-
fold anisotropy with the variation in the azimuthal angle of the external bias 
magnetic fi eld. Analysis shows that this is due to the angular variation of 
the dynamical component of magnetization for this mode, which is directly 
infl uenced by the variation of the magnetostatic fi eld on the elements in the 
hexagonal lattice. The observations are important for tunable and anisotropic 
propagation of spin waves in magnonic crystal based devices. 
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  1. Introduction 

 Magnetic nanostructures form the basis 
of many present and future technologies 
including patterned magnetic media, [  1  ]  
magnetic random access memory, [  2  ]  mag-
netic logic devices [  3  ,  4  ]  and magnetic reso-
nance imaging. [  5  ]  The patterned magnetic 
media uses two-dimensional arrays of 
lithographically patterned magnetic islands 
(bits) and the magnetic switching behav-
iors of such systems including switching 
fi eld distribution have been thoroughly 
studied. An essential criterion has been 
to eliminate the magnetostatic interaction 
(cross-talks) between the individual bits 
for the application in patterned magnetic 
media. Similar arrays of nanomagnets 
may be used to propagate high frequency 
magnetic excitations in the form of col-
lective long wavelength spin waves as 
information carries in magnonic crystals, 
when the magnetic elements are strongly 
magnetostatically coupled. Such coupled 
arrays of nanomagnets undergo a collec-
tive dynamics, [  6–12  ]  where the individual 
nanomagnets maintain constant amplitude 
and phase relationships, and show rich 
magnonic band structures with tunable 
bandgap properties. Thereby a new fi eld of 
research known as magnonics [  13–15  ]  has been introduced, which 
has potential to use spin waves to carry and process informa-
tion and also in building nanoscale microwave components 
such as fi lters, attenuators and phase shifters. [  16  ]  Emerging 
new fi eld such as coherent oscillation of an array of spin torque 
nano-oscillators [  17  ,  18  ]  also promises to act as on-chip microwave 
sources for electronic and magnetoelectronic applications. 

 Two-dimensional ferromagnonic dot lattices have been exten-
sively fabricated and studied in recent years. Various physical 
parameters of the lattices such as lattice constants, and shape, 
size and material of the magnetic dots have been varied to tailor 
the magnonic properties in those lattices. The high frequency 
magnetization dynamics of such lattices have been studied 
experimentally by time domain, [  6  ,  7  ,  19  ]  frequency domain, [  8  ]  wave 
vector domain [  9–12  ]  techniques and by analytical methods [  20  ,  21  ]  
and micromagnetic simulations. [  22  ]  The frequency, damping and 
spatial profi les of collective modes and the dispersion of their 
frequency with wavevector have been studied with the variation 
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     Figure  1 .     Scanning electron micrographs of the permalloy dot lattices with different lattice 
symmetry, namely square, rectangular, hexagonal, honeycomb, and octagonal symmetry. The 
dot diameter and separation are shown in the micrograph for the octagonal lattice along with 
the length scale bar. The geometry of the applied magnetic fi eld for all lattices is shown in the 
micrograph of the hexagonal lattice.  
of above parameters. In addition to the perio-
dicity of the lattice, the interdot magnetostatic 
interactions in the lattices play a very impor-
tant role in determining the collective mag-
nonic modes in these lattices and further tai-
loring of this interaction fi eld offers exciting 
prospects in magnonics. The variation of 
lattice symmetry is an attractive option, by 
which the magnetostatic fi elds of highly com-
plex nature can potentially be introduced but 
it has hitherto not been tried in the context of 
the spin wave dynamics of magnonic crystals. 
The quasistatic magnetization processes of 
nanomagnets arrays with different symmetry 
have been reported by static magneto optical 
Kerr effect measurements. [  23–25  ]  A confi gu-
rational anisotropy has been observed from 
the dependence of the hysteresis loops with 
the angle of the in-plane magnetic fi eld with 
respect to the symmetry of the array. On the 
other hand, magnetization dynamics of mag-
netic antidot lattices with varying lattice sym-
metry has been reported by a combination of 
Brillouin light scattering and ferromagnetic 
resonance measurements. [  26  ]  In all lattices 
the eigenfrequencies show angular depend-

ence consistent with the symmetry of the lattice. However, 
no report on the dependence of the magnetization dynamics 
in ferromagnetic dot lattices on the lattice symmetry could be 
found in the literature. Here, we present an all-optical excita-
tion and detection of magnetization dynamics in closely packed 
circular Ni 80 Fe 20  (Py) dot lattices arranged in different lattice 
symmetry. The spin wave spectra show a signifi cant variation as 
the symmetry is reduced from square lattice to octagonal lattice 
through the rectangular, hexagonal and honeycomb lattices. We 
also investigate the anisotropy of the collective modes in the 
hexagonal lattice as a function of the azimuthal angle (  ϕ  ) of the 
in-plane bias magnetic fi eld.   

 2. Result and Discussion 

 10  μ m  ×  10  μ m lattices of 20-nm-thick Py dots with circular 
shapes arranged in different lattice symmetry were fabricated 
by a combination of electron-beam lithography and electron-
beam evaporation. The diameter of the dots is about 100 nm 
with maximum  ± 10% deviation within different lattices. The 
edge to edge separation between the dots is about 30 nm with 
maximum  ± 10% deviation within different lattices. The sizes 
of the dots are chosen in such a way that the individual dots 
can support both the centre and edge modes of precession of 
magnetization. The edge to edge separation is chosen in such 
a way that the dots are strongly magnetostatically coupled and 
show collective modes of precession. The dots are chosen to be 
of circular shapes so that the individual dots do not posses any 
confi gurational anisotropy [  27  ]  due to their shapes. 

 Both two-dimensional Bravais (square, rectangular, hex-
agonal) and non-Bravais (honeycomb, octagonal) lattices are 
chosen here to investigate the effects of variation of translational 
© 2013 WILEY-VCH Verlag GmAdv. Funct. Mater. 2013, 23, 2378–2386
symmetry of the lattice and fi nally symmetry breaking on the 
magnonic spectra.  Figure    1   shows the scanning electron micro-
graphs of all types of lattices. The small deviation in size and 
separation from the nominal dimensions as obtained from the 
micrographs will eventually be included in the micromagnetic 
simulations. The chemical compositions of the dots measured 
by the energy dispersive X-ray spectroscopy agree well with the 
nominal composition of the target material. The height profi les 
of the dots were measured by atomic force microscope and the 
average height was found to be between 20 and 22 nm in dif-
ferent lattices, which agree well with the nominal thickness 
of the samples. The ultrafast magnetization dynamics of the 
samples are measured by using a custom built time-resolved 
magneto optical Kerr effect microscope based upon a two 
color collinear pump-probe setup. [  28  ]  The magneto-optical Kerr 
rotation of the probe beam (  λ    =  800 nm, pulsewidth  ≈  70 fs) 
is measured after excitation by the pump beam (  λ    =  400 nm, 
pulsewidth  ≈  100 fs) as a function of the time delay between the 
pump and probe beams. A bias fi eld of variable amplitude is 
applied to the sample, the direction of which was tilted slightly 
out of the plane of the sample to have a fi nite demagnetizing 
fi eld along the direction of the pump pulse. The component of 
the bias fi eld in the sample plane is referred to as  H  as shown 
in Figure  1 . The pump pulse rapidly modifi es the out-of-plane 
demagnetizing fi eld and thereby induces precessional magneti-
zation dynamics within the dots. [  29  ,  30  ]    

 2.1. Variation of Precessional Dynamics with the Symmetry 
of the Nanodot Lattices   

 Figure 2   shows the typical time-resolved refl ectivity and Kerr 
rotation data from a Py dot lattice arranged in a hexagonal lattice 
2379wileyonlinelibrary.combH & Co. KGaA, Weinheim
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     Figure  2 .     Typical time-resolved a) refl ectivity and b) Kerr rotation data 
are shown for the Py dot lattice with hexagonal lattice symmetry at  H   =  
1.3 kOe at   ϕ    =  0 ° .  
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     Figure  3 .     a) Experimental time-resolved Kerr rotation data and b) the corresponding FFT 
spectra are shown for Py dot lattices with fi ve different lattice symmetry at  H   =  1.3 kOe at   ϕ    =  
0 ° . c) FFT spectra of the simulated time-domain magnetization for fi ve different lattice sym-
metry. The mode numbers are shown in the simulated FFT spectra, while the dashed vertical 
lines show the positions of the centre and edge modes of the simulated single dot with width  =  
100 nm and thickness  =  20 nm.  
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symmetry at a bias fi eld  H   =  1.3 kOe at   ϕ    =  
0 ° . The refl ectivity shows sharp rise followed 
by a bi-exponential decay, whereas the time-
resolved Kerr rotation shows a fast demagnet-
ization [  31  ]  within 500 fs with a bi-exponential 
decay with decay constants of about 2 ps and 
500 ps. The precessional dynamics appears as 
an oscillatory signal on the slowly decaying 
part of the time-resolved Kerr rotation data. A 
fast Fourier transform (FFT) is performed after 
subtracting the bi-exponential background 
to fi nd out the corresponding power spectra. 
The measurement time window of 1.5 ns 
used in this experiment is a compromise 
between the total measurement time, which 
is determined by the number of scan points 
and the integration time of the lock-in ampli-
fi er for each scan point, and the time taken to 
cause a slow drift of the piezoelectric sample 
scanning stage. Nevertheless, this 1.5 ns time 
window is found to be suffi cient to resolve the 
spin wave spectra for different lattices.    

 Figure 3  a,b show the background sub-
tracted experimental time resolved Kerr rota-
tions for lattices with different lattice sym-
metry and the corresponding power spectra. 
80 wileyonlinelibrary.com © 2013 WILEY-VCH Verlag G
From the experimental data a clear variation in the spin wave 
dynamics is observed with the lattice symmetry. For the square 
lattice the time-domain data shows a damped single frequency 
oscillation, which transforms into a single sharp peak in the 
frequency domain. However, as the symmetry reduces in the 
rectangular lattice a mode splitting appears. The high intensity 
peak shifts slightly towards the lower frequency while a low 
intensity peak appears at a slightly higher frequency. In the 
case of hexagonal lattice a dramatic change occurs and three 
clear peaks are observed in the FFT spectrum as a consequence 
of the highly nonuniform oscillations in the time-resolved Kerr 
signal. The peak at the centre has the highest intensity, while 
the peak at the higher frequency is also signifi cantly intense 
as compared to the main peak. The third peak is of very low 
intensity, which appears at a much lower frequency with about 
3.5 GHz shift from the main peak. The time-resolved Kerr 
rotation and the corresponding FFT spectrum for the honey-
comb lattice are even more complicated. The time-resolved 
data dephases rapidly after about 3 cycles of oscillation leaving 
a small amplitude nonuniform oscillation, while a broad band 
of modes are observed between 1 and 14 GHz in the FFT spec-
trum. Seven peaks are observed, where the central peak is very 
broad with a partial splitting. In the octagonal lattice three 
closely spaced peaks are observed between 7 and 11 GHz, while 
a low intensity band is observed below 5 GHz.  

 We have performed micromagnetic simulations using the 
OOMMF software [  32  ]  by considering fi nite lattices of about 
1100 nm  ×  1100 nm  ×  20 nm volumes consisting of circular 
dots arranged in different lattice symmetry. We have done test 
simulations to see if the artifi cial boundaries of the simulated 
mbH & Co. KGaA, Weinheim Adv. Funct. Mater. 2013, 23, 2378–2386
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     Figure  4 .     The power spectrum of the simulated magnetization dynamics 
of a single circular Py dot with 100-nm diameter and 20-nm thickness at 
 H   =  1.3 kOe. The power and phase maps of the two observed modes are 
shown in the inset. Mode 2 is identifi ed as the centre mode while mode 
1 as the edge mode of the Py dot.  
lattices for different lattice symmetries can affect the modes. 
Simulations on square, hexagonal and honeycomb lattices with 
different shapes (fl at and rough) of the boundaries do not affect 
the mode frequencies, although they do affect the relative inten-
sities of the modes in the FFT spectra for the honeycomb lattice. 
The details of the simulation procedure are described in details 
elsewhere. [  22  ,  28  ]  The samples were discretized into 2 nm  ×  
2 nm  ×  20 nm cells and material parameters for Py were used 
as gyromagnetic ratio   γ    =  18.5 MHz/Oe, anisotropy fi eld  H  k   =  0, 
saturation magnetization  M  s   =  860 emu/cc, and exchange stiff-
ness constant  A   =  1.3  ×  10  − 6  erg/cm. The material parameters 
were extracted by experimentally measuring the precession fre-
quency ( f ) as a function of bias magnetic fi eld ( H ) of a Py thin 
fi lm of 20-nm thickness and by fi tting the data with Kittel’s for-
mula for the uniform precession mode.

 
f = γ

2π

√
(H + HK ) (H + HK + 4π MS)

  (1)    

 The lateral cell size is well below the exchange length of Py 
(5.3 nm). In general the widths and inter-element separations 
as observed in the SEM images are included in the simulation. 
The dynamic simulations were obtained for 1.5 ns at the time 
steps of 5 ps. Figure  3 c shows the FFT spectra of the simulated 
time-domain magnetization, which qualitatively reproduce the 
experimental results. The relative intensities and the precise 
positions of the peaks in the frequency domains are not always 
quantitatively reproduced due to the limitations in the simula-
tion. The average disagreements between the experimental and 
simulated mode frequencies are about 1%, 5.9%, 6.6%, 9% and 
7.3% for square, rectangular, hexagonal, honeycomb and octag-
onal lattices, respectively. In addition, the splitting of the cen-
tral peak for the honeycomb lattice and the low intensity band 
for the octagonal lattice below 5 GHz are not reproduced in 
the simulation. Further simulations with single dots with vari-
ation of dot size by up to  ± 10% and in lattices with variation of 
interdot separation by up to  ± 15% neither show any signifi cant 
variation in the mode frequencies nor caused any mode split-
ting. Hence, the observed deviation is primarily because of the 
lack of inclusion of the precise edge roughness and other defects 
in the simulated samples as observed experimentally and the 
smaller size of the simulated lattices as opposed to the experi-
mental lattices. Normally edge roughness of the dots is likely to 
randomize the magnetistatic stray fi eld and lead to weakening 
of the effective stray fi eld due to the averaging effect. It may 
also modify the edge modes and introduce additional local-
ized modes within the dots by introducing additional pinning 
regions of magnetization. However, it is almost impossible to 
quantify the edge roughness and correlate it with the disagree-
ment between the experimental and simulation results for large 
lattices. In addition, the optical excitation used experimentally 
is replaced by an estimated pulsed magnetic fi eld in the simula-
tion. Nevertheless, the important features of the experimental 
spectra are reproduced by the simulation.   

 2.2. Micromagnetic Analysis of the Collective Modes in the Lattices 

 We have further simulated the power and phase maps of var-
ious collective modes as observed both experimentally and in 
© 2013 WILEY-VCH Verlag GAdv. Funct. Mater. 2013, 23, 2378–2386
the simulation by using a home built code. [  33  ]  However, before 
that we have calculated the dynamics of a single Py nanodot of 
100-nm diameter and 20 nm thickness. Two distinct peaks are 
observed, out of which the higher frequency peak is identifi ed 
as the centre mode and the lower frequency peak as the edge 
mode of the dot [  34  ,  35  ]  as shown in  Figure    4  . The centre and edge 
mode frequencies of the single 100-nm Py dots are shown as 
vertical dashed lines in Figure  3 c. Clearly, the collective modes 
of various lattices are shifted in frequency with respect to the 
modes of a single dot and new modes appear in the hexagonal, 
honeycomb and octagonal lattices. In the square lattice one 
mode is suppressed, while the modes in the rectangular lattice 
are closest to those of a single dot. We have further simulated 
the power and phase maps for all resonant modes in different 
lattices as shown in  Figure    5   and  Figure    6  . The profi le of the 
single mode in the square lattice is found to be the edge mode 
of the individual nanodots precessing coherently over the cen-
tral part of the lattice, while the amplitude of precession dies 
out substantially near the vertical edges of the lattice. Due to the 
strong magnetostatic interaction the modes in the two central 
columns become completely uniform over the entire volumes 
of the nanodots. This is the dominant collective mode of the 
strongly coupled lattice as opposed to the weakly coupled arrays, 
where the centre and edge modes of the individual elements 
are generally observed. [  34  ,  35  ]  It is evident from Figure  4  that the 
power of the edge mode is about fi ve times higher than that of 
the centre mode of an individual 100-nm Py dot. In the square 
lattice due to very high magnetostatic interaction between the 
edge modes (they are much closer in distance to each other 
than the centre modes) they form a very strong collective mode, 
whose amplitude is suffi ciently high to suppress the centre 
mode. For the rectangular lattice, mode 1 corresponds to the 
centre mode of the individual elements precessing coherently 
over the entire lattice except for the horizontal edges of the lat-
tice. On the otherhand, mode 2 is the coherent precession of the 
edge modes of the individual nanodots over the lattice except for 
the vertical edges of the lattice. For the hexagonal lattice, mode 
2381wileyonlinelibrary.commbH & Co. KGaA, Weinheim



FU
LL

 P
A
P
ER

2

www.afm-journal.de
www.MaterialsViews.com

     Figure  5 .     The power and phase maps for different precessional modes (as shown in Figure  3 c) 
of Py dot lattices with square, rectangular and hexagonal symmetry. The colormaps for the 
power and phase distributions are shown at the top of the images.  
1 corresponds to the coherent precession of the centre mode of 
the nanodots over the entire lattice with a slight dephasing near 
the vertical edges. Mode 2 corresponds to edge modes of the 
nanodots, which are precessing out of phase within consecu-
tive stripe like regions marked by the vertical dotted lines. This 
mode is similar to the backward volume magnetostatic mode 
(BV) of the lattice. In mode 3, the dots are in phase, while the 
power on the dots reduces gradually from the vertical edges 
382 wileyonlinelibrary.com © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, We

     Figure  6 .     The power and phase maps for different precessional modes (as shown in Figure  3 c) 
of Py dot lattices with honeycomb and octagonal symmetry. The colormaps for power (fi rst and 
third rows) and phase (second and fourth rows) distributions are as shown in Figure  5 .  
towards the centre of the lattice forming a 
bowtie like pattern. The honeycomb and 
octagonal lattices show very rich spectra and 
the corresponding mode profi les are shown 
in Figure  6 . For the honeycomb lattice, mode 
1 corresponds to the magnetostatic surface 
wave (SW) mode of the lattice, where con-
secutive rows are out of phase and alternative 
rows are in phase. Mode 2 is a mixed mode. 
Mode 3 corresponds to vertical stripe-like 
regions, where the half circles (full circle) are 
alternatively precessing in-phase and out-of-
phase with each other. Mode 4 is localized 
within the centre of the lattice, which shows 
the BV mode of the individual dots. Mode 5 
has its power reduced from the vertical edges 
towards the centre of the lattice and is out of 
phase with mode 4. Mode 6 is edge mode of 
the individual nanodots, which are primarily 
distributed in the even rows of the simulated 
lattice. This is because the edge to edge sepa-
rations between the neighboring dots in the 
even rows are much larger than those in the 
odd rows. The strong magnetostatic interac-
tions between the dots in the odd rows result 
in the disappearance of the edge modes in 
those rows. Mode 1 of the octagonal lattice is the centre mode 
of the nanodots, where they are collectively precessing in phase 
within the regions shown by the dotted boxes. Mode 2 is the BV 
mode of the nanodots localized within the same regions as for 
mode 1. Mode 3 is the edge mode of the individual nanodots 
uniformly distributed over the entire lattice.    

 To understand the origin of the differences in the spin wave 
spectra in different lattices, we have calculated the magneto-
in
static fi eld distributions for lattices with dif-
ferent lattice symmetry as shown in  Figure    7  . 
Linescans of the simulated magnetostatic 
fi elds from various positions of the lattices 
as indicated by horizontal dashed lines in 
Figure  7  are shown in  Figure    8   alongwith 
the linescan of simulated magnetostatic fi eld 
from a single 100-nm Py dot as a way of com-
parison. It is clear that both the internal fi elds 
on different dots as well as the stray fi elds are 
infl uenced by the lattice symmetry as well as 
the arrangement of the dots on a given lattice 
such as honeycomb and octagonal lattices. 
The overall internal fi elds inside the dots are 
increased signifi cantly as compared to the 
single dot for all dots in the square and hex-
agonal lattices, while they increase only mar-
ginally in the rectangular lattice. For the hon-
eycomb and octagonal lattices the internal 
fi elds inside the dots increase signifi cantly as 
compared to the single dot for dots lying on 
the denser rows and do not increase signifi -
cantly for the dots lying on the sparser rows. 
The above variation of the internal fi elds of 
the dots in various lattices alongwith the 
heim Adv. Funct. Mater. 2013, 23, 2378–2386
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     Figure  8 .     Linescans of simulated magnetostatic fi elds from various lat-
tices as obtained from the positions indicated by horizontal dashed lines 
in Figure  7 . Linescans of simulated magnetostatic fi eld from a single dot 
is superposed on each panel for comparison.  
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     Figure  7 .     Contour maps of simulated magnetostatic fi eld distributions (x-component) are 
shown for Py dots lattices with variable lattice symmetry at  H   =  1.3 kOe at   ϕ    =  0 ° . The arrows 
inside the dots represent the magnetization states of the dots, while the strengths of the stray 
magnetic fi elds are represented by the color bar at the lower right corner of the fi gure. The 
horizontal dashed lines show the positions of the lattices, from which the linescans are pre-
sented in Figure  8 .  
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stray fi elds are responsible for the variation 
in the frequencies of the collective modes 
as compared to the centre and edge mode 
frequencies of the single dot as shown in 
Figure  3 . The stray fi eld varies signifi cantly 
with lattice symmetry primarily due to the 
arrangement of neighbouring dots in the lat-
tice, as the boundary for every dot is almost 
identical in the simulation and the dots them-
selves are symmetric. Experimentally, there 
is some effect from the edge roughness and 
small differences in sizes and shapes from 
one dot to another. However, these effects 
are either introduced in the simulation (dif-
ferences in size) or affect the dynamics only 
quantitatively, while the qualitative features 
of the spectra stems primarily from the lat-
tice symmetry. For Bravais lattices (square, 
rectangular and hexagonal) dipolar contribu-
tion to the stray fi eld is dominant but there 
are distinct differences due to the reasons 
stated as below. If we consider the columns 
standing perpendicular to the bias fi eld, we 
see that for the square lattice the stray fi eld 
is equally distributed on both sides of the col-
umns as well as all elements on the columns 
are experiencing equivalent fi elds except for the edge elements. 
For the rectangular lattice the columns are separated by twice 
the distance of that of the square lattice causing a reduction of 
the stray fi elds between the columns but have similar amount 
of stray fi elds as the square lattice between the row elements. 
This caused two collective modes in the rectangular lattice. The 
hexagonal lattice is most closely packed and has the largest stray 
fi eld and consequently shows a highly collective mode (mode 
1). However, if we consider any column perpendicular to the 
bias fi eld, it has alternative regions of interdot stray fi eld or a 
full dot, which causes mode 2 in this lattice. However, for the 
honeycomb and octagonal lattices the stray fi eld is even more 
complicated primarily because in the honeycomb lattice the 
unit cell has two nanodots, while there is a broken translational 
symmetry in the octagonal lattice. This causes unequal distri-
butions of stray fi elds within the lattices and the occurrence of 
higher order multipolar contributions to the stray fi elds. Con-
sequently, a larger number of modes with complicated profi les 
are observed in the honeycomb lattice. In the octagonal lattice 
also a band of modes are observed below 5 GHz experimentally 
but are not reproduced in the simulation possibly because the 
simulations are done on a much smaller lattice.     

 2.3. Anisotropy in Precessional Modes in the Hexagonal Lattice 

 Since the stray fi eld and the resulting spin wave spectra can be 
controlled by varying the lattice symmetry for a fi xed bias fi eld, 
we further investigate the effect of varying the azimuthal angle 
  ϕ   of the bias magnetic fi eld for a fi xed strength of the magnetic 
fi eld  H   =  1.3 kOe. This was done in the experiment by rotating 
the sample by a high precision rotary stage while keeping the 
microscope objective and the magnetic fi eld constant. After 
2383wileyonlinelibrary.comheim
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setting every value of   ϕ  , care was taken to ensure that the pump 
and the probe beams access the same region of the lattice. Here, 
we present the results from the hexagonal lattice as a case study 
as it belongs to the Bravais lattice and has the highest packing 
density. The time-resolved dynamics and the corresponding 
power spectra show signifi cant variation with   ϕ  . The highest 
intensity peak (mode 2) in the power spectra shows a clear six-
fold variation with the variation in   ϕ  , while the other modes for 
this lattice do not show any clear anisotropy with the variation 
in   ϕ  .  Figure    9  a shows the bias fi eld dependences of mode 1 and 
mode 2 extracted from the experimental and simulated results 
alongwith the fi ts to the Kittel’s formula. The extracted magnetic 
parameters from the fi ts are identical to those found earlier for 
the patterned thin fi lm except that the saturation magnetization 
for mode 2 is signifi cantly reduced ( ≈ 560 emu/cc) from that 
for mode 1 (860 emu/cc). This is because mode 2 corresponds 
to the collective dynamics of the edge modes of the individual 
nanodots, which is localized in strongly demagnetized regions 
4 wileyonlinelibrary.com © 2013 WILEY-VCH Verlag

     Figure  9 .     a) The variation of precession frequencies (mode 1 and mode 
2) for a hexagonal lattice with the strength of the bias magnetic fi eld at 
  ϕ    =  0 ° . Experimental and simulated results are shown by symbols, while 
the fi ts with the Kittel’s equation are shown by the solid curves. The vari-
ation of mode 2 of the hexagonal lattice: b) experimental and c) simula-
tion, as a function of the azimuthal angle   ϕ   of the in-plane bias magnetic 
fi eld at  H   =  1.3 kOe. The symbols show the experimental and simulated 
results, while the solid curves show the fi ts with a harmonic function with 
six-fold symmetry.  
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near the edges of the dots. Figure  9 b,c shows the variation of 
mode 2 with   ϕ   (symbols) extracted from the experimental and 
simulated results. The solid curves correspond to the fi t to a 
harmonic fi eld with six-fold anisotropy. The fi t is reasonable 
for both cases, except that the peak to peak height is slightly 
lower in the experimental sample indicating lower value of the 
six-fold anisotropy. This is possibly due to the edge roughness 
and irregularities in the experimental samples, which averaged 
out the anisotropy arising due to the symmetry of the stray 
magnetic fi eld in this lattice. We have further investigated the 
angular variation of the mode profi le (power map) for mode 2, 
as shown in  Figure    10  , to understand the observed behavior. 
As discussed before for   ϕ    =  0 ° , mode 2 is the edge mode of the 
individual dots, which forms a BV like mode of the whole lat-
tice. Consequently, the stray fi eld is more effective on this mode 
as opposed to mode 1, where the individual dots show centre 
mode. In Figure  10 , the overall power of the mode on the lattice 
represents the dynamic component of magnetization and the 
frequency of the mode directly depends on the net magnetiza-
tion of the system. As the angle deviates from   ϕ    =  0 °  the overall 
power of mode 2 decreases and attains a minimum at   ϕ    =  30 ° . 
For further increase in   ϕ   the power increase again and attains 
a maximum at   ϕ    =  60 ° . This phenomena is repeated and we 
observe maxima at   ϕ    =  0 ° , 60 ° , 120 ° , and 180 °  and minima at 
  ϕ    =  30 ° , 90 ° , and 150 ° . This periodic variation of power of mode 
2 with   ϕ   is a manifestation of the variation of the magnetostatic 
fi eld in the lattice (not shown), and it gets refl ected in the six-
fold variation in the frequency of mode 2.      

 3. Conclusions 

 We have fabricated closely packed Py nanodot lattices with 
100-nm dot diameter and edge to edge inter-dot spacing of 
about 30 nm having variable lattice symmetry. We have chosen 
three two-dimensional Bravais lattices, namely the square, rec-
tangular and hexagonal lattices and two non-Bravais lattices 
namely the honeycomb and octagonal lattices for this study. 
We have investigated the infl uence of lattice symmetry on the 
ultrafast magnetization dynamics of these lattices. The pre-
cessional dynamics have been induced and probed in an all-
optical manner following an ultrafast demagnetization and a 
fast remagnetization. The dynamics has also been simulated 
by a time-dependent micromagnetic simulation method and 
the time-domain magnetization, power spectra, and the power 
and phase profi les of the resonant modes have been numeri-
cally calculated to get an extensive picture of the dynamics. The 
precessional modes of magnetization show signifi cant variation 
with the variation of lattice symmetry. The square lattice shows 
a single uniform precessional mode, which is the coherent pre-
cession of the edge mode of all the dots in the lattice. The rectan-
gular lattice shows two modes, which are coherent precession of 
the edge and centre modes of the dots over the entire lattice. The 
hexagonal lattice shows three clear modes, which correspond to 
the uniform collective mode, a BV like mode and a bowtie like 
mode of the whole lattice. The honeycomb lattice shows broad 
and rich spin wave spectrum, which includes various localized 
and extended modes including the SW mode of the lattice. For 
octagonal lattice three modes are observed, which are uniform, 
 GmbH & Co. KGaA, Weinheim Adv. Funct. Mater. 2013, 23, 2378–2386
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     Figure  10 .     The power maps of mode 2 for the hexagonal lattice as a function of the azimuthal angle   ϕ   of the in-plane bias magnetic fi eld at  H   =  1.3 
kOe. The variation of the overall power on the entire lattice structure with   ϕ   indicates the variation of dynamic magnetization for this mode, which in 
turn gives the six-fold variation in the mode frequency.  
SW like, and localized modes of the lattice. The magnetostatic 
fi elds within the lattices have been calculated, which helps in 
the interpretation of different observed modes of the lattices. 
The anisotropy of the collective modes in the hexagonal lattice 
has been investigated and mode 2, which is the edge mode of 
the dots forming a BV like collective mode of the lattice, shows 
a clear six-fold anisotropy, while other modes do not show any 
clear anisotropy with the variation of the azimuthal angle of 
the bias magnetic fi eld. Analysis of the power profi le of the 
anisotropic mode clearly shows the six-fold variation of the net 
dynamic component of magnetization with the azimuthal angle 
as a result of a similar variation of the magnetostatic fi eld. The 
observed tunability in the magnonic spectra with varying lattice 
symmetry and the anisotropy of the magnonic modes with the 
variation of the orientation of the bias magnetic fi eld may lead 
towards applications of the artifi cial nanomagnetic lattices as 
microwave fi lters, splitters and waveguide structures. Forma-
tion of composite artifi cial lattice structures with different lat-
tice symmetries may lead to further tailoring of magnonic band 
structures for the above applications.   

 4. Experimental Section 
  Fabrication :   Py dot lattices with varying lattice symmetry were 

prepared by a combination of electron-beam evaporation and electron-
beam lithography. The beam current used during electron-beam 
lithography is 100 pA for a dose time of 1.0  μ s. A bilayer MMA/PMMA 
(methyl methacrylate/poly methyl methacrylate) resist pattern was fi rst 
prepared on self oxidized Si(100) substrate by using electron-beam 
lithography and Py was deposited on the resist pattern by electron-beam 
evaporation at a base pressure of about 1.3  ×  10  − 7  Torr. A 5-nm-thick 
Al 2 O 3  capping layer was deposited on top of the Py layer to protect the 
dots from general degradation with time as well as when exposed to the 
optical pump-probe experiments in air. This was followed by the lifting 
off of the sacrifi cial material and oxygen plasma cleaning of the residual 
resists that remained even after the lift-off process. 

  Measurement:  The ultrafast magnetization dynamics was measured 
by a two-color optical pump-probe setup with simultaneous spatial and 
© 2013 WILEY-VCH Verlag GmAdv. Funct. Mater. 2013, 23, 2378–2386
temporal resolutions of sub- μ m and 100 fs, respectively. The second 
harmonic (  λ    =  400 nm, 10 mW, pulsewidth  ≈  100 fs) of a mode locked 
Ti-sapphire pulsed laser (Tsunami, Spectra physics, pulsewidth  ≈  70 fs) 
is used to excite the sample. The fundamental laser beam (  λ    =  800 nm, 
2 mW) is used to probe the dynamics after passing through a variable 
time delay by measuring the polar Kerr rotation using a balanced 
photodiode detector, which completely isolates the Kerr rotation and 
refl ectivity signals. The pump and probe beams are made collinear and 
are focused on each lattice through the same microscope objective with 
N.A.  =  0.65. At the focal plane of the probe (diameter  ≈  800 nm), i.e., 
on the sample surface, the pump beam is slightly defocused, and has a 
larger diameter ( ≈ 1  μ m) than the probe beam, which makes it easier to 
overlap the pump and probe beams on the sample surface. The probe 
beam is centred on the pump beam so that slight misalignment during 
the course of the experiment does not affect the pump-probe signals. 
The pump and probe beams were placed at the centre of each lattices 
and about 65 elements were measured for the square and hexagonal 
lattices while about 50 elements were measured for the rectangular 
and honeycomb lattices. Less than 50 elements were measured in the 
octagonal lattice, which is the sparsest lattice of all. A large enough 
magnetic fi eld is fi rst applied at a small angle (10–15 ° ) to the planes of 
the lattices to saturate their magnetization. The magnetic fi eld strength 
is then reduced to the bias fi eld value ( H   =  component of bias fi eld in 
the sample plane), which ensures that the magnetization still remains 
saturated along the bias fi eld direction. The pump beam was chopped 
at 2 kHz frequency and a phase sensitive detection of total refl ectivity 
and Kerr rotations were made using lock-in amplifi ers. The sample is 
scanned under the focused laser spots by using a piezoelectric scanning 
stage (x-y-z) with feedback loop for better stability. During the course 
of the experimental data accumulation the probe beam remained within 
the excitation area of the pump beam, while the sample drift is very 
small due to the feedback loop used in the scanning stage.   
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