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ABSTRACT 

Deep learning (DL) methods have been recently considered 

suitable for Chlorophyll-a (Chla) retrieval from satellite data 

due to their ability for handling complex, high-dimensional, 

and noisy data. This manuscript describes B1D–CNN, a new 

model combining 1D-convolutional neural networks (1D-

CNN) and a traditional empirical blend algorithm to estimate 

Chla using the MultiSpectral Instrument (MSI) sensor on 

board the Sentinel-2 satellite. The proposed model is trained 

and evaluated against the state-of-the-art Mixture Density 

Network (MDN) and the classical Chla retrieval algorithms 

using global in-situ data. The results show a 9.25% to 54.12% 

improvement in the RMSE, along with a 3.45% to 59.53% 

reduction in the MAE. A satellite image during a harmful algal 

bloom (HABs) event was also assessed using B1D–CNN, and 

the proposed model captured the high Chla batches associated 

with HABs. This study indicates the advantages of using DL 

methods to retrieve Chla. 

Index Terms— Chlorophyll-a, CNN, MSI, Ocean Color 

1. INTRODUCTION 

Chlorophyll-a (Chla) is a pigment found in phytoplankton, the 

microscopic plants that form the base of the oceanic food web 

[1]. Changes in Chla concentrations can indicate changes in 

the productivity and biodiversity of an ecosystem, as well as 

potential impacts from anthropogenic activities such as 

pollution and climate change [2], [3]. The need for a global 

Chla retrieval algorithm from satellite remote sensing data is 

critical for monitoring and understanding the health of aquatic 

ecosystems. 

Researchers have been developing empirical and semi-

analytical algorithms that relate remote sensing reflectance 

(Rrs) bands to the Chla concentrations [4], [5]. However, the 

relationship between Rrs bands and Chla concentrations is 

complex, particularly in turbid waters. The Rrs signal is 

affected not only by phytoplankton but also other water 

constituents such as colored dissolved organic matter [6]. 

Most of Chla algorithms rely on a combination of statistical 

methods and empirical techniques, for instance, band ratio 

algorithms are typical examples that apply linear, polynomial 

or power functions to retrieve Chla. These algorithms rely on 

the ratio between blue and green bands for case-1 waters [7], 

[8] or near-infrared (NIR) bands and red bands to infer Chla 

concentrations in case-2 waters [9], [10]. Band ratio 

algorithms can be divided into different categories based on 

the number of bands used, including 2-Bands [11], 3-Bands 

[12], and 4-Bands [13] algorithms.  

Ocean Color (OCx) algorithms developed by NASA's 

Ocean Biology Processing Group (OBPG) are widely used for 

Chla retrieval from satellite data [8], [14], [15]. The OCx 

algorithms are fourth-order polynomial equations that model 

the non-linear relationship between Rrs and Chla. For 

example, the OC3 algorithm uses the ratio between three 

bands in the blue-green wavelengths to estimate Chla 

concentrations [8]. The current NASA standard Chla product 

is a merge of the OCx algorithm, and the color index (CI) 

algorithm known as the OCI algorithm [16], designed for case 

1 waters. Other combinations of algorithms, such as the blend 

algorithm, which merges the 2-Bands algorithm with OC3, 

have also been developed for both case-1 and case-2 waters 

[17]. 

Machine learning (ML) and deep learning (DL) methods 

have been increasingly considered in recent years for 

modeling and retrieving Chla concentrations from satellite 

data [18]. These methods have the advantage of handling large 

and complex datasets and learning non-linear relationships 

between Rrs and Chla concentrations.  

ML methods, such as Random Forest [19]–[21], Support 

Vector Machine (SVM) [19], [20], [22], [23], and k-Nearest 

Neighbors (k-NN) [19], [20], have been tested for Chla 

retrieval and showed possible results. DL methods, such as 

Feed-forward Networks [24], [25], Convolutional Neural 

Networks (CNNs) [26], and Mixture Density Networks 

(MDN) [27]–[29] have also been used for Chla retrieval. 

These models use multiple layers of artificial neurons with 

different architectures to model complex non-linear relations. 

To the best of the authors' knowledge, previous ML 

models for Chla retrieval have not considered the 

classification of Chla into different eutrophic states, resulting 

in less precise generalized algorithms. Therefore, this research 

presents a new Chla retrieval model that combines the 

empirical blend algorithm (OC3 and 2-Bands) with a 1D–

CNN network. The 1D–CNN is particularly effective for 

modeling sequential data such as Rrs. The Blend algorithm 

provides an initial estimate of Chla, which is used for 

classifying the Chla into three classes, whereas the 1D–CNN 

model generates more accurate estimates within each class. 

Thus, the aim of this study is (a) to evaluate the B1D–CNN 

model in comparison with other well-established Chla 

algorithms using a comprehensive global dataset and (b) to 

assess the model's ability to capture the harmful algal blooms 

(HABs) distribution via satellite imagery during HABs 

outbreaks. 

 

3950979-8-3503-2010-7/23/$31.00 ©2023 IEEE IGARSS 2023

IG
A

R
SS

 2
02

3 
- 2

02
3 

IE
EE

 In
te

rn
at

io
na

l G
eo

sc
ie

nc
e 

an
d 

R
em

ot
e 

Se
ns

in
g 

Sy
m

po
si

um
 | 

97
9-

8-
35

03
-2

01
0-

7/
23

/$
31

.0
0 

©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IG

A
R

SS
52

10
8.

20
23

.1
02

81
79

5

Authorized licensed use limited to: University of Tokyo. Downloaded on October 22,2023 at 13:18:23 UTC from IEEE Xplore.  Restrictions apply. 



2. DATA 

The study incorporates the GLORIA dataset [30], [31], a 

global in-situ measurements of hyperspectral Rrs, and the 

corresponding Chla concentrations. Additionally, a dataset 

with measurements from multiple water bodies in Japan, 

Vietnam, and Thailand is also used. A total of 4,739 

hyperspectral Rrs-Chla pairs were considered. The Chla 

distribution shown in Figure 1 emphasizes the diversity in the 

Chla concentrations, which range from 0.031 to 148.84 

mg/m3, with a mean of 18.97 and a standard deviation (std) of 

22.94. The Sentinel-2 MSI [32] Level-1C radiance-calibrated 

products were obtained from the Copernicus Open Access 

Hub (https://scihub.copernicus.eu). Level-1C products were 

then resampled to a 10 m resolution and atmospherically 

corrected using the Case-2 Regional CoastColour (C2RCC) 

processor [33]. The processing of all images was conducted 

using NASA SeaDAS software version 8.3. To evaluate the 

B1D–CNN model on satellite data, a Level-1C MSI image 

captured on Sep. 16, 2021, during a harmful algal bloom event 

near the northeast coast of Hokkaido, Japan, was downloaded 

and processed (Figure 4a). 

 

Figure 1. Chlorophyll-a distribution histogram for the 4739 

data samples with a mean of 18.97 and std of 22.94. 

3. MODEL DEVELOPMENT 

The proposed model for Chla retrieval is a multi-stage 

architecture that combines traditional and DL methods to 

handle the problem's complexity and provide more accurate 

results. The model shown in Figure 2 comprises two main 

parts: an empirical model and three DL estimators based on 

the 1D CNNs. The empirical algorithm, namely the blend 

algorithm [17], provides an initial estimate of the Chla class 

(low, moderate, or high) based on the input Rrs values. Once 

the Chla class is determined, the Rrs values are then fed into 

one of the three estimators, each of which is specifically 

trained for the corresponding Chla class. These networks are 

used to obtain a fine-tuned Chla estimate and improve the 

Chla retrieval's accuracy.  
3.1. Feature Engineering 

Before training the estimators and using them, the data goes 

through several steps of feature engineering and normalization 

on the fly: (i) the significant bands of the MSI sensor (namely 

the visible and NIR bands: 443, 490, 560, 665, 705, 740, 783) 

are fetched from the input data, and missing data are filtered 

out, (ii) the Isolation Forest anomaly detection algorithm [34] 

is applied to ensure a unified distribution of the data, and (iii) 

normalization is done by applying log transformation for the 

input reflectance. 

 

3.2. Deep Learning Estimators 

The architecture of each DL estimator shown in Figure 2 

comprises three main parts: normalization, encoding, and 

decoding. The encoding step is where the normalized Rrs data 

is fed into a 2-layered 1D-CNN that captures the relationship 

between the input reflectance and the output Chla considering 

the sequential nature of the reflectance values, encoding the 

input values to an intermediate vector representation of Rrs. 

In the decoding step, the vector obtained from the encoding 

step is fed into a 2-layered fully connected feed-forward 

Figure 3: Scatterplots of the top 3 Chla retrieval models: (a) B1D–CNN, (b) MDN, and (c) 2-Band algorithm, highlighting Chla 

ranges of low (0-5 mg/m³), moderate (5-20 mg/m³), and high (20-150 mg/m³) in blue, brown, and green, respectively. 

(a) B1D-CNN (b) MDN (c) 2-Bands

Measured Chla (mg/m3)

Blend 

Algorithm
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Figure 2. Overall system architecture with three DL 

estimators and empirical classifier 
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network with an output layer. This step attempts to estimate 

the Chla concentration value accurately. 

3.3. Evaluating Chla Algorithms 

Among the well-known standard algorithms for Chla retrieval 

from the MSI reflectance data, six algorithms were selected: 

the 3 bands version of the Ocean Color algorithm (OC3) [8], 

the OCI algorithm [16], which uses a combination of the Color 

Index algorithm (CI) and the OC3 algorithm, 2-Bands [10], 

[11], 3-band [12], 4-band [13], and the Blend algorithm [17]. 

The Blend algorithm combines the 2-Bands ratio algorithm 

with the OC3 algorithm. In addition to the classic algorithms, 

B1D–CNN is also compared to the state-of-art DL model 

based on the Mixture Density Network (MDN) architecture 

[27]. 

The metrics used for the evaluation of B1D–CNN and the 

above-mentioned algorithms are mainly: root mean squared 

error (RMSE), mean absolute error (MAE), mean absolute 

percentage error (MAPE), and the Bias. 

 

4. RESULTS AND DISCUSSION 

4.1. Performance Evaluation on In-Situ Data 

The overall performance (Table 1) indicates that the B1D–

CNN model outperforms other evaluated Chla models, 

showcasing the lowest RMSE, MAE and MAPE values. It 

substantially enhanced prediction accuracy compared to the 

poorest-performing models, OC3 and OCI, reducing RMSE 

by approximately 54%, MAE by about 52% and the MAPE by 

4-folds. The top-performing models are B1D–CNN, MDN, 

and the 2-Bands algorithm, with RMSE of 11.87, 13.08, and 

13.28 mg/m3, respectively. Conversely, the 3-Bands and 4-

Bands models exhibited the highest MAPE values, indicating 

inadequate performance. 

 

model RMSE MAE MAPE BIAS 

B1D–CNN 11.87 6.71 170.40 1.17 

MDN 13.08 6.95 180.43 0.41 

OC3 25.87 13.95 287.71 -0.77 

OCI 25.87 13.95 287.68 -0.77 

2-Bands 13.28 8.33 301.23 -0.34 

3-Bands 22.03 16.63 669.44 -1.79 

4-Bands 21.98 16.58 676.56 -1.75 

Blend 14.46 9.13 274.77 -0.60 

Table 1. Overall performance evaluation of all Chla models. 

The scatter plots of Figure 3 visually illustrate the detailed 

evaluation of the top-performing models. The plots are 

divided into three Chla ranges: low (0-5 mg/m³), moderate (5-

20 mg/m³), and high (20-150 mg/m³). Some data points show 

the same error among the three plots, which could be 

attributed to uncertainty in those samples. In general, as shown 

in Table 2, the DL models have similar results in the high Chla 

range, but compared to the 2-Bands the MDN and B1D–CNN  

have significantly higher performance, this indicates that DL 

models have better abilities to model high Chla ranges than 

classical algorithms.  

In the mid and low Chla ranges, B1D–CNN significantly 

reduces the error compared to the two other models, achieving 

a 5.4% to 15.2% lower RMSE and a 11.6% to 19.5% reduction 

in the MAE in the moderate range. On the other hand, the 2-

Bands algorithm gives lower RMSE than MDN in the mid-

range. For the low Chla range, DL models, again, outperform 

the 2-Bands algorithm with almost 2 folds with respect to the 

MAE. Furthermore, B1D–CNN has a significantly lower 

RMSE of 8.33 compared to 10.83 and 11.45 of MDN and 2-

Bands, respectively. These results could be attributed to the 

inherent nature of 2-Bands algorithms, which is specifically 

designed for moderate turbid waters [10], [35]. 

 

Chla model RMSE MAE MAPE BIAS 

0-5 

(mg/m3) 

B1D–CNN 8.33 3.56 435.56 -3.10 

MDN 10.83 3.69 459.55 -3.10 

2-Bands 11.45 6.69 813.96 -5.72 

5-20 

(mg/m3) 

B1D–CNN 8.28 4.51 46.45 -1.40 

MDN 9.76 5.10 51.52 -0.96 

2-Bands 8.75 5.60 62.32 -4.16 

20-150 

(mg/m3) 

B1D–CNN 17.38 12.67 30.12 8.74 

MDN 17.80 12.62 30.95 5.77 

2-Bands 18.46 13.29 29.10 9.89 

Table 2. Performance evaluation of top 3 Chla retrieval 

models at different Chla ranges. 

4.2. Applying to Satellite Data 

The top-performing models were evaluated using a satellite 

image captured during a harmful algal bloom (HAB) event 

(Figure 4a). The image was taken during the HAB event to 

assess the models' ability to identify and detect these events 

from satellite imagery. The results of this evaluation are 

demonstrated in Figure 4, which shows that the DL models 

can accurately detect HAB patches in the image and provide 

high Chla concentrations corresponding to those patches. On 

the other hand, the 2 bands algorithm failed to obtain the Chla 

concentration in some patches and showed lower abilities in 

Figure 4. (a) True color image of Harmful algal blooms batches near the northeast coast of Hokkaido, Japan. Chla retrieved using 

the top 3 models (b) B1D–CNN, (c) MDN, and  (d) 2-Bands algorithm. 
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capturing high Chla patches. This highlights the model's 

ability to effectively identify and detect HABs using satellite 

imagery, which can be helpful in monitoring and studying 

aquatic ecosystems. 
5. CONCLUSION 

This study presents B1D–CNN, a novel deep learning model 

combining 1D-convolutional neural networks and the 

empirical blend algorithm, for estimating Chlorophyll-a 

(Chla) from Sentinel-2 satellite data. B1D–CNN was 

evaluated using a global dataset against state-of-the-art 

models. The proposed model demonstrated significant 

improvements in accuracy, with a 9.25% to 54.12% 

improvement in the RMSE. Additionally, the B1D–CNN 

successfully detected high Chla batches in satellite imagery 

during a harmful algal bloom event, highlighting its potential 

as an effective tool for monitoring aquatic ecosystems. This 

research highlights the benefits of using deep learning models 

for Chla retrieval from satellite data. 
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