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	 Despite extensive research on chlorophyll-a (Chla) concentration retrieval methods from 
remote sensing reflectance (Rrs, sr−1) data, there remains a need for more reliable Chla retrieval 
techniques. In this study, we introduce a deep learning approach based on a 1D convolutional 
neural network (1D CNN) architecture. In addition, we provide a new method of representing 
the Rrs as a sequential vector. The model architecture targets the Sentinel-2 MultiSpectral 
Instrument (MSI) sensor. The proposed model was trained and tested on simulated and in situ 
data collected from broad trophic states in Japan and Vietnam waters with Chla concentrations 
ranging from 0.02 to 148.26 mg/m3. The proposed model was evaluated against well-accepted 
state-of-the-art methods: ocean color three-band (OC3), ocean color index (OCI), two-band 
ratio, Blend, and a neural network model with a mixture density network. The evaluation shows 
that the proposed method outperforms other methods with a 7.48–38.02% reduction in root mean 
squared error (RMSE) and an 11.50–39.17% lower mean absolute error (MAE) than the other 
methods. The promising performance of the proposed model suggests that more attention should 
be paid to the domain of sequence modeling for Rrs and the architecture of 1D CNN. 

1.	 Introduction

	 Chlorophyll-a (Chla) concentration has been used as a direct indicator of the trophic state of 
water bodies.(1) It is also used as a representative of harmful algal blooms,(2) which makes 
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measuring Chla in water bodies a vital task to determine the quality, productivity, and 
environmental situation of water. 
	 Various methods have been used to measure and retrieve Chla concentrations in water 
bodies,(3) which can be divided into in situ measurements and remote sensing methods. Remote 
sensing methods provide an advantage over the complexity of in situ methods and labor-intensive 
techniques involved in field measurements. However, remote sensing for Chla estimation is 
prone to errors and failures caused by several reasons, including cloud coverage, atmospheric 
correction, and the optical complexity of water.(4) Therefore, the estimation of Chla in water 
using remote sensing methods is a challenging task.
	 The estimation of Chla using satellite imagery has been widely explored owing to the 
accessibility of monitoring methods, and several empirical algorithms have been developed for 
this purpose. The majority of the currently used Chla retrieval algorithms are empirical 
algorithms that use the relationships between various remote sensing reflectance (Rrs) values at 
various bands to infer the corresponding Chla value. Band selection mainly relies on absorption 
peaks of the phytoplankton using Rrs to directly estimate Chla, such as the band ratio between 
the NIR or the red edge and the red bands,(5,6) or the ratio between the green and blue bands.(7) 
Ocean color (OCx) algorithms are fourth-order polynomial equations with different versions.(7–9) 
The selected version of the OCx algorithm depends on the target sensor, selected bands (i.e., two 
to six bands), and polynomial coefficients. The color index (CI) algorithm, which was developed 
for case 1 water where Chla < 0.25 mg/m3, is used by the NASA Ocean Biology Processing 
Group (OBPG; https://oceancolor.gsfc.nasa.gov) along with OCx as a blend algorithm.(10) 
However, blue and green algorithms are known to overestimate Chla concentrations in inland 
and coastal waters, and red and NIR algorithms have been developed specifically for use in these 
types of water.(11) The two-band ratio algorithm uses the linear relationship between the NIR or 
red edge and red bands.(11) Other algorithms were developed by mixing different algorithms for 
more generalized solutions for case 1 and case 2 waters.(12) The previous algorithms mainly lack 
generalization to different water characteristics as stated above, which makes it difficult to use 
in all situations. Moreover, the lack of classification algorithms that can be used to determine the 
water type and which algorithm should be used forces the use of a single algorithm for all water 
cases.
	 On the other hand, some studies have considered using different machine learning techniques, 
such as support vector machines,(13–16) K-nearest neighbors,(14,16) and random forest,(14,16,17) to 
provide more accurate Chla estimations for specific regions. In addition to traditional machine 
learning methods, deep learning has attracted significant attention for water quality monitoring 
and remote sensing. Few researchers have used deep learning methods to estimate Chla from 
Rrs, such as feedforward neural networks,(18,19) which are multilayered neural networks used as 
regression models and trained using the backpropagation algorithm. Convolutional neural 
networks(20) operate on an image level instead of a pixel level, similar to other deep learning 
techniques, and they consist of multiple filters that are also trained using the backpropagation 
algorithm. The use of mixture density networks (MDNs) is a recent approach for estimating the 
distribution of Chla(21–23) by estimating multiple Gaussian distributions and combining them; 
they are basically feed-forward networks, but instead of estimating Chla directly, they try to 
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estimate the parameters of several Gaussian distributions that can represent Chla. Although 
some of the previously proposed deep learning models have shown some acceptable efficiency 
in determining Chla concentration, a huge room for improvement exists when considering more 
complex deep learning structures and when transforming the problem into other domains that 
can improve the efficiency of retrieval.
	 In this study, we consider a novel approach by treating Rrs as a sequence of reflectance 
values that are related to each other instead of dealing with each band as a stand-alone value; on 
the basis of this assumption, different sequence modeling techniques can be applied to determine 
Chla from Rrs by modeling the sequence of Rrs bands and encoding it into the corresponding 
Chla value. The method selected for this research uses 1D convolutional neural networks (1D 
CNNs), which were first used to analyze and classify electrocardiography (ECG) signals.(24) To 
the best of our knowledge, this is the first study to use 1D CNNs to model satellite data. First, we 
built a new model based on the 1D CNN architecture to estimate Chla concentrations in aquatic 
environments using MultiSpectral Instrument (MSI) sensors by considering Rrs as a sequence 
of related values. Next, we compared the proposed method with existing state-of-the-art 
algorithms using both in situ and simulated datasets representing a wide range of trophic states.

2.	 Materials and Methods

2.1	 Datasets

	 The datasets used for developing this model are a combination of in situ and simulated 
hyperspectral data. The in situ dataset contains radiometric and biogeochemical measurements 
from various water bodies around Japan, Thailand, and Vietnam, with diverse Chla 
concentrations. Rrs measurements within the range of 350–900 nm were carried out using three 
TriOS-RAMSES hyperspectral radiometers. These instruments have a spectral interval of 2 nm 
and a field of view of 7 deg. Concurrently, Chla concentrations were determined using a Turner 
Designs 10-AU fluorometer. The procedure involved filtering 20 mL of water samples through 
25 mm Whatman GF/F filters with a pore size of 0.7 µm. Subsequently, the pigments were 
extracted by immersing the filter in 6 mL of N, N-dimethylformamide (DMF) and storing it in a 
dark place at 4 ℃ for 4 h.(25) The locations of the sampling points are shown in Fig. 1, except for 
the locations of the data points from the Gulf of Thailand because such locations could not be 
verified. The simulated dataset is part of the CoastColour Round Robin dataset that includes 
simulated measurements of hyperspectral Rrs and corresponding Chla concentrations.(26) 

	 The data used to create the generalized global Chla model included both in situ and simulated 
data. The in situ data consisted of 958 samples collected from seven different water bodies, 
which were divided into 660 training samples and 298 test samples (Table 1). The Rrs spectra of 
the in situ dataset are shown in Fig. 2. The simulated data included 5000 samples, which were 
randomly split into 159 training samples and 4841 test samples. The use of a small number of 
simulated data points was intentional to introduce randomness to the model training without 
negatively impacting its performance on the in situ data. The histogram distribution shown in 
Fig. 3 and the descriptive statistics in Table 1 demonstrate the variations in the characteristics of 
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Fig. 1.	 (Color online) Geographical distribution of the in situ measurements from different water bodies in (a) 
Japan and (b) Camranh Bay, Vietnam.

Fig. 2.	 (Color online) Rrs spectra of in situ measurements.

Table 1
Descriptive statistics of in situ and simulated Chla concentrations. The statistics include the minimum (Min), 
maximum (Max), mean, standard deviation (Std.), and size of the data.
Data type site Train/Test Min Max Mean Std. Size

In situ

Ariake Bay Train 2.91 39.97 16.09 10.66 57
Test 1.53 37.50 15.44 11.09 18

Biwa Lake Train 0.60 1.70 0.86 0.42 5
Test 0.63 0.63 0.63 0.00 1

Camranh 
Bay

Train 1.63 52.00 8.16 10.54 20
Test 0.81 7.86 3.19 1.95 10

Gulf of 
Thailand

Train 3.05 39.79 14.21 11.17 21
Test 5.12 37.63 12.37 10.28 8

Ise-Mikawa 
Bay

Train 0.39 148.26 19.24 22.50 457
Test 0.53 131.74 19.55 22.60 218

Lake 
Kasumigaura

Train 13.16 127.34 51.72 25.92 55
Test 21.63 94.49 48.72 18.60 22

Tokyo Bay Train 0.91 80.23 20.02 18.19 45
Test 0.76 97.32 26.45 25.04 21

Simulated Train 0.22 60.78 6.16 7.92 159
Test 0.02 129.08 6.15 10.06 4841

(a) (b)
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the water bodies and data samples, which facilitate the development of a generalized global Chla 
model.
	 The target sensor of this study is the MSI onboard the Sentinel-2 satellite, which measures the 
reflectance at 13 different wavelengths, ranging from the visible and near-infrared regions to the 
shortwave infrared region.(27) MSI bands in the visible and NIR regions (Table 2) were 
considered as inputs for the 1D CNN model. The hyperspectral Rrs values of the in situ and 
simulated datasets were resampled to the MSI sensor for the training and testing of the evaluated 
algorithms by using the nominal bands. 

2.2	 Model development

	 The measured Rrs at each station is a sequential data vector with dependences and 
relationships between its values. To model the sequential data, a 1D CNN was adopted to 
analyze and detect different relationships and dependences between the different Rrs bands. 
	 1D CNNs are effective deep learning models for sequential data processing, such as audio 
signals, time-series data, and natural language text.(28) One key advantage of 1D CNNs is their 
ability to learn local patterns within the input data while preserving the overall structure and 
context of the input. This is accomplished using the convolutional kernels shown in Fig. 4, which 
are small weight matrices that are applied to a sliding window of the input data, extracting local 
features, and combining them to form higher-level representations. 1D CNNs can be stacked to 
create deeper networks, which can further improve their ability to learn more complex and 
abstract patterns within the data. 

2.2.1	 Feature engineering

	 The input to the proposed model is Rrs in sr−1, which consists of the first seven spectral 
bands from the Sentinel-2 MSI sensor, and the output is the Chla concentration in mg/m3, which 

Fig. 3.	 (Color online) Histogram distributions of (a) in situ and (b) simulated Chla concentrations.

(a) (b)
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creates a regression problem. Various feature engineering techniques were applied to the data 
before they were fed to the deep learning model to facilitate the learning progress and 
generalization of the model.
	 First, an Isolation Forest anomaly detection algorithm(29) was used to ensure that all data 
samples do not include outliers. This algorithm is based on an isolation tree, which is constructed 
by randomly selecting a feature, splitting a value, and partitioning the data into two subsets. This 
process is recursively repeated until each data point is isolated from its leaf node. After building 
multiple isolation trees using different subsets of the data and measuring the average path length 
of the trees, data points that required fewer splits to be isolated in the tree were considered more 
anomalous than data points that required more splits to be isolated in the tree. The algorithm 
then generates an anomaly score for each data point based on its isolation in the tree, and the 
data points with high scores are identified as anomalies. The threshold for considering a sample 
as an anomaly is set to 0.55.
	 The Rrs values range from 4.27 e−6 to 2.49 e−2 sr−1 (Fig. 2), which is a massive range for deep 
learning. Hence, a log transformation was applied to the inputs as a technique to minimize the 
input range, which helps the model better represent the data and generalize for different Rrs 
values. Applying the log transformation to the reflectance data narrows the input range to 
−12.36–−3.69. 

Fig. 4.	 (Color online) Simple 1D CNN architecture with two convolutional layers.

Table 2
Sentinel-2 MultiSpectral Instrument (MSI) bands in the visible and near-infrared regions.
Band Nominal wavelength (nm) Spatial resolution (m)
1 443 60
2 490 10
3 560 10
4 665 10
5 705 20
6 740 20
7 783 20
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2.2.2	 Model architecture 

	 The architecture of the proposed model is shown in Fig. 5. The model construction can be 
described in three steps. First, feature engineering and normalization were applied to the Rrs 
data to produce a normalized input. Second, the output from the first step was fed to two-layered 
1D CNNs that can be considered as the encoding part of the model, which captures the 
relationship between the input reflectance and the output Chla, and encodes the input values to 
an intermediate vector representation of Chla. Finally, the vector is fed to a two-layered fully 
connected feed-forward network with an output layer that attempts to estimate the Chla 
concentration for the corresponding Rrs values.
	 Different hyperparameters were tuned to obtain the current structure and parameters of the 
proposed model. The hyperparameters include the number of layers for both the CNN and the 
fully connected network, kernel size, the number of filters for the CNN layers, and the number 
of units in each of the fully connected layers. Beyond the architectural parameters, feature 
engineering parameters were also carefully adjusted. This involved setting the anomaly 
threshold to 0.55 for the Isolation Forest anomaly detection algorithm and selecting a logarithmic 
transformation as the normalization technique for Rrs. Figure 5 shows the different 
hyperparameters used for each layer in the deep learning model.

2.3.	 Comparison with other Chla algorithms

	 The performance of the proposed model was evaluated using state-of-the-art algorithms. Six 
well-known standard algorithms used for Chla estimation were selected for comparison: the 
three-band version of OC3;(8) the OCI algorithm that blends the CI algorithm with the OC3 
algorithm;(10) the two-band ratio algorithm (2 Band), which indicates that the ratio of the near 
705 nm band to the near 675 band is directly related to the Chla ratio;(5) the three-band ratio 
algorithm (3 Band), which uses the spectral bands 665, 705, and 740;(30) the four-band ratio 
algorithm (4 Band) using the relationship among the 560, 665, 705, and 740 bands to estimate 
Chla;(31) and the blend algorithm that blends the OC3 algorithm with the two-band algorithm.(12) 
For the band ratio algorithms, the relationship between the band ratios and the Chla value was 
linear. The equations and tuned parameters for the six algorithms are presented in Appendix A. 
	 In addition to the six classical algorithms, the state-of-the-art deep learning model proposed 
by Pahlevan et al., which is based on the MDN architecture to estimate the distribution of Chla 
using several Gaussian distributions, was also included in the comparison.(23)

Fig. 5.	 (Color online) Schematic diagram illustrating the overall architecture of the proposed 1D CNN, including 
the feature engineering step followed by the deep learning model's main components.
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2.4	 Evaluation metrics

	 The evaluation metrics used in this study were the root mean squared error (RMSE), mean 
absolute error (MAE), mean absolute percentage error (MAPE), and BIAS. The proposed model, 
state-of-the-art deep learning model, and six standard algorithms were evaluated using the same 
test data. All four evaluation metrics were calculated for each model’s prediction against the in 
situ measurements of Chla for comparison.
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Here, iy  and ˆiy  represent the measured and model retrieved Chla values, respectively, and n 
refers to the number of samples.

3.	 Results and Discussion

	 The inclusion of simulated data in our study seeks to address the inherent limitations posed 
by the relatively small number of in situ Rrs–Chla pairs, allowing for the exploration of Chla 
distributions not fully captured by in situ data alone. To evaluate the efficacy of this approach, 
we first compared the performance characteristics of the 1D CNN model trained with and 
without the inclusion of 159 simulated samples. As illustrated in Fig. 6, the performance results 
derived from in situ data were similar, with a slight improvement observed in the nonsimulated 
data scenario, indicating that the inclusion of simulated data does not significantly affect the 
model’s performance on in situ data.
	 In contrast, a marked change in performance was observed when assessing the model’s 
ability to handle simulated data. The 1D CNN model, when trained exclusively on in situ data, 
showed a significant performance decrease when tested against simulated data, as demonstrated 
by a 100% increase in RMSE and 7-fold and 20-fold decreases in MAE and BIAS, respectively, as 
demonstrated in Fig. 6.
	 We further assessed the quantity of simulated data incorporated into the 1D CNN model. 
While a small portion of simulated data significantly enhances the model’s performance on 
simulated data, expanding this simulated dataset negatively impacted the performance on in situ 
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data. Accordingly, we infer that our selected mix of in situ and simulated data optimizes the 1D 
CNN model’s capacity to capture the variability present in both in situ and simulated 
distributions.
	 We further investigated the proposed 1D CNN’s performance for Chla retrieval by comparing 
it with those of six standard algorithms [i.e., OC3, OCI, 2 Band, 3 Band, 4 Band, and Blend (2 
Band & OC3)] and the MDN model. The models were evaluated using in situ and simulated 
datasets as discussed in the subsequent sections. 

3.1	 Performance evaluation based on simulated data 

	 The performance of all models was evaluated using a simulated dataset with 4841 samples. 
The evaluation metrics, including RMSE, MAE, and MAPE, were calculated for each model on 
the basis of the estimated Chla values and the Chla values associated with the simulated Rrs. The 
overall performance of the evaluated models, shown in Table 4, indicates that the proposed 
model outperforms other models with a 40.97–73.74% improvement in RMSE. In addition, MAE 
and MAPE indicated that Chla retrieval was improved by at least two folds. The statistics 

Fig. 6.	 (Color online) Evaluation of model performance based on training scenarios: (a) & (b) Model performance 
characteristics on in situ data, trained using in situ data only, and both in situ and simulated data, respectively. (c) & 
(d) Model performance characteristics on simulated data, trained using only in situ, and both in situ and simulated 
data, respectively.

(a) (b)

(c) (d)
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tabulated in Table 4 using the simulated dataset indicate that the MDN model provides the least 
BIAS (0.25; compared with 0.30 for the proposed model). Among the standard algorithms, 2 
Band and Blend are the most accurate, whereas 3 Band and 4 Band have the least retrieval 
accuracy with a MAPE of up to 1146%.
	 Figure 7 shows the scatterplots of the top-performing standard algorithms, along with the 
MDN and proposed models. The scatterplots indicate that Blend and the MDN model better 
model Chla in the range of 0.01–0.2 mg/m3; however, the proposed model provides better 
agreement for Chla > 1 mg/m3. Table 5 shows a detailed comparison between the different 
models in different Chla ranges, which clearly shows that the proposed model outperforms the 
other models in all evaluation metrics across all Chla ranges by multiple folds. Even though the 
proposed model fails to capture the very low Chla values (less than 0.2 mg/m3), the model still 
performs very well in the 0–5 mg/m3 range with a 76.97–87.18% reduction in RMSE compared 
with other models and a 78.53–89.24% reduction in MAE.

3.2	 Performance evaluation based on in situ data

	 The performance characteristics of various models, including the proposed model, were 
evaluated using 298 samples of in situ-measured Rrs and Chla pairs. The same evaluation 
procedures used for the simulated data were applied to the in situ data, and the results are 
presented in Table 6, which compares the overall performance characteristics of all the models 
considered in this study. The results indicate a significant improvement over the standard 
algorithms and the MDN model, with a 7.48–38.02% reduction in RMSE and an 11.50–39.17% 
improvement in MAE. MAPE was also reduced significantly. Figure 8 shows the scatterplots of 
the top-performing models, which demonstrate that the scatter points are close to the unity line 
compared with the other algorithms.
	 Table 7 shows the proposed Chla retrieval model with the other algorithms for various Chla 
ranges. For Chla values between 0 and 5 mg/m3, the MDN model performed slightly better than 
the proposed model, with lower RMSE and MAE values. Both deep-learning-based algorithms 
significantly outperformed the standard algorithms in this range. When considering the range of 
5–10 mg/m3, the proposed model outperforms the other algorithms, with a 15.98–31.26% 

Table 4
Overall evaluation for all models based on the simulated test dataset.
Model RMSE MAE MAPE BIAS
Proposed Model 4.12 1.06 27.74 0.30
MDN 6.98 3.28 68.93 0.25
OC3 10.72 5.76 141.41 −3.32
OCI 10.72 5.76 141.36 −3.29
2 Band Ratio 8.10 6.77 468.26 −5.41
3 Band Ratio 15.69 14.24 1146.05 −12.04
4 Band Ratio 14.64 12.65 1011.27 −9.75
Blend (2 Band & OC3) 9.25 5.36 140.19 −3.47
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Fig. 7.	 (Color online) Scatterplots of the top-performing algorithms showing the comparison between the 
evaluation metrics for the (a) proposed model, (b) MDN model, (c) 2 Band algorithm, and (d) Blend algorithm 
evaluated on the basis of the simulated dataset.

(a) (b)

(c) (d)

Table 5
Detailed comparison between the top-performing Chla retrieval algorithms against different Chla ranges based on 
the simulated dataset.
Chla range (mg/m3) Model RMSE MAE MAPE BIAS

0 to 5

Proposed Model 0.76 0.38 36.43 −0.21
MDN 3.30 1.77 83.09 −1.39
OCI 5.93 3.53 168.99 −3.49

Blend (2 Band & OC3) 5.93 3.53 169.07 −3.50

5 to 10

Proposed Model 1.53 0.69 10.06 −0.35
MDN 4.12 3.04 45.62 −1.62
OCI 10.73 7.67 114.38 −7.44

Blend (2 Band & OC3) 10.73 7.66 114.33 −7.44

10 to 20

Proposed Model 2.18 0.93 6.55 0.08
MDN 4.83 3.94 28.28 3.01
OCI 12.73 8.06 61.13 −5.57

Blend (2 Band & OC3) 11.62 7.43 56.95 −5.29

20 to 150

Proposed Model 16.53 10.20 21.69 8.69
MDN 25.10 20.29 52.06 20.29
OCI 30.78 21.28 50.44 16.31

Blend (2 Band & OC3) 22.00 15.33 36.48 12.68
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Table 6
Overall evaluation for all models based on the in situ test dataset.
Model RMSE MAE MAPE BIAS
Proposed Model 20.05 10.00 66.89 5.54
MDN 22.58 12.44 72.40 8.92
OC3 32.35 14.98 96.06 8.04
OCI 32.35 14.98 96.06 8.04
2 Band Ratio 21.67 11.30 124.04 1.40
3 Band Ratio 23.21 16.44 223.44 2.94
4 Band Ratio 22.28 15.11 209.01 2.05
Blend (2 Band & OC3) 22.78 11.36 85.68 4.61

Fig. 8.	 (Color online) Scatterplots of the top-performing algorithms showing the comparison between the 
evaluation metrics for (a) the proposed model, (b) MDN model, (c) 2 Band algorithm, and (d) Blend algorithm  
evaluated on the basis of the in situ test dataset.

(a) (b)

(c) (d)

reduction in RMSE and a 21.18–47.34% reduction in MAE. Furthermore, the proposed model 
also excels in higher Chla ranges; in the range of 10–20 mg/m3, RMSE is 23.5% less than that of 
the MDN model and 23.2–29.27% less than that of the standard algorithms. MAE is also reduced 
by 10.85–36.63% compared with the other models, as reflected in the scatterplots of Fig. 8. The 
standard algorithms showed better results than the MDN model in this range in terms of MAE. 
Finally, 2 Band performed better than the other models in the highly turbid water Chla range 
(20–150 mg/m3).
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3.3.	 Models’ performance

	 In this study, we compared the performance of the proposed 1D CNN model for Chla 
retrieval with those of six standard algorithms and the MDN model using simulated and in situ 
datasets. The results indicate that the proposed model outperforms the other models, with 
significant improvements in terms of RMSE, MAE, and MAPE. The results from the simulated 
dataset showed that the proposed model provided the highest accuracy across various Chla 
ranges. However, when considering the in situ dataset, the proposed model performed best in the 
mid-Chla range (5 < Chla < 20 mg/m3). The statistical analysis of the in situ dataset highlights 
the need to improve the accuracy of the proposed model in the future by increasing the size of 
the trained dataset, particularly for Chla < 1 mg/m3, which has few samples, as shown in Fig. 3.
	 The results emphasize that machine-learning-based models, such as the 1D CNN and MDN, 
consistently outperform the six standard empirical algorithms because they can learn from the 
trained data, find complex patterns and relationships, automatically extract features from the 
data, and improve as the dataset size increases, which allows them to detect even more complex 
relationships in the data. In contrast, standard algorithms rely on predefined equations that may 
not capture the complexity of the problem. On the other hand, this research proved the 
applicability of using sequential models to handle Rrs, and that it is more efficient than normal 
feed forward networks.

4.	 Conclusion

	 In this study, we propose a groundbreaking approach for the retrieval of Chla concentrations 
from different water bodies using satellite imagery and a novel perspective on satellite data in 

Table 7
A detailed comparison between the top-performing Chla retrieval algorithms against different ranges of Chla based 
on the in situ test dataset.
Chla range (mg/m3) Model RMSE MAE MAPE BIAS

0 to 5

Proposed Model 18.00 4.53 160.42 −4.11
MDN 16.11 4.00 128.74 −2.28

2 Band Ratio 27.66 9.60 380.02 −8.89
Blend (2 Band & OC3) 26.88 6.01 206.08 −5.56

5 to 10

Proposed Model 6.73 3.46 46.84 −1.57
MDN 8.01 4.39 59.17 1.54

2 Band Ratio 9.43 6.57 93.19 −6.48
Blend (2 Band & OC3) 9.79 4.97 69.27 −3.35

10 to 20

Proposed Model 7.78 5.26 37.18 1.72
MDN 10.17 8.30 59.89 5.91

2 Band Ratio 10.13 5.90 43.56 −3.68
Blend (2 Band & OC3) 11.00 6.92 50.36 −0.03

20 to 150

Proposed Model 29.25 19.96 41.23 17.90
MDN 33.98 24.94 55.45 22.02

2 Band Ratio 27.20 18.08 35.80 15.24
Blend (2 Band & OC3) 29.76 21.00 44.47 18.23
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terms of sequential reflectance values. The algorithm proposed in this research is a 1D 
convolutional deep neural network that is known to excel in modeling simple sequential data 
applied to the domain of water quality monitoring to obtain breakthrough results in the retrieval 
of Chla using Rrs. The proposed model was trained and tested using Rrs–Chla pairs from both 
simulated and in situ data collected using measurements in different water bodies, and was 
proven to outperform the standard empirical algorithms and state-of-the-art deep learning 
methods significantly in most cases and Chla ranges. The model excels in the high ranges of 
Chla (i.e., higher than 5 mg/m3) with a 7.48–38.02% overall improvement of in RMSE and an 
11.50–39.17% lower MAE than the other algorithms in this study, which proves that using 
sequence modeling methods such as 1D CNN for Chla concentration retrieval using Rrs is more 
accurate than using standard algorithms and basic deep learning methods. Limitations of the 
proposed model lie mainly in the low Chla range performance, which can be mitigated by 
providing a model with more balanced data between low and high Chla concentrations. Future 
research could explore the potential of using 1D CNNs for other satellite products, such as total 
suspended matter or colored dissolved organic matter, and expand the dataset of Rrs–Chla pairs 
to enhance the robustness of deep learning methods in estimating Chla. Real-time Chla and Rrs 
measurements can also be used in an online learning manner to further improve the proposed 
model.
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Appendix A

	 The detailed implementations of the standard Chla algorithms are listed below.
OC3:

	 443 490

560 560
,   Rrs Rrsx

Rrs Rrs
 

=  
 

	

	 ( ) 2 3 4
3 0 1 2 3 4      OCChla a a x a x a x a x= + + + + 	

	 0 1 2 3 40.3308,  2.6684, 1.5990,  0.5525,  1.4876a a a a a= =− = = =− 	
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CI:

	 ( )560 443 665 443
560 443  *  
665 443

CI Rrs Rrs Rrs Rrs− = − − − − 
	

	 ( ) ( ) 0.4909 191.6590*  CIChla CI=− +

OCI (CI & OC3):

	 0.15 
0.2 0.15

CIChlaw −
=

−
	

	 3

3

( 0.15)
( 0.2)

*  1 * (otherwise)

CI CI

OCI OC CI

OC CI

Chla Chla
Chla Chla Chla

w Chla w Chla

 <
= >
 + −

	

2 Band ratio:

	 705
2 0 1

665
  B

RrsChla a a
Rrs

= + 	

By regression on the datasets used in this study, the parameters for the above linear equation 
were found to be

	 0 1 23.6481638,   51.54954222a a=− = .	

With RMSE = 16.66, MAPE = 161.93%, R2 = 0.42.

3 Band ratio:

	 3 0 1 740
665 705

1 1   BChla a a Rrs
Rrs Rrs
 

= + − 
 

	

By regression on the datasets used in this study, the parameters for the above linear equation 
were found to be

	 0 118.19501540, 0.00312166a a −= = .	

With RMSE = 16.18, MAPE = 182.43, R2 = 0.46.
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4 Band ratio:

	 560 665
4 0 1

740 705

1 1 
  1 1 

B
Rrs RrsChla a a

Rrs Rrs

−
= +

−
	

By regression on the datasets used in this study, the parameters for the above linear equation 
were found to be

	 0 1 6.0385872814,   72.97858459a a= =− .	

With RMSE = 20.33, MAPE = 312.17, R2 = 0.14.

Blend (2 Band & OC3):

	 705

665
 Rrsr
Rrs

= 	

	
0.75 0.75
1.15 1.15

otherwise

r
r

r

<
∅ = >



	

	 0.75 
1.15 0.75

w ∅−
=

−
	

	 2 3*  1 * B OCChla w Chla w Chla= + − 	

References

	 1 	 R. E. Carlson: Limnol. Oceanogr. 22 (1977) 361. https://doi.org/10.4319/lo.1977.22.2.0361
	 2	 J. Bartram, I. Chorus, Eds. Toxic Cyanobacteria in Water [Internet]. (CRC Press, 1999) 1st ed.. https://doi.

org/10.1201/9781482295061
	 3	 P. C. Golnick, J. D. Chaffin, T. B. Bridgeman, B. C. Zellner, and V. E. Simons: J. Great Lakes Res. 42 (2016) 

965. https://doi.org/10.1016/j.jglr.2016.07.031
	 4	 S. C. J. Palmer, T. Kutser, and P. D. Hunter: Remote Sens. Environ. 157 (2015) 1. https://doi.org/10.1016/j.

rse.2014.09.021
	 5	 H. J. Gons: Environ. Sci. Technol. 33 (1999) 1127. https://doi.org/10.1021/es9809657
	 6	 K. H. Mittenzwey, S. Ullrich, A. A. Gitelson, and K. Y. Kondratiev: Limnol. Oceanogr. 37 (1992) 147. 

Available from: https://doi.org/10.4319/lo.1992.37.1.0147
	 7	 J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. 

mcClain: J. Geophys. Res. Oceans. 103 (1998) 24937. https://doi.org/10.1029/98JC02160
	 8	 J. E. O’Reilly, and P. J. Werdell: Remote Sens. Environ. 229 (2019) 32. https://doi.org/10.1016/j.rse.2019.04.021

https://doi.org/10.4319/lo.1977.22.2.0361
https://doi.org/10.1201/9781482295061
https://doi.org/10.1201/9781482295061
https://doi.org/10.1016/j.jglr.2016.07.031
https://doi.org/10.1016/j.rse.2014.09.021
https://doi.org/10.1016/j.rse.2014.09.021
https://doi.org/10.1021/es9809657
https://doi.org/10.4319/lo.1992.37.1.0147
https://doi.org/10.1029/98JC02160
https://doi.org/10.1016/j.rse.2019.04.021


Sensors and Materials, Vol. 35, No. 10 (2023)	 3759

	 9	 J. E. O’Reilly: SeaWiFS postlaunch calibration and validation analyses 11 (2000) 9. 
	10	 C. Hu, Z. Lee, and B. Franz: J. Geophys. Res. Oceans 117 (2012). https://doi.org/10.1029/2011JC007395
	11	 A. A. Gilerson, A. A. Gitelson, J. Zhou, D. Gurlin, W. Moses, I. Ioannou, and S. A. Ahmed: Opt. Express 18 

(2010) 24109. https://doi.org/10.1364/OE.18.024109
	12	 M. E. Smith, L. R. Lain, and S. Bernard: Remote Sens. Environ. 215 (2018) 217. https://doi.org/10.1016/j.

rse.2018.06.002
	13	 H. Zhan, P. Shi, and C. Chen: IEEE Trans. Geosci. Remote Sens. 41 (2003) 2947. https://doi.org/10.1109/

TGRS.2003.819870
	14	 L. S. Kupssinskü, T. T. Guimarães, E. M. Souza, D. C. Zanotta, M. R. Veronez, L. Gonzaga, F. F. Mauad: 

Sensors 20 (2020) 2125. https://doi.org/10.3390/s20072125
	15	 R. Matarrese, A. Morea, K. Tijani, V. Pasquale, M. T. Chiaradia, and G. Pasquariello: 2008 IEEE Int. 

Geoscience and Remote Sensing Symposium 4 (2008) 910. https://doi.org/10.1109/IGARSS.2008.4779871
	16	 P. M. Maier, and S. Kelle: Ann. Photogramm. Remote Sens. Spatial Inf. Sci. IV-2/W5 (2019) 609. https://doi.

org/10.5194/isprs-annals-IV-2-W5-609-2019
	17	 D. Diouf, and D. Seck: IJAIA. 10 (2019) 33. https://doi.org/10.5121/ijaia.2019.10603
	18	 S. Graban, G. Dall’Olmo, S. Goult, and R. Sauzède: Opt. Express 28 (2020) 24214. https://doi.org/10.1364/

OE.397863
	19	 D. Gómez, P. Salvador, J. Sanz, and J. L. Casanova: Environ. Pollut. 286 (2021) 117489. https://doi.org/10.1016/j.

envpol.2021.117489
	20	 D. Jin, E. Lee, K. Kwon, and T. Kim: Remote Sens. 13 (2021) 2003. https://doi.org/10.3390/rs13102003
	21	 N. Pahlevan, B. Smith, K. Alikas, J. Anstee, C. Barbosa, C. Binding, M. Bresciani, B. Cremella, C. Giardino, 

D. Gurlin, V. Fernandez, C. Jamet, K. Kangro, M. K. Lehmann, H. Loisel, B. Matsushita, N. Hà, L. Olmanson, 
G. Potvin, S. G. H. Simis, A. VanderWoude, V. Vantrepotte, and A. Ruiz-Verdù: Remote Sens. Environ. 270 
(2022) 112860. https://doi.org/10.1016/j.rse.2021.112860

	22	 B. Smith, N. Pahlevan, J. Schalles, S. Ruberg, R. Errera, R. Ma, C. Giardino, M. Bresciani, C. Barbosa, T. 
Moore, V. Fernandez, K. Alikas, and K. Kangro: Front. Remote Sens. 1 (2021). https://doi.org/10.3389/
frsen.2020.623678

	23	 N. Pahlevan, B. Smith, J. Schalles, C. Binding, Z. Cao, R. Ma, K. Alikas, K. Kangro, D. Gurlin, N. Hà, B. 
Matsushita, W. Moses, S. Greb, M. K. Lehmann, M. Ondrusek, N. Oppelt, and R. Stumpf: Remote Sens. 
Environ. 240 (2020) 111604. https://doi.org/10.1016/j.rse.2019.111604

	24	 S. Kiranyaz, T. Ince, R. Hamila, and M. Gabbouj: 37th Ann. Int. Conf. the IEEE Engineering in Medicine and 
Biology Society (EMBC, 2015) 2608. https://doi.org/10.1109/EMBC.2015.7318926

	25	 S. Salem, H. Higa, H. Kim, H. Kobayashi, K. Oki, and T. Oki: Sensors 17 (2017) 1746. https://doi.org/10.3390/
s17081746

	26	 B. Nechad, K. Ruddick, T. Schroeder, K. Oubelkheir, D. Blondeau-Patissier, N. Cherukuru, V. Brando, A. 
Dekker, L. Clementson, A. C. Banks, S. Maritorena, P. J. Werdell, C. Sá, V. Brotas, I. Caballero de Frutos, Y. 
H. Ahn, S. Salama, G. Tilstone, V. Martinez-Vicente, D. Foley, M. McKibben, J. Nahorniak, T. Peterson, A. 
Siliò-Calzada, R. Röttgers, Z. Lee, M. Peters, and C. Brockmann: Earth Syst. Sci. Data 7 (2015) 319. https://
doi.org/10.5194/essd-7-319-2015

	27	 M. Drusch, U. del Bello, S. Carlier, O. Colin, V. Fernandez, F. Gascon, B. Hoersch, C. Isola, P. Laberinti, P. 
Martimort, A. Meygret, F. Spoto, O. Sy, F. Marchese, and P. Bargellini: Remote Sens. Environ. 120 (2012) 25. 
https://doi.org/10.1016/j.rse.2011.11.026

	28	 S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman: Mech. Syst. Signal Process. 151 
(2021) 107398. https://doi.org/10.1016/j.ymssp.2020.107398

	29	 F. T. Liu, K. M. Ting, and Z. H. Zhou: Eighth IEEE Int. Conf. Data Mining (2008) 413. https://doi.org/10.1109/
ICDM.2008.17

	30	 G. Dall’Olmo, A. A. Gitelson, and D. C. Rundquist: Geophys. Res. Lett. 30 (2003). https://doi.
org/10.1029/2003GL018065

	31	 C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu: Remote Sens. Environ. 113 (2009) 1175. https://doi.
org/10.1016/j.rse.2009.02.005

https://doi.org/10.1029/2011JC007395
https://doi.org/10.1364/OE.18.024109
https://doi.org/10.1016/j.rse.2018.06.002
https://doi.org/10.1016/j.rse.2018.06.002
https://doi.org/10.1109/TGRS.2003.819870
https://doi.org/10.1109/TGRS.2003.819870
https://doi.org/10.3390/s20072125
https://doi.org/10.1109/IGARSS.2008.4779871
https://doi.org/10.5194/isprs-annals-IV-2-W5-609-2019
https://doi.org/10.5194/isprs-annals-IV-2-W5-609-2019
https://doi.org/10.5121/ijaia.2019.10603
https://doi.org/10.1364/OE.397863
https://doi.org/10.1364/OE.397863
https://doi.org/10.1016/j.envpol.2021.117489
https://doi.org/10.1016/j.envpol.2021.117489
https://doi.org/10.3390/rs13102003
https://doi.org/10.1016/j.rse.2021.112860
https://doi.org/10.3389/frsen.2020.623678
https://doi.org/10.3389/frsen.2020.623678
https://doi.org/10.1016/j.rse.2019.111604
https://doi.org/10.1109/EMBC.2015.7318926
https://doi.org/10.3390/s17081746
https://doi.org/10.3390/s17081746
https://doi.org/10.5194/essd-7-319-2015
https://doi.org/10.5194/essd-7-319-2015
https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.1016/j.ymssp.2020.107398
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1029/2003GL018065
https://doi.org/10.1029/2003GL018065
https://doi.org/10.1016/j.rse.2009.02.005
https://doi.org/10.1016/j.rse.2009.02.005


3760	 Sensors and Materials, Vol. 35, No. 10 (2023)

About the Authors

	 Muhammad Salah is a master’s student at the School of Engineering at Kyoto 
University of Advanced Science, expected to graduate in September 2024. 
Also working as a teaching assistant in the Department of Electrical and 
Mechanical Systems Engineering at Kyoto University of Advanced Science 
since 2022. Earned his B.Sc. in Computer and Systems Engineering from 
Alexandria University in 2021. His main research interests include utilizing 
deep learning methods for water quality monitoring, generative methods in 
deep learning, and sequential analysis and modeling of data. 

	 Hiroto Higa earned his Ph.D. in Environmental Studies from The University 
of Tokyo, Japan, in 2015. He earned his B.Sc. in Civil Engineering from Tokyo 
University of Science, Japan, in 2010, and his M.Sc. in Environmental Studies 
from The University of Tokyo, Japan, in 2012. Higa served as a Special 
Researcher at the Japan Society for the Promotion of Science from 2015 to 
2016. From 2016 to 2021, he held the position of assistant professor at 
Yokohama National University. Since 2022, Higa has been serving as an 
associate professor at the Institute of Urban Innovation, Yokohama National 
University, Japan. Additionally, he acts as an ad-hoc reviewer for several 
international journals. Higa's research primarily focuses on coastal 
environmental engineering studies and ocean color remote sensing for turbid 
water areas.

	 Joji Ishizaka earned his Ph.D. in Geoscience from Texas A&M University, 
US, in 1989. He received his B.Sc. in Biology and M.Sc. in Environmental 
Studies, Tsukuba University, Japan, in 1981 and 1983, respectively. Ishizaka 
served as a Research Scientist at the Agency of Industrial Sciences and 
Technology, Ministry of International Trade and Industry, for 11 years (1989–
1998). From 1998 to 2009, he worked as a professor at Faculty of Fisheries, 
Nagasaki University, Japan. From 2009 to 2015, Ishizaka worked as a professor 
at the Hydrospheric-Atomspheric Research Center, Nagoya University, Japan, 
and also served as the director of the center in 2013–2015. Since 2015, he 
worked as a professor at the Institute for Space-Earth Environmental Reseach, 
Nagoya University, and served as the vice director of the institute in 2015 to 
2019. Ishizaka's research focus on the variation of phytoplankton and primary 
production associated with natural and anthropogenic effects using ocean 
color remote sensing.



Sensors and Materials, Vol. 35, No. 10 (2023)	 3761

	 Salem Ibrahim Salem earned his Ph.D. in Civil Engineering from The 
University of Tokyo, Japan, in 2017. He received his B.Sc. and M.Sc. in Civil 
Engineering from Alexandria University, Egypt, in 2005 and 2011, 
respectively. Salem served as a full-time teaching assistant at the School of 
Engineering, Alexandria University, for eight years (2006–2014). From 2017 to 
2019, he held a postdoctoral researcher position at The University of Tokyo. 
Since 2019, Salem has been working as a junior associate professor at the 
Faculty of Engineering, Kyoto University of Advanced Science, Kyoto, Japan. 
He also acts as an ad-hoc reviewer for several international journals. Salem's 
research primarily centers on remote sensing for water resources and 
environmental studies, integrating the latest advances in machine learning 
into his work.


