論文

査読有り
2021年4月

Multi-Event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere During Non-Storm-Time Substorms

Journal of Geophysical Research: Space Physics
  • Yudai Inaba
  • Kazuo Shiokawa
  • Shin ichiro Oyama
  • Yuichi Otsuka
  • Martin Connors
  • Ian Schofield
  • Yoshizumi Miyoshi
  • Shun Imajo
  • Atsuki Shinbori
  • Artem Yu Gololobov
  • Yoichi Kazama
  • Shiang Yu Wang
  • Sunny W.Y. Tam
  • Tzu Fang Chang
  • Bo Jhou Wang
  • Kazushi Asamura
  • Shoichiro Yokota
  • Satoshi Kasahara
  • Kunihiro Keika
  • Tomoaki Hori
  • Ayako Matsuoka
  • Yoshiya Kasahara
  • Atsushi Kumamoto
  • Shoya Matsuda
  • Yasumasa Kasaba
  • Fuminori Tsuchiya
  • Masafumi Shoji
  • Masahiro Kitahara
  • Satoko Nakamura
  • Iku Shinohara
  • Harlan E. Spence
  • Geoff D. Reeves
  • Robert J. Macdowall
  • Charles W. Smith
  • John R. Wygant
  • John W. Bonnell
  • 全て表示

126
4
記述言語
掲載種別
研究論文(学術雑誌)
DOI
10.1029/2020JA029081

Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This work studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and Radiation Belt Storm Probes [RBSP]) during non-storm-time substorms on December 19, 2012 (event 1), January 17, 2015 (event 2), and November 4, 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly detached SAR arc.

リンク情報
DOI
https://doi.org/10.1029/2020JA029081
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85104993624&origin=inward
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85104993624&origin=inward
ID情報
  • DOI : 10.1029/2020JA029081
  • ISSN : 2169-9380
  • eISSN : 2169-9402
  • SCOPUS ID : 85104993624

エクスポート
BibTeX RIS