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SUMMARY Most ascomycete fungi, including the fission yeast Schizosaccharomyces
pombe, secrete two peptidyl mating pheromones: C-terminally modified and unmodi-
fied peptides. S. pombe has two mating types, plus and minus, which secrete two dif-
ferent pheromones, P-factor (unmodified) and M-factor (modified), respectively. These
pheromones are specifically recognized by receptors on the cell surface of cells of op-
posite mating types, which trigger a pheromone response. Recognition between pher-
omones and their corresponding receptors is important for mate discrimination; there-
fore, genetic changes in pheromone or receptor genes affect mate recognition and
cause reproductive isolation that limits gene flow between populations. Such genetic
variation in recognition via the pheromone/receptor system may drive speciation. Our
recent studies reported that two pheromone receptors in S. pombe might have differ-
ent stringencies in pheromone recognition. In this review, we focus on the molecular
mechanism of pheromone response and mating behavior, emphasizing pheromone
diversification and its impact on reproductive isolation in S. pombe and closely related
fission yeast species. We speculate that the “asymmetric” system might allow flexible
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adaptation to pheromone mutational changes while maintaining stringent recognition
of mating partners. The loss of pheromone activity results in the extinction of an
organism’s lineage. Therefore, genetic changes in pheromones and their receptors may
occur gradually and/or coincidently before speciation. Our findings suggest that the
M-factor plays an important role in partner discrimination, whereas P-factor communica-
tion allows flexible adaptation to create variations in S. pombe. Our inferences provide
new insights into the evolutionary mechanisms underlying pheromone diversification.

KEYWORDS fission yeast, pheromone, mating, mate choice, G-protein-coupled
receptor, reproductive isolation, fission yeast

INTRODUCTION
Homothallism and Heterothallism

Most yeasts exist in both haploid and diploid forms (1, 2). While the budding yeast
Saccharomyces cerevisiae and many other yeasts normally multiply as diploid

cells, the fission yeast Schizosaccharomyces pombe basically propagates nutritionally as
haploid cells (Fig. 1A). S. pombe has two mating types, minus (h2) and plus (h1) types
(corresponding to MATa and MATa cells of S. cerevisiae, respectively) (3–5). When the
nitrogen source is depleted, opposite heterothallic haploid cells mate to form diploid
zygotes (6). Subsequently, the diploid zygote undergoes meiosis to form a four-
spore zygote (known as the “ascus”) (3, 4, 7, 8) (Fig. 1A). The resulting spores germi-
nate and propagate as haploid cells again when the environment becomes nutrient-
rich. Thus, the life cycle of fission yeast is usually haploid, but diploid strains can also
be selected.

Most wild fission yeasts in nature exhibit homothallism, which allows efficient
switching between the P and M mating types at the expressed mating-type locus (9).
The homothallic strain of fission yeast is known as h90, including that it forms 90% of
spores in pure culture. Previously, a strain known as h40, which produced 40% spores,
also existed but seems to have been lost. Mating switching in S. pombe occurs by
replacing the genetic information of the transcriptionally active mat1 locus with
sequences copied from either the silent donor locus mat2-P or mat3-M (10). h1 cells
express two mat2-P genes (mat-Pc and mat-Pi), and h2 cells express two mat3-M genes
(mat-Mc and mat-Mi) (11). mat-Pc and mat-Mc initially regulate the expression of mat-
ing-related genes, such as those for mating pheromones, while mat-Pi and mat-Mi are
required for the initiation of meiosis after mating (12, 13). Overall, these genes are
involved in the expression of mating type-specific genes.

In addition to the homothallic strain (L968), Leupold and Hottinguer (14) also iso-
lated heterothallic strains and designated them h1 (L975) and h2 (L972). Heterothallic
strains that can no longer switch mating types exhibit heterothallism due to the irre-
versible loss of one of the silent cassettes at the mating-type locus from the homothal-
lic wild-type strain. Such heterothallic strains can be widely used, for example, (i) to
select for desired phenotypes by spore dissection, (ii) to investigate mating-type spe-
cific genes, and (iii) to verify reproductive isolation between closely related species. In
the fission yeast Schizosaccharomyces japonicus, heterothallic strains have been iso-
lated through spontaneous mutations and are available as NIG2017/NIG2025 (h1) and
NIG2028 (h2) strains (15). In the fission yeast Schizosaccharomyces octosporus, stable
heterothallic strains have been produced by artificially deleting the mat2-P/mat3-M
silent region and are currently available as TS162 (h1) and TS161 (h2) (16). Thus, these
three fission yeast species allow for pheromone response testing and mating experi-
ments using heterothallic strains.

Life Cycle and Characterization of Fission Yeast Species

The yeasts of the genus Schizosaccharomyces are characterized by a mitotic mode of
growth (division by medial fission to produce two daughter cells). The laboratory strain of
S. pombe, which was isolated from Swiss grape juice, was identified by Leupold (17). S.
pombe has promising homologs in higher organisms, including humans, and is amenable
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to genetic analysis, which has led to several studies on sexual reproduction (13, 18). In
addition to S. pombe, S. japonicus, S. octosporus, S. cryophilus, and S. osmophilus have been
isolated from strawberry fields at Kyushu University, Japan (19), from dried black currants
and figs (20), as a contaminant of S. octosporus culture medium (21), and from honey (22),
respectively. The complete genome sequences of all four species except S. osmophilus
have already been published by the Broad Institute (23).

S. pombe produces four spores in their asci, while other fission yeast species basically
produce eight spores (15, 24). On the other hand, S. octosporus has an interesting feature
where the number of the 4 to 8 spores in its asci varies depending on nutritional condi-
tions (16) (Fig. 1B). The evolution of mechanisms controlling spore production in fission
yeast is interesting. For instance, S. japonicus is known to engage in mycelial growth, as

FIG 1 Life cycle of S. pombe and morphology of the cells of Schizosaccharomyces species. (A) S. pombe develops stably
as haploid cells, propagating by mitotic cell division. When nitrogen is absent, cells of opposite mating types, P (h1)
and M (h2), mate, after which the nuclei fuse. This is known as karyogamy. A diploid zygote is then formed, which
undergoes meiosis and sporulation to produce a four-spore zygote, the ascus (zygotic). Acquisition of carbon leads to
spore cell germination and the resumption of vegetative cell cycles. Following immediate resupply of nutrients, the
diploid zygote can also grow vegetatively by mitotic cell division, where the diploid cells undergo meiosis and generate
an azygotic ascus that is morphologically distinct from the zygotic ascus. (B) Morphology of vegetative cells and asci of
Schizosaccharomyces species. S. pombe and S. japonicus asci contain four and eight spores, respectively, but S.
octosporus asci contain up to eight spores depending on the nutrient conditions. Typical octad and tetrads are shown.
Scale bar, 10 mm.
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well as spore formation (25, 26). Fission yeast species differ in cell size and do not mate
between different species (Fig. 1B). Genetic hybridization between S. pombe and S. octospo-
rus using protoplast fusion has been performed in the past (27, 28), but these two species
are usually reproductively isolated (29, 30).

STIMULATION BY MATING PHEROMONES
Pheromone Signaling Pathway in S. pombe

When fission yeasts face nitrogen deficiency, M- and P-type cells mate by way of mat-
ing pheromones (Fig. 2A). M-type cells secrete M-factor, a C-terminal, S-farnesylated, and o-
methylated nonapeptide (31, 32). M-factor is synthesized from three redundant genes—
mfm11, mfm21, and mfm31 (32, 33)—that generate a precursor polypeptide of 41 to 44

FIG 2 Pheromone signaling and biosynthetic pathway in S. pombe. (A) Illustration of mating pheromone signaling in S.
pombe. M-factor, a modified peptide secreted from M cells, is recognized by the M-factor receptor Map3 on the surfaces
of P cells, whereas P-factor, an unmodified peptide secreted from P cells, is recognized by the P-factor receptor Mam2
on the surfaces of M cells. (B) Biosynthetic pathway of M-factor. The CAAX modifications and the processing are carried
out by integral membrane proteins localized in the ER membrane: Cwp1, farnesyltransferase; Rce1, CAAX prenylprotease;
and Mam4, methyltransferase. The N-terminal precursor is cleaved by Irp1 (probably) and other enzymes. A single
mature M-factor with farnesyl group and the o-methylated group is produced by the mfm1 genes and is secreted by
the transporter Mam1. (C) Biosynthetic pathway of P-factor. The two N-linked glycosylation sites are indicated by
asterisks. The signal peptide from precursors is removed by Sec11 (probably), and the remaining precursors are
sequentially cleaved by several enzymes: Krp1, endopeptidase; Kex1, carboxypeptidase; and Dpp1 (probably), dipeptidyl
peptidase. Finally, mature P-factors are secreted by exocytosis. Some of the proteins involved in the processing are not
still identified in S. pombe. Putative enzymes functioning in M- and P-factor biogenesis have been deduced based on
the homology with the corresponding enzymes of S. cerevisiae.
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amino acids, each producing one copy of the same M-factor (YTPKVPYMCFar-OCH3). The
pathway is similar to that of S. cerevisiae a-factor (34) (Fig. 2B). The precursor synthesized
from the three mfm genes in S. pombe has an elongation at the N terminus and a CAAX
(Cys, followed by two aliphatic amino acids and an arbitrary residue) motif at the C termi-
nus, which serves as a signal for prenylation and carboxylation (35). Posttranslational modi-
fications of M-factor are carried out by three transmembrane enzymes, Cwp1, Rce1, and
Mam4, which are presumed to localize to the endoplasmic reticulum (ER) membrane (36,
37). As a result, M-factor undergoes S-farnesylation and o-methylation modifications, which
are essential for its activity and extracellular secretion (32, 38). The precursor undergoes
several N-terminal cleavages through the action of protease Irp1 (probably) and an uniden-
tified enzyme to synthesize M-factor. Finally, the mature M-factor is secreted extracellularly
by the ATP-binding cassette (ABC) transporter Mam1 (39). Although a singlemfm gene has
been shown to be sufficient for hybridization, M cells lacking all three mfm genes cannot
produce M-factor and never mate (33). Secreted M-factor is specifically recognized by a
seven transmembrane G-protein-coupled receptor (GPCR), Map3, expressed on the plasma
membrane of P-type cells (40).

In contrast to M-type cells, P-type cells secrete P-factor, an unmodified simple pep-
tide of 23 amino acids (41), synthesized from a single map21 gene and processed from
a precursor polypeptide (41). The P-factor biosynthetic pathway is similar to that of
a-factor in S. cerevisiae (42) (Fig. 2C). The map21 gene contains a signal sequence that
carries the polypeptide to the ER, two N-linked glycosylation sites, and four tandemly
aligned coding sequences of the mature pheromone separated by a spacer region (41,
43). The N-terminal signal sequence is cleaved by the signal peptidase Sec11 (prob-
ably). In the Golgi apparatus, the kexin-related endopeptidase Krp1 cleaves the KKR
(Lys-Lys-Arg) motif, and the remaining product is cleaved by the serine carboxypepti-
dase Kex1 and the putative dipeptidyl protease Dpp1 (probably) to yield the mature P-
factor (43). The mature P-factor of laboratory strain L968 is a mixture of three different
peptides since the sequence of the part encoding the pheromone is slightly different
(41) and is secreted as a simple peptide by exocytosis (not by transporters) (41). P cells
lacking the map21 gene cannot produce P-factor, resulting in complete sterility.
Secreted P-factor is specifically recognized by GPCR Mam2, expressed on the plasma
membrane of M-type cells (44).

In S. pombe, both Map3 and Mam2 pheromone receptors bind to the monomeric
form of the G-protein alpha subunit Gpa1 (45, 46). When the pheromone binds to the
receptor, the G-protein subunit dissociates, and activation of the released Gpa1 trans-
mits signals through the MAPK cascade, consisting of Byr2/Ste8 (MAPKKK), Byr1/Ste1
(MAPKK), and Spk1 (MAPK) (45, 47, 48), ultimately inducing the transcription of phero-
mone-regulated genes (37, 49–51). Notably, P- and M-type cells are thought to share
signaling pathways downstream of activated pheromone GPCRs.

Gene Expression in Sexual Reproduction

Pheromone signaling elicits various responses in cells of opposite mating types.
Once cells receive a pheromone, they arrest the cell cycle at the G1 phase (38, 41, 52)
and then induce the expression of the transcription factor Ste11 (49, 53). Next, Ste11
interacts with Spk1 downstream of the MAPK cascade, inducing its activation (54) and
the expression of key pheromone signaling genes (37, 49), which ultimately induces
mating type-specific gene transcription (37, 49).

In S. pombe, no Gb or Gg subunits were identified to function in the pheromone sig-
naling pathway. Unlike in S. cerevisiae, S. pombe does not have any scaffold proteins
that Gbg binds to (55), implying that yeasts have undergone evolutionary changes in
the presence and role of scaffold proteins to coordinate the expression of genes
required for mating and regulating polarity and the cell cycle (56). In S. pombe, the acti-
vation of Byr2/Ste8 upstream of the MAPK cascade requires the interaction of a MAPK
cascade adaptor protein, Ste4 (48, 57, 58), and Ras1-GTP activated by a Ras guanine nu-
cleotide exchange factor (GEF), Ste6. Ras1-GTP promotes the activation of Scd1, a GEF
of the Rho family GTPase Cdc42, which is important for cell polarity (55) and induces
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the expression of genes required for cell polarity. Thus, the MAPK cascade and tran-
scription factor Ste11 induce the expression of a series of genes involved in various
sexual differentiations, such as sex cell aggregation (59, 60) and morphogenesis by po-
lar cell elongation (31, 61, 62).

BIOSYNTHETIC PATHWAY AND STRUCTURE OF PHEROMONES IN FISSION YEAST
Asymmetry in Chemical Modification and Secretion of Mating Pheromones

Mating pheromones secreted by the mating-type cells of S. pombe and S. cerevisiae
have several differences. M-factor (S. pombe) or a-factor (S. cerevisiae) is a “hydropho-
bic” lipid peptide farnesylated and carboxymethylated at the C-terminal CAAX motif
(63) and secreted extracellularly via a plasma membrane transporter, while P-factor (S.
pombe) or a-factor (S. cerevisiae) is a “hydrophilic” unmodified simple peptide secreted
by exocytosis (64). This asymmetry in the modification and secretion system found in
mating pheromones is widely conserved throughout ascomycete fungi (65). In con-
trast, basidiomycete fungi such as mushrooms express only lipid-modified a-factor
class-like pheromones, one of the distinguishing features between ascomycetes and
basidiomycetes (66). A previous study using S. cerevisiae reported that asymmetry in
pheromone chemical modification is not absolutely necessary for mating (67). This
same study showed that two yeast cells could mate if only one cell could secrete a
pheromone that stimulates the pheromone receptor expressed on the other cell; that
is, the ability of the pheromone and receptor to bind is the requirement for mating
(67). Nevertheless, the mating efficiency between two yeast cells that have broken the
asymmetry in the chemical modification of the pheromone is low (67, 68). Therefore,
there may be some biological significance to the mating pheromone asymmetry
observed in ascomycetes, but the reasons for this asymmetry are not fully understood.

Conservation and Diversity of Pheromone Genes in Other Ascomycete Fungi

Cell-to-cell recognition by pheromones and receptors is primarily essential for mat-
ing in ascomycetes (18, 67, 69, 70). Because pheromone gene sequences are relatively
diverse among yeasts (65), it is highly likely that such differences in pheromones play a
role in reproductive isolation and speciation in yeasts. Precursors of the unmodified
pheromone a-factor class have several peptide sequences arranged in tandem, and
the number of repeats is variable among yeast strains. For example, intra- and interspe-
cific variation in repeat number has been reported in yeasts of the genera
Schizosaccharomyces (Fig. 3A) and Saccharomyces (29, 71–73). This perturbation seems
to be a result of continuous duplication and deletion of repeats rather than coordi-
nated evolution (65). Evolution by duplication and deletion is known as “birth-and-
death” evolution and is a common phenomenon in such tandem repeats (74). Peptide
sequences may be completely identical, or multiple peptides may be produced simul-
taneously (Fig. 3A). In general, pheromone peptide sequences are relatively similar
within a species, suggesting that peptide sequences are affected by selection pressure
(75). Thus, the similarity of mature peptide repeat sequences is adaptive and reflects
the need for sequence specificity in pheromone reception.

The analysis of the modified pheromone a-factor class is falling behind that of the
a-factor class pheromones because the precursors are extremely small and most con-
tain introns in their genes, the presence of which is overlooked (76). However, several
studies reported that modified pheromones also diversify among species (65, 77) (Fig.
3B). It has been discussed that some homothallic strains may have required only one
pheromone pathway (only the a-factor class) and the other was eventually lost (78–
80). The evolution of pheromone diversity may have contributed to speciation in asco-
mycete fungi, but the role of species recognition by peptide pheromones requires fur-
ther detailed analysis.
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DIVERSIFICATION OF MATING PHEROMONES IN NATURE
Polymorphisms of Pheromone Genes in Wild S. pombe Strains

Little is known about the evolutionary history and ecology of S. pombe (81), but
there are some reports of its isolation from various fruits, plants, and beverages world-
wide (29, 81–83). In addition, a recent study of large samples shows that S. pombe and
S. octosporus appear to be abundant in honey bees (84). We have previously examined
the sequence diversity of M- and P-factor genes in 150 wild strains of S. pombe isolated
from more than 22 countries worldwide (29). Results indicated that laboratory strain
L968 of S. pombe has mfm11, mfm21, and mfm31 as the genes encoding M-factor, and
all wild strains also possessed threemfm genes (it is not known whether any strain pos-
sesses more than four). Interestingly, there were no missense mutations in the peptide
sequence that would alter the amino acids, and all produced the same M-factor (Fig.
3B), although some mutations were found in the precursor and intron portions. This is
a surprising result since any one of the three M-factor genes is sufficient for mating
(33). Perhaps, under more severe nutrient-limiting conditions in nature, an efficient
mating frequency is highly dependent on the number of M-factor genes, possibly limit-
ing consequent M-factor variation.

In contrast, the gene map21 encoding P-factor varied significantly among wild strains.
Laboratory strain L968 has four tandem peptide repeat sequences within the map2 gene
(41), but in the wild strain, the repeat sequences varied between four and eight (Fig. 3A).
We also found three peptide sequences absent from the laboratory strain. We determined

FIG 3 Amino acid sequences and polymorphism of mating pheromones in Schizosaccharomyces species and S. cerevisiae. (A) The six different
P-factors found in 151 natural S. pombe isolates are shown. P-factorWT is the standard P-factor of S. pombe. Diversified pattern (four to eight
repeats) of the map2 gene in different strains, including the laboratory strain (L968), which carries four tandem P-factor-encoding repeats
(M1-WT-M2-WT). The four different P-factors found in four natural S. octosporus isolates are shown. SoP-factorWT is the standard P-factor of S.
octosporus. SjP-factor of S. japonicus and a-factors of S. cerevisiae that differ in amino acids among P-factors in intraspecies are indicated in
boldface, and identical amino acids are indicated in yellow. (B) M-factorWT of S. pombe and SoM-factorWT of S. octosporus have shown no
variant M-factors. M-factor of S. japonicus is not identified. a-factors of S. cerevisiae that differ in amino acids are indicated in boldface, and
identical amino acids are shown in yellow.
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that there were no strains with fewer than three repeats or with the same peptide sequence
only. Furthermore, strains with fewer than three repeats had significantly reduced mating
ability (29). Similar results have been found for S. cerevisiae, where a decrease in the number
of peptide sequence repeats causes a decrease in pheromone production (85). Furthermore,
secretory transport by exocytosis requires a certain length of precursor (86). Taken together,
in S. pombe, at least four repeat sequences appear to be essential for mating. Although the
number of repeat mature pheromone sequences affects pheromone production, an
increased number of repeats does not necessarily increase pheromone production. In S. cer-
evisiae experiments, strains with eight repeat sequences have less chance of mate choice by
different mating-type cells than strains with six repeat sequences, resulting in reduced mat-
ing ability (73). This may be due to a reduction in the translation rate caused by precursor
lengthening, leading to decreased pheromone production. Changes in P-factor repeats in S.
pombemay affect various factors involved in mating, but the physiological and evolutionary
significance of the simultaneous production of diverse P-factors is not well understood.

Pheromone Genes in Other Fission Yeast Species

Genome analysis revealed the presence of six putative M-factor genes (Somfm11–
Somfm61) in S. octosporus and five M-factor genes (Scmfm11 to Scmfm51) in S. cryophi-
lus (29). However, BLAST (Basic Local Alignment Search Tool) searches are difficult due
to the low similarity with closely related species and the small size of the genes them-
selves. The respective mfm genes of S. octosporus and S. cryophilus ultimately produce
M-factor peptides with identical amino acid sequences (87) (Fig. 3B) compared to the
M-factor of S. pombe (some wild S. octosporus strains have at least six mfm genes as
well). Although there are some mutations in the precursor, as in S. pombe, there are no
amino acid variations in the peptide sequence, making the S. octosporus M-factors
(SoM-factors) completely identical within the species.

The S. octosporus laboratory strain yFS286 has only one map21 gene (Somap21)
encoding P-factor, and cells lacking this gene are completely sterile (29). The Somap21

gene of S. octosporus contains seven repeating peptide sequences, resulting in the pro-
duction of four slightly different P-factors (23, 29). On average, 8 of the 23 amino acids
in the S. octosporus P-factor (SoP-factor) differ from the S. pombe P-factor (Fig. 3A). The
amino acid sequence is partially identical to that of S. octosporus. The S. japonicus labo-
ratory strain NIG2008 also has one map21 gene (Sjmap21) encoding P-factor and con-
tains four repeat sequences. However, unlike other fission yeast genera, the peptide
sequences are completely identical and produce an identical P-factor (SjP-factor) (Fig.
3A) (88). Interestingly, S. japonicus var. versatilis, a subspecies of S. japonicus, and other
S. japonicus strains that we recently isolated from Drosophila have nucleotide muta-
tions in the precursor of the Sjmap21 gene (88).

Stringency and Flexibility of Mating Pheromones

The wild S. pombe strain produces identical M-factor peptides as far as we deter-
mined, and there are at least six different polymorphisms of P-factors (Fig. 3A). Most of
these six peptides have the ability to bind to Mam2 in vitro (29). This may suggest that
recognition of M-factor, a lipid peptide, is stricter, whereas that of P-factor, a simple
peptide, is relatively flexible. Indeed, although S. pombe genetically engineered to pro-
duce SoM-factor completely lost its mating ability to P cells, the chemically synthesized
SoM-factor did not function on S. pombe P cells (29, 30, 89). In contrast, S. pombe engi-
neered to synthesize SoP-factor showed sufficient mating ability, and almost all chemi-
cally synthesized SoP-factors acted on S. pombe M cells (29). Furthermore, S. octosporus
was also able to accept S. pombe P-factors. In other words, the specificity of P-factor
recognition is not strict, and cross-reactivity among closely related species can occur.
Based on the above, the prezygotic isolation of S. pombe and S. octosporus may be a
problem in the compatibility of M-factors. It has also been reported that in S. cerevisiae,
pheromones of the a-factor class either promote mating efficiency completely or not
at all, while those of the a-factor class act in a stepwise manner (77). Although this ex-
perimental observation suggests that lipid peptides play a more important role in
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mate discrimination, Ste2 interactions that show specificity can also be obtained from
the unmodified pheromone (90). Further studies with various yeast species are neces-
sary to investigate the specificity between receptors and pheromones.

ASYMMETRIC BEHAVIOR IN MATE CHOICE
Distal and Proximal Mode of Action in Mating Induction

In nature, fission yeasts are thought to inhabit semiaquatic environments. Since
yeasts are nonmotile and cannot actively move toward cells of the opposite sex, cell
aggregation by cell-to-cell contact is important to increase the chance of encountering
cells of the opposite mating type. Sexual cell aggregation in S. pombe is achieved by
two mating type-specific agglutinin glycoproteins, Mam3 and Map4 (37, 91, 92), which
are specifically expressed on the cell surface of M- and P-type cells, respectively. Before
cell fusion, cell aggregation occurs between opposite mating-type cells to form macro-
scopic aggregates (59), enabling the cells to find mating partners (60). S. pombe can ag-
gregate even in the absence of P-factor signaling (60). Mam3 expression is induced by
nitrogen source depletion to some extent (37), suggesting that M-factor signaling is re-
sponsible for the pheromone regulation of mating. Because cell fusion rarely occurs in
agglutinin-deficient mutants, agglutinin-mediated physical cell-to-cell contact is
required for cell fusion between cells of opposite mating types regardless of the liquid
environment.

Since the pheromone gradient is unlikely to form as stably in liquid environments as it
does in solid environments, cell polarity may be regulated by a different mechanism.
Initially, peptide pheromones are secreted by both cells in response to environmental cues
such as nutrient starvation. On the one hand, P-factor, a simple hydrophilic peptide, dif-
fuses easily into the surroundings, reaching distant cells and allowing the cells to rapidly
recognize the presence of a suitable mating partner (68). On the other hand, uniform M-
factor secreted by M-type cells, at relatively low concentrations, induces the production of
P-factor agglutinin (Map4), which is necessary for cell-to-cell contact (distal action) (Fig. 4).
This is especially true in liquid cultures where M-type cells are often found in the presence
of M-factors. This is essential for fixing the relative positions of M- and P-type cells, espe-
cially in liquid culture. The establishment of polarity is thought to be achieved by the more
direct action of M-factors secreted by neighboring cells (proximal action) (Fig. 4); the M-
factor transporter Mam1 localizes to polar sites on M cells, while the M-factor receptor
Map3 also localizes on P cells (or is locally activated) near Mam1. M-factor may be secreted
mainly at the contact site (68, 93). The concentration of M-factor, a hydrophobic lipid pep-
tide, may be relatively high in the vicinity of P cells because of the short distance that M-
factor diffuses into the surrounding medium. The local concentration of M-factor stably
establishes the polarity of the P-cell. Eventually, pheromone receptors and the MAPK cas-
cade become enriched at the fusion focus, promoting successful mating between opposite
mating-type cells (94). Thus, the two pheromones of S. pombe have these two distinct
modes of action during mating (60).

Cell Polarization by Cdc42

Once S. pombe receptors sense pheromones, an activated Cdc42 zone is formed,
which then moves around the plasma membrane (95). The Cdc42 zone colocalizes
with its GEF Scd1 and a scaffolding protein, Scd2 (95, 96), and contains myosin Myo52,
the two pheromone receptors Mam2 and Map3, and M-factor transporter Mam1 (55,
93). In S. pombe, these patches of Cdc42 repeatedly assemble and disassemble near
the plasma membrane until the concentration of pheromones around cells is high
enough to stabilize them (93, 95, 96). Control of Cdc42 and Ras1 GTPases plays a cen-
tral role in regulating the dynamics and polar growth of these patches. Ras1 is acti-
vated by the mating-specific GEF Ste6 (97) and can overcome its strong inhibition by
the Ras GAP Gap1 (96). Inhibition of Ras1 activity is important for both promoting
polarity for cell fusion and preventing premature cell fusion (96). Gap1-dependent
inhibition of Ras1 only occurs when the local pheromone signal is sufficiently high,

Sexual Behavior and Pheromones in Fission Yeast Microbiology and Molecular Biology Reviews

December 2022 Volume 86 Issue 4 10.1128/mmbr.00130-22 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

m
br

 o
n 

11
 D

ec
em

be
r 

20
23

 b
y 

11
9.

25
.2

10
.2

06
.

https://journals.asm.org/journal/mmbr
https://doi.org/10.1128/mmbr.00130-22


setting the threshold for cell-to-cell distance so that stabilization occurs, resulting in
cell fusion (96).

When pheromone concentrations increase and Cdc42 patches stabilize, cells undergo po-
lar growth (shmoo) toward opposite mating partners. Shmoo development, like polarized
growth during the mitotic cycle, is thought to occur through a local supply of cell wall
remodeling enzymes by Myo52, which locally degrades the cell wall to be driven by osmotic
pressure (95, 98). Myo52 localizes at the shmoo tip and remains in a dynamic state until a
mating-specific formin Fus1 is recruited. A positive-feedback loop between Myo52 and Fus1
is required for Myo52 focalization and ensures the formation of a fusion focus (98).

Mate Choice between Opposite Mating Types

Yeast pheromones are deeply involved in the selection of appropriate mating part-
ners. For example, S. cerevisiae cells select mates that produce the strongest phero-
mone signals among potential mating partners (99, 100). This may be due to the for-
mation of the Cdc42 polarization complex at the highest pheromone concentration,
from which polarized growth begins (95). In fact, in S. pombe, adding an exogenous
pheromone to cells that cannot produce their own pheromones does not restore their
mating ability (33, 60). When M cells that do not produce M-factor are cultured with
wild-type M cells, both M cells are incorporated into cell aggregates with P cells (60).
The wild-type M cells help the mutant M cells by supplying their own M-factor, indi-
cating that wild-type cells are altruistic and mutant cells behave as “impostors” in
terms of animal sociology. However, to avoid such cheating behavior, P cells mate
only with wild-type M cells (60). Cell fusion absolutely requires local secretion of M-
factor by Mam1, essential for mating selection by P cells in S. pombe.

FIG 4 Steps of mating hypothesis regulated by the distal and proximal actions of two mating pheromones
in S. pombe. The two chemically different mating pheromones may reflect their differential roles in the
mating of S. pombe. First, when M cells and P cells are mixed in the nitrogen-free liquid medium, they
secrete uniform pheromones, which facilitates the expression of pheromone-inducible genes to induce
mating. Subsequently, sexual agglutination occurs, which leads to stable cell-to-cell contact (distal action).
Polarized growth occurs at the contact site after agglutination. Possibly, hydrophobic M-factors are
temporarily concentrated around P cells. Lastly, from the contact site, these locally secreted M-factors
establish the polarity of P cells (proximal action), leading to cell fusion.
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Pheromone-degrading enzymes may also play an important role in mate choice; the M
cells of S. pombe secrete a serine carboxypeptidase, Sxa2, which specifically degrades extrac-
ellular P-factor from P cells (101–103). The terminal Leu residue of P-factor is removed by
Sxa2 (102), and the resulting P-factor lacking Leu, comprising 22 amino acids, is inactive and
not recognized by Mam2 (104). Yeasts sense a gradient of pheromones secreted by oppos-
ing cells and extends their shmoos toward the pheromone source (105). Degradation of the
pheromone by peptidases is thought to make the gradient more stable (93). On the other
hand, no enzyme that degrades extracellular M-factor has yet been found. It is possible that
fine-tuning mfm gene expression could control M-factor production. In S. cerevisiae, MATa
cells secrete a peptidase, Bar1p, that degrades a-factor (106–109). Bar1p has been shown to
improve mate discrimination (99) and identification, with a-factor degradation by Bar1p lim-
iting the diffused a-factor form forming a sharper gradient that improves mate discrimina-
tion ability (105, 110, 111). Thus, “cheater” cells are not selected as mating partners (112,
113). Taken together, the spatial arrangement of pheromone distribution is likely to be im-
portant for mate choice in yeast.

EVOLUTION OF PHEROMONE AND RECEPTOR SYSTEMS
Pheromone Recognition by GPCRs

Pheromone receptors of ascomycetes are Class D GPCRs. On the one hand, there is
no sequence homology between the Map3 and Mam2 of S. pombe, a feature also
observed between the a-factor receptor Ste3p (114) and a-factor receptor Ste2p (115)
in S. cerevisiae. On the other hand, even though these yeast species are thought to
have diverged between 1 and 300 million years ago, Map3 and Mam2 have significant
sequence homology to Ste3p and Ste2p, respectively. For example, S. pombe Mam2
and S. cerevisiae Ste2p have approximately 70% amino acid sequence homology across
the 5 to 7 TM helix (116), suggesting an evolutionary relationship between the two
GPCRs subtypes, Ste3p/Map3 and Ste2p/Mam2. Genetic changes in pheromones and
their receptors affect mate choice and cause prezygotic reproductive isolation (18, 77).
Many studies on genetic analysis of pheromone receptors have been conducted in S.
cerevisiae (114, 117–120), and recently, some have focused on the evolution of phero-
mone specificity in GPCRs (121, 122). However, information on genetic analysis and
specificity of pheromone receptors in S. pombe is scarce.

Genes for pheromone receptors have been identified in four species of the genus
Schizosaccharomyces. S. pombe Map3 has 65 and 43% homology with the Map3 of S.
octosporus (SoMap3) and S. japonicus (SjMap3), respectively, and S. pombe Mam2 has
67 and 59% homology with the Mam2 of S. octosporus (SoMam2) and S. japonicus
(SjMam2), respectively (30). The Map3 and Mam2 of S. octosporus and S. cryophilus are
very similar. To test receptor specificity for pheromones, we exchanged genes between
S. pombe and S. octosporus and found that SoMap3 was not functional in S. pombe
cells, but SoMam2 was slightly functional, restoring S. pombe mating (30). This differ-
ence in pheromone recognition by the two GPCRs is striking because they share a
downstream signaling pathway via G proteins. Studies in S. cerevisiae have shown that
STE3 and STE2 genes are reportedly differentially regulated at both the transcriptional
and posttranscriptional levels by cryptic polyadenylation (123). Thus, it is possible that
ascomycete fungi, including S. cerevisiae, adopt different strategies for regulating gene
expression of the two GPCRs for pheromones. Even though the set of genes that regu-
late downstream signaling of pheromone receptors might be similar in cells of differ-
ent mating types, some characteristics, such as expression and regulation, may differ,
resulting in different pheromone strengths observed in yeast. In S. pombe, differences
in the specificities of Map3 and Mam2 may trigger the asymmetric diversification of
pheromones (29). It is unclear why such an asymmetric system would be convenient
for yeast, but simulations and computational modeling could shed light on this issue
in the future.

Artificial Reproductive Isolation In Vitro

Reproductive isolation, which restricts gene flow between sympatric populations, is one
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important mechanism of speciation (124). Animals employ various methods, including pher-
omones in insects and amphibians (125–128), body color in fish (129–131), and song in birds
(132, 133), to properly recognize the opposite sex in breeding between closely related spe-
cies. Such mate choice has been well studied in higher organisms but is less well known in
fungi (134).

In ascomycete fungi, mating between partners critically depends on molecular recog-
nition by pheromone receptors (67, 77, 135–138). In our recent study, we successfully
created a novel S. pombe reproductive group that is reproductively isolated from the
wild-type by artificially altering the primary structure of both M-factor and Map3 (18).
We comprehensively mutated every amino acid of the eight amino acids comprising
M-factor to generate a library of 152 variants (8 amino acids � 19 possible mutations)
and screened for failure to mate. After identifying 35 missense M-factor mutations that
conferred sterility, we then attempted to rescue the sterile phenotype of some by ran-
dom Map3 mutagenesis. Ultimately, we found a single pair of M-factor/Map3 mutants
that were highly fertile, but none of which were able to mate with cells that express the
wild-type M-factor and Map3, thus resulting in incipient speciation. This success substan-
tiated the hypothesis that pheromone and receptor coevolution is one of the mecha-
nisms of prezygotic isolation in yeast. Based on the “biological species concept,” this
reproductive population is considered a new species. As far as we know, this is probably
the first report of the artificial creation of a new species in the history of biological evolu-
tionary studies. Thus, genetic changes in pheromones and their receptors are likely to be
important in promoting yeast speciation. Similar differences (or variation) of sex phero-
mones exist between the newts Cynops pyrrhogaster and Cynops ensicauda (127, 128),
indicating that slight differences in pheromones may prevent proper recognition of
opposite sexes in nature.

Potential Mechanism of Genetic Changes in Mating Systems Resulting in Incipient
Speciation

There is no doubt that pheromone and receptor systems promote reproductive iso-
lation through very subtle changes in nature. More generally, however, changes in
pheromones and receptors must occur gradually or accidentally before speciation can
occur since pheromone activity loss leads to the extinction of an organism’s lineage.
Although this hypothesis is an attractive explanation for yeast speciation, the unknown
processes by which natural selection could lead to the origin of new species from pre-
viously interbreeding individuals remain unsolved.

The fact that many yeasts have multiple pheromone genes or duplicate peptide
sequences within a single pheromone gene may be convenient for creating phero-
mone diversity. S. pombe has three M-factor genes, and P-factor has at least four tan-
dem repeats within a single gene. These redundancies enable yeasts to employ a strat-
egy where if the receptor is mutated, the cell can modify one pheromone copy to
successfully adapt to the changed receptor while leaving the other copies unchanged.
Such pheromone gene duplication allows unlimited changes in pheromone structure
while retaining the original version of the pheromone gene, allowing for flexibility in
adapting to different mutations in the receptor protein. Coevolution of pheromones
and their corresponding receptors is likely to be gradual, with mutational changes
causing a slight decrease in pheromone activity or pheromone receptor activity. A sec-
ond suppressor mutation may occur to restore the initial defect before such a mutant
is completely lost. Multiple subtle changes may repeatedly occur in the actual course
of pheromones and receptor coevolution until speciation occurs. Such gradual coevo-
lution is likely to be the actual mechanism of the process of prezygotic isolation associ-
ated with the pheromone system. We hope that pheromone response and mating
behavior in yeast will be elucidated through future large-scale studies of wild yeasts.

CONCLUSIONS

The ability of one yeast species to recognize another depends on the interaction
between a pheromone and its associated receptor. In S. pombe, M-factor is strictly
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conserved, while P-factor is relatively diversified. The observation suggests that repro-
ductive isolation has benefited from an asymmetric environment during evolution. To
test this hypothesis, we are currently conducting some experiments to investigate this
hypothesis and observe to what extent the interaction of pheromones and their associ-
ated receptor can be altered while maintaining recognition. The two pheromones and
their receptor genes were randomly mutagenized, and cell populations expressing the
mutant genes are mixed to mate. Diploid zygotes that were able to mate by binding
the pheromone to the receptor are collected, and then the combinations of the phero-
mone and receptor genes that zygotes possessed will be comprehensively determined
using a next-generation sequencer. These experiments may provide a molecular mech-
anism for distinct stringencies in pheromone recognition by the two types of recep-
tors. Furthermore, we intended to work on evolutionary simulations that take into
account the reasons why an asymmetric environment is beneficial in S. pombe.

Perhaps the pheromone recognition mechanism of various organisms has both a
“strict” part that is important for mate discrimination and an “ambiguous” part that can
flexibly respond to changes, and such a mechanism creates diversity. Although the
ecology of Schizosaccharomyces species is unknown, further attention should be paid
to the mating behavior of natural yeasts in different ecological niches. Using S. pombe
as a model, we hope that these approaches will provide valuable insights into the evo-
lutionary mechanisms underlying the diversification of pheromones.
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