
 K. Seki et al. / Geoderma 247-248 (2015) 117-128 / Accepted author manuscript 

1 
 

 
Sequential estimation of hydraulic parameters in layered soil using limited data 
 
Katsutoshi Sekia,b,*, Philippe Ackererb, and François Lehmannb 

 
aNatural Science Laboratory, Toyo University, Tokyo, Japan. 
bLaboratory of Hydrology and Geochemistry, University of Strasbourg, Strasbourg, France. 
*Corresponding author. E-mail address: seki_k@toyo.jp (K. Seki). 

 
 
Abstract 

Field-scale estimation of soil hydraulic parameters is important for describing water movement in vadose zones. The 
importance of soil water measurements has been acknowledged with increasing soil water measurements becoming 
available; thus, the estimation of hydraulic parameters from observed soil water would be quite useful for hydrological 
modeling. This study estimated the hydraulic parameters of Brooks-Corey and Mualem model using the monitored soil 
water changes at two depths together with the rainfall intensity at two soil plots in a tropical rain forest in Indonesia. A 
one-dimensional multi-scale parameterization method was used for the analysis, beginning with homogeneous 
parameterization and identifying the depth of discontinuity using refinement indicators, thus increasing the number of 
zones. A method for sequential parameterization was developed in each step of zoning. The measured and simulated 
volumetric water contents with the optimized parameters showed good agreement for one plot (standard error is 0.0419) 
with 2-zone parameterization, and the effects of the initial parameters derived from different pedo-transfer functions on 
the optimized hydraulic functions were small, confirming the robustness of this method. However, at another field site, 
agreement between measured and simulated water contents was not very good (standard error is 0.0854), because the 
effect of the soil water repellency might have influenced the results, and the effects of the initial parameters were large. 
The algorithm proposed in this study systematically determines the hydraulic parameter set that describes field-scale 
water flow. 
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1. Introduction 

Soil water is an essential variable for understanding 
hydrological processes in vadose (unsaturated) zones 
and is important for various agricultural management 
practices, i.e., irrigation control, especially in arid and 
semi-arid regions in which water is a precious resource. 
Soil water is also important for climate modeling and 
numerical weather prediction. Recently, the 
importance of soil water monitoring has increased 
because of the need for climate change research. The 
Global Climate Observing System (GCOS) specified 
soil water as one of the Essential Climate Variables 
(ECVs) required to implement a comprehensive 
observation system to support scientific research on 
climate change (GCOS, 2010). Soil water is estimated 
using different methods, including in situ methods, 
satellite data, and hydrological models. Each method 
exhibits pros and cons, and hence, the integration of 
different techniques may decrease the drawbacks of a 

single given method (Brocca et al., 2011). The most 
reliable source of data is in situ measurements, and 
consequently, the need for direct soil water data is 
increasing. 

To model vadose zone hydrology, it is important to 
characterize the hydraulic parameters that describe 
water movement in the vadose zones, i.e., parameters 
in soil water retention function and unsaturated 
hydraulic conductivity functions. It would be useful to 
obtain a reliable estimate of soil hydraulic parameters 
from soil water measurements which are becoming 
more easily available due to this increasing demand. 
However, inverse estimation of soil hydraulic 
parameters from field observed soil water content is 
difficult. Vereecken et al. (2008) compiled a review on 
soil water measurement in vadose-zone hydrology. 
After reviewing the extensive literature on the 
estimation of hydraulic properties in laboratory column 
experiments, this group noted that only a limited 
number of studies use field-scale soil water data to 
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inversely estimate the soil hydraulic properties. The 
authors argued that field studies remain limited 
because inverse estimation requires additional 
information, i.e., measured matric potential, soil 
structural information, homogeneous soil assumptions, 
measured values of hydraulic properties, well-defined 
flow conditions with gravity-dominated flow, and 
known bottom boundary conditions. With these 
restrictions, only a few field studies were used to 
estimate soil hydraulic parameters from soil water data 
under naturally occurring boundary conditions. 
Jacques et al. (2002) recorded the time series of water 
content, pressure head, and solute concentration under 
experimental field conditions and found that the 
observed data could be described by Richards’ 
equation for water flow and the non-equilibrium 
convection-dispersion equation for solute transport 
with a layered soil profile. The authors were successful 
to inversely estimate the hydraulic parameters within 
the range of earlier determined parameters. Ritter et al. 
(2003) estimated hydraulic parameters from the 
measured time series of soil water content at three 
different depths, with the amount of irrigation 
measured by rain gauges and the reference 
evapo-transpiration estimated with weather data 
measured by an on-site weather station. The authors 
showed that inverse optimization is a promising 
parameter estimation procedure; however, it requires a 
well-posed inverse problem. In addition, considerable 
deviation was observed between the directly 
determined and inversely estimated soil water retention 
curves because soil water flow at the field scale is 
poorly represented by the soil retention curves directly 
measured at the core scale. Therefore, even if directly 
measured soil hydraulic parameters are available, it is 
better to obtain optimized hydraulic parameters from 
field observed data, which better represents the field 
scale water flow. 

To optimize the hydraulic parameters of 
heterogeneous soil structure, Hayek et al. (2008) 
developed an algorithm for adaptive multi-scale 
parameterization. Usually, for optimization of 
heterogeneous soil hydraulic parameters, the structure 
of heterogeneity must be predetermined, and the 
depths of the discontinuity of the hydraulic parameters 
are specified. In the adaptive multi-scale 
parameterization method (Hayek et al., 2008), 
parameterization begins with the homogeneous soil 
structure, and detects the best depth for a new 
discontinuity by comparing the refinement indicator 
which shows the decrease of the objective function by 
increasing the number of zones, and the number of 
zones for parameterization increases stepwise. Hayek 
et al. (2008) conducted numerical experiments with 
noisy data and missing data and showed the efficiency 
and robustness of their algorithm. Sequential 
estimation of hydraulic parameters can stabilize the 

identification of parameters and avoid local minima of 
the objective function compared to a single-level 
strategy (Berre et al., 2009). 

In this study, we estimated the soil hydraulic 
parameters of tropical forest soils from the monitored 
data on soil water contents and rainfall intensity. The 
soil water contents at two depths on 75 successive days 
with many rainfall events were used for the estimation. 
The one-dimensional multi-scale parameterization 
method developed by Hayek et al. (2008) was used for 
analysis of the heterogeneous soil structure to verify 
that it can be used with real field data. The objective of 
this study was to establish a method for estimating the 
soil hydraulic parameters that describe soil water 
behavior based on a limited field study dataset of soil 
water contents and rainfall. 

 
2. Materials and Methods 

2.1. Site Description and Soil Properties 
Seki et al. (2010) measured soil hydraulic 

properties in a Dipterocarpaceae forest in Bukit 
Bangkirai on Borneo Island in Indonesia. Bukit 
Bangkirai is located close to the equator (1°1.5ʹS), and 
has a tropical rainforest climate with a high average 
annual temperature of 28°C and a heavy annual rainfall 
of 2500 mm. In this study, we focused on two plots, 
the K plot (K1 pit) and the HD plot with relatively flat 
soil surface, where continuous measurements were 
conducted. 

In the K plot, root mats were observed in the 3-cm 
soil surface layer, below which lay a brown sandy clay 
loam layer. Dipterocarpaceae plants near the pit grew 
most of their root at the soil surface, where the root 
mats were observed. The clay content gradually 
increased to a depth of 60 cm. Based on the 
International Union of Soil Science classification, the 
soil texture was sandy clay loam to a depth of 40 cm, 
sandy clay within the 40 - 50 cm, and light clay within 
the 50 - 60 cm depths. 

Two distinct soil layers were found in the HD plot: 
an upper quartz sand layer and a lower sandy loam 
layer. The upper sand layer was white in color and the 
lower sandy loam layer was brown in color, and 
therefore, the border between the two layers could be 
visually distinguished. The visible depth of the border 
fluctuated between 20 cm and 30 cm. 

The soil water retention curves (SWRC) were 
measured by the hanging water column and pressure 
plate methods using two undisturbed samples of 5 cm 
diameter and 2.5 cm height from each plot sampled at 
the end of August 2006 (Fig. S1). The curves were 
fitted with the Brooks and Corey equation (Brooks and 
Corey, 1964) using SWRC fit software (Seki, 2007): 

 
S! =

!!!!
!!!!!

= −αh !!        if  h < −1/α

S! = 1                                                                if  h ≥ −1/α
                       (1) 
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where h is the soil water pressure head [L], θ is the 
volumetric water content [L3 / L3], θs is the saturated 
water content [L3 / L3], θr is the residual water content 
[L3 / L3], Se is the effective saturation (also known as 
the normalized water content) [L3 / L3], and α [L-1] and 
n [-] are parameters that determine the shape of the 
water retention curve, where 1/α is the air entry value 
(AEV). All the fitted curves were in good agreement 
(R2 > 0.98) with the measured curves. 

The saturated hydraulic conductivity Ks [L / T] was 
measured by the falling-head and constant-head 
methods using undisturbed soil cores of 5 cm diameter 
and 5 cm height. Three replicates were measured for 
every 5 cm from 5 cm to 50 cm depth, producing 
highly variable results. In the K plot, the average value 
was 1.77 x 10-3 cm/s, ranging from 1.18x10-4 cm/s to 
1.10x10-2 cm/s. In the HD plot, the average value was 
1.31 x 10-2 cm/s in the sand layer (upper layer) and 
9.65 x 10-4 cm/s in the sandy loam layer (lower layer). 

The soil water content was monitored with 
frequency domain reflectometry probes (ECH2O 
sensors EC-10, Decagon Devices Inc.) at two locations 
in the K plot (10 cm, 20 cm) and the HD plot (20 cm, 
30 cm) both not very close to the tree trumps from the 
end of September 2005 to the end of August 2006. 
Amount of rainfall was also measured in the HD plot; 
however, the data are available only until 20 December 
2005 due to a fault in rainfall gauge. 

 
2.2. Numerical Simulation 

2.2.1 Description of the Forward Problem 
The one-dimensional vertical model in the 

unsaturated water flow equation is expressed as 
Richards’ equation (Richards, 1931) as follows: 

 
!!
!!
− !

!!
K(h) !!

!!
− 1 = 0                           (2) 

 
where K is the hydraulic conductivity [L / T], z is the 
soil depth (taken as positive downwards) [L], and t is 
the time [T]. Based on the initial and boundary 
conditions (as described later), Richards’ equation was 
solved using the Galerkin finite element method with 
an implicit scheme for time discretization. The 
discretized Richards’ equation was resolved with a 
Fortran code using the Newton linearization method 
associated with the primary variable switching method 
(Lehman and Ackerer, 1997; Hayek et al., 2008). 

To solve Richards’ equation, the water retention 
function θ(h) and the hydraulic conductivity function 
K(h) must be defined. We used the hydraulic model of 
the Brooks and Corey Mualem-type equation (BC 
model). The hydraulic conductivity function of the BC 
model is derived by substituting the water retention 
function of the BC model (Eq. 1) into Mualem’s 
function (Mualem, 1976), which produces the 

following equation: 
 
K = K!S!

!
!!!!!                                       (3) 

 
where λ [-] is the pore-connectivity parameter, which 
was estimated by Mualem (1976) as an average value 
of approximately 0.5 for many soils. Many researchers 
use the van Genuchten – Mualem type equation (VG 
model) (van Genuchten, 1980) to describe hydraulic 
properties; however, in this study, the BC model was 
selected because it has a distinct AEV shape. In the 
VG model, the shape of K(h) near saturation is quite 
steep, especially in fine-textured porous media, and 
numerical simulations often do not easily converge. 
Therefore, in finely textured material, another type of 
equation (Vogel and Cislerova, 1988) is used that 
introduces AEV into the VG model to make it easier 
for the numerical simulations to converge. The BC 
model already contains a distinct AEV defined by 
simple equations and therefore does not encounter a 
convergence problem near saturation. Therefore, we 
used the BC model in this study. 

 
2.2.2. Domain 
A one-dimensional vertical domain of 100-cm 

length was defined (Fig. 1). The length of the domain 
was determined from preliminary simulations with 
different length; 50-cm length was too short with 
wetting front easily reaching the bottom, while using 
100 cm, 150 cm and 200 cm did not give so much 
different result. The element size was 0.5 cm at a depth 
of 0–50 cm and 1 cm at a depth of 50–100 cm, which 
produced 151 nodes in total. The domain was divided 
into multiple zones in which each zone exhibits unique 
hydraulic parameters. Because we used the BC model, 
in the case of homogeneous soil properties, the 
hydraulic parameters may be expressed with a 
parameter vector of six elements, i.e., p=(Ks, θs, θr, α, 
n, λ) from Eqs. (1) and (3). In the case of multiple 
zones, zones 1 to nz, the parameter vector contains m = 
6nz elements, i.e., p=(Ks1, θs1, θr1, α1, n1, λ1, …., Ksnz, 
θsnz, θrnz, αnz, nnz, λ nz)=(p1,p2, ...,pm). 

The simulation time covered 75 days beginning 
from October 1, 2005. The time variable t [T] was 
defined as t=0 at midnight of October 1, 2005 in this 
study. 

 
2.2.3 Initial and Boundary Conditions 
Almost no rainfall was observed for 50 days before 

the start of soil water monitoring; therefore, the water 
content at the start of monitoring (t=0) was quite low. 
At the K plot, the water content at the start of 
monitoring was 0.1 to 0.15, and by extrapolating with 
the soil water retention curve based on the BC function, 
it corresponded to a pressure head of -10000 cm or less. 
Considering this highly dry initial condition, -10000 
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cm was set as the initial pressure head in the entire 
domain. 

A Neuman-type boundary condition of 
time-variable flux was used at the top of the profile 
(Neuman et al., 1974), and a zero-gradient drainage 
boundary condition, which simulates a freely draining 
soil profile that is not affected by the ground water 
table, was used at the bottom of the profile: 

 
−K h !!

!!
− 1 = q t  with z=0 cm         (4) 

!!
!!
= 0  with z=100 cm                     (5) 

 
where q(t) is the prescribed flux [L / T]. During the 
period of rainfall, the net flux was set to measured 
precipitation every hour, and during the period without 
rainfall, the net flux was set as the negative of the 
maximum potential rate of evaporation, -3.7 mm/day, 
as long as the surface pressure head was larger than the 
minimum pressure head, hA, which was set to hA = -105 
cm (Scharnagl et al., 2011). When the surface pressure 
head became lower than hA (h <hA at z=0), the upper 
boundary condition was changed to a constant pressure 
head of h=hA. The maximum potential rate of 
evaporation was estimated from the FAO-adopted 
Penman-Monteith equation (Penman, 1948; Monteith, 
1981; FAO, 1990) using the following values referring 
to regional climate data: temperature = 28°C, 
maximum daily temperature = 32°C, minimum daily 
temperature = 24°C, relative humidity = 0.78, 
atmospheric pressure = 100 kPa, and wind speed at 2 
m height = 4 m/s. 

 
2.2.4 Inverse Optimization and Multi-Scale 

Parameterization 
The parameter vector was estimated by minimizing 

an objective function O(p), which was defined by the 
sum of the quadratic differences between the 
model-predicted water content and measured water 
content using the inverse optimization technique of the 
Levenberg-Marquardt method (Marquardt, 1963). 
Standard error (SE) can be calculated by O(p) with: 

 

SE = !(𝐩)
!!!

                             (6) 

 
where N is the numbers of optimized water content. 
The uncertainties in parameters pk, Δpk, are calculated 
as (Press et al., 1992): 

 
∆p! = O(p) c!!                       (7) 
 

where ckk is the covariance of the parameters pk. 
Forward calculation was conducted for the period 

from 0 days to 75 days, and the parameters were 
optimized from 30 days to 75 days to minimize the 
effect of error associated with the initial condition. 

Because we did not measure the initial soil water 
profile, the initial condition was subject to much 
uncertainty, and the predicted water content was rather 
inaccurate during the initial period. After 30 days of 
simulation with several infiltration and evaporation 
events, the simulated water profile with optimized 
parameters was expected to be closer to the real value. 
Therefore, we omitted the first 30 days of 
measurements, which contained larger errors compared 
with those of later periods from the objective function. 
The start day of 30 days was determined from several 
preliminary runs with different start periods. 

An adaptive multi-scale parameterization algorithm 
(Hayek et al., 2008) was employed, which increases 
the number of degrees of freedom in a step-by-step 
manner (Fig. 2). A refinement indicator was defined to 
determine the optimal location of discontinuity for the 
next step. The first step consists of estimating the 
optimal parameters and the objective function in the 
case of one-zone parameterization with one parameter 
(homogeneous soil), and the refinement indicator for 
splitting the domain into two zones, Z1 and Z2, is 
defined by: 

 
I = !!(!!∗)

!!!!∈!! = !!(!!∗)
!!!!∈!!                        (8) 

 
where I is the refinement indicator, p1* is a parameter 
optimized with one-zone parameterization, and pi is the 
parameter at node i. The refinement indicator was 
extended to the case of multi-dimensional parameters 
with a parameter vector of p=(p1, p2, …,pm). The 
refinement indicator corresponding to the parameter pk 
at location i, Ik,i, was calculated from Eq. (8) by 
making pk the only variable parameter, and the domain 
was split into zones Z1 and Z2 at the ith node. The 
refinement indicator depends on the unit of the 
parameter; therefore, a dimensionless refinement 
indicator was defined by I!,! =

!!,!
!"#!!!,!

. The 

multi-dimensional refinement indicator Γi was defined 
by: 
 

Γ! = I!,!                                            !
!!!                   (9) 

 
The dimensionless multi-dimensional indicator, DMI, 
was defined by Γ! =

!!
!"#!!!

. The multi-dimensional 
parameterization algorithm is described as follows. 
1. Choose an initial parameterization (usually one 

zone for the entire domain, nz=1; nz is the number 
of zones) Pnz, and an initial vector of parameters 
p0. 

2. Minimize the objective function O(p), and 
compute the optimal solution p1*. 

3. Choose a set of discontinuities that determines the 
next step of parameterization. 

4. Compute the gradients  ∂O/ ∂p!,! 
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5. For all selected discontinuities, compute the DMI. 
6. Select a subset of discontinuities that have larger 

DMI than a certain value τ which is a user-defined 
value. Hayek et al. (2008) used τ =0.95 and 
τ =0.80. We used τ =0.95 in this study. 

7. For all selected discontinuities, minimize the 
objective function O(p) corresponding to the new 
parameterization with inverse optimization. 

8. Select the best parameterization (corresponding to 
the smallest objective function) for the next 
parameterization Pnz+1 together with the 
corresponding discontinuity. 

9. Stop the calculation if the stopping criteria are met. 
Otherwise, increase nz by 1, and return to step 4. 
The stopping criteria can be a specified number of 
zones or a threshold value for the objective 
function or objective function gradients, for 
example, less than 5% decrease in objective 
function or increase in model selection criteria 
such as AIC (Akaike information criterion) 
(Akaike, 1974) or BIC (Bayesian information 
criterion) (Schwarz, 1976). 

 
AIC and BIC (also called SBC; Schwarz and 

Bayesian criterion) for log-likelihood function are 
(Rajkai et al., 2004):  

 
𝐴𝐼𝐶 = 𝑁  𝑙𝑛 !(!)

!
+ 2𝑚                                 (10) 

 
𝐵𝐼𝐶 = 𝑁  𝑙𝑛 !(!)

!
+𝑚  𝑙𝑛  𝑁                (11) 

 
where m is the number of parameters. When models 
are compared in AIC or BIC, the model which has a 
smaller value of the criterion is the better model. BIC 
places more emphasis on the number of parameters in 
a model than AIC. 

In the first step, we performed parameter 
optimization assuming that the soil contains uniform 
hydraulic properties. In this step, different strategies 
were applied between the K and the HD plots. In the K 
plot, where the fluctuation range of water contents was 
similar (0.22–0.38) at both of the measured depths of 
10 cm and 20 cm, the water content at both depths was 
used for parameter estimation. In the HD plot, where 
the fluctuation range of water content differed with 
depth (0.09–0.31 at 20 cm, 0.3–0.53 at 30 cm), we 
used two strategies. The first strategy was the same as 
that of the K plot. The second strategy used the water 
content at one depth, the upper sand layer (depth of 20 
cm), to calculate the objective function for 
homogeneous parameterization, and subsequently 
applied two-zone parameterization with the initial 
parameters as the optimized parameters of the upper 
layer and the hydraulic parameters at the bottom layer.  

The BC model contains six parameters. Among the 
six parameters, many authors treat λ as a constant 

value of 0.5 to avoid over-parameterization; however, 
in certain cases, λ is also treated as a variable. 
Puhlmann et al. (2009) determined the soil hydraulic 
parameters of forest soil in a multistep outflow 
experiment and found that the λ values ranged from -5 
to 5 (prescribed upper and lower limits). In this study, 
we treated λ as a constant at each step of 
parameterization, and the other five parameters (Ks, θr, 
θs, α, n) were optimized with a fixed λ value. After 
that, all six parameters (Ks, θr, θs, α, n, λ) were 
optimized. 

Because hydraulic parameters are correlated, it is 
difficult to identify all of the parameters by inverse 
optimization. To resolve this problem, the soil 
hydraulic parameters may be fixed to certain a priori 
defined values (Jacques et al., 2002; Ritter et al., 2003). 
However, Scharmagl et al. (2011) noted that this 
approach might result in inappropriate parameter 
estimation, especially if the parameters are fixed at 
non-optimal values. By conducting numerical 
simulations, we found that it is sometimes more 
efficient to increase the degree of freedom sequentially. 
For example, among the five parameters (Ks, θr, θs, α, 
n), we first optimized three parameters simultaneously 
(Ks, θr, n) and subsequently optimized five parameters 
simultaneously. 

 We developed a new method, SRP; sequential 
optimization in the order of refinement indicator of 
parameters at the depth of discontinuity. From the 
definition of the refinement indicators, the parameter 
with the higher indicator value contributed more 
significantly to the minimization of the objective 
function. Hence, the parameters were optimized 
sequentially in the order of the refinement indicators. 
For example, when the refinement indicators at a depth 
of the first discontinuity are in the order of θs > θr > n 
> α > Ks, in the 2-zone optimization, the parameters 
are optimized in five steps; (1) optimize θs, (2) 
optimize (θs, θr), (3) optimize (θs, θr, n), (4) optimize 
(θs, θr, n, α), and (5) optimize (θs, θr, n, α, Ks). 

 
2.2.5. Initial Hydraulic Parameters 
We used different sets of initial parameters to 

investigate the effect of the initial parameters on the 
result of parameter estimation (Table S1). The first 
parameter set, IP1, was taken from measured soil water 
retention curves and the measured saturated hydraulic 
conductivities, and the value of λ was assumed to be 
0.5. Other initial parameter sets, IP2–IP5, were 
estimated from pedo-transfer functions. The 
pedo-transfer function (PTF) estimates the soil 
hydraulic parameters from known soil properties, i.e., 
soil texture, bulk density, and organic contents. The 
IP2 was obtained from the PTF of Wösten et al. (1999), 
which was derived from HYPRES, the database of soil 
hydraulic properties of European soils that predicts the 
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hydraulic parameters of the van-Genuchten Mualem 
model (VG model) from clay and silt content, organic 
matter content, and bulk density. The IP3 was obtained 
from the PTF of Rosetta software with the H3 
(SSCBD) model (Schaap et al., 2001), which predicts 
VG parameters from sand, silt, clay, and bulk density 
based on a soil hydraulic database mostly from North 
America and Europe. The Rosetta model gives the 
prediction of both Ks and K0, where Ks is the actual 
saturated hydraulic conductivity and K0 is the 
matching point of the K(h) curve to saturation, which 
may differ from Ks. We used K0 as the value of the 
initial parameter of Ks. The IP4 was obtained with the 
PTF of Teepe et al. (2003), which predicts VG 
parameters (except Ks and λ) from sand, silt, clay 
content and bulk density and is based on the measured 
soil water retention curves of forest soils. The Ks value 
was estimated from the PTF of Cosby et al. (1984), 
and the λ value was assumed to be 0.5. The IP5 was 
obtained from the PTF of Puhlmann and von Wilpert 
(2012), which predicts the VG parameters from soil 
texture, organic matter content, and bulk density based 
on the measurements of Puhlmann et al. (2009). The 
hydraulic parameters of VG models in IP2 to IP5 
estimated from the PTFs were converted to the 
parameters of the BC model using the method 
developed by Lenhard et al. (1989), which was 
recommended by Ma et al. (1999), who compared it 
with other conversion methods (van Genuchten, 1980; 
Morel-Seytoux et al., 1996). 

The PTFs used to derive IP2–IP5 were primarily 
constructed by analyzing the soil properties in Europe 
and America. Because this study analyses Indonesian 
soil, the estimated parameters are not at all similar to 
the measured parameter set of IP1 (Table S1). The 
functions of θ(h) and K(h) at h=500 cm were also quite 
different from each other. The objective of using these 
uncertain initial parameter sets (IP2–IP5) was to 
investigate the robustness of parameter optimization in 
this study because it is not always possible to obtain 
measured hydraulic parameter sets for use as initial 
values. 

 
3. Results 

3.1. Homogeneous Parameterization 
The result of simulation of the IP1 initial condition 

is shown first, and the results with the initial 
parameters of IP2–IP5 are shown in Section 3.4. For 
each plot, the parameters were optimized in 12 
different ways (Table 1). For example, in the K plot, 
when five parameters (Ks, θs, θr, α, n) were optimized 
simultaneously, an objective function O(p) of 124.36 
was obtained (denoted as “None” in the table). When 
Ks was fixed as a constant and the other four 
parameters (θs, θr, α, n) were optimized, O(p)=123.86 
was obtained (first fit), and the estimated parameters of 

the first fit were used for the initial parameters in the 
second fit to optimize the five parameters 
simultaneously. At the end of the second fit, all of the 
parameters were optimized, and different parameters 
were obtained. 

In the K plot, the fixed (θs, α) pair produced the 
minimum objective function, followed by fixing (θr, α) 
and (Ks, α) and the α−only method. The uncertainties 
in parameters pk, Δpk, of the second fit in the K plot are 
shown in Table S2. The magnitude of the parameter 
uncertainties differed among the fixed parameters. The 
coefficients of variability of the optimized parameters 
of these 12 optimization methods were, in descending 
order, 1.086 for θr, 0.752 for Ks, 0.403 for α, 0.228 for 
n, and 0.025 for θs. However, the soil water retention 
curves and unsaturated hydraulic conductivity 
functions drawn from these parameters were similar 
(Fig. 3A, 3B). Correlations among the estimated 
parameters of the 12 strategies were analyzed, and 
correlations were found in the (n, θr) pair (R > 0.9) and 
the (Ks, θs) pair (R > 0.8) (Fig. 3C, 3D). As evident 
from Fig. 3D, correlation between n and θr produced 
high variance in θr (CV=1.086). The coefficients of 
variability in θ and K calculated from the 12 sets of 
hydraulic parameters are shown in Fig. 4A. 

In the HD plot, the first strategy with optimization 
of both measured depths resulted in a large objective 
function. With five-parameter optimization, 
O(p)=1011 was obtained, and with six-parameter 
optimization, O(p)=1007 was obtained. In the 
six-parameter optimization, a value of λ was optimized 
at -2.54. Because the result of homogeneous 
optimization was not a reliable estimate, five 
parameters were optimized for the initial parameter set 
of the two-zone parameterization method. 

In the second strategy, only the measured water 
content at the top layer (20 cm) was used for the 
parameter optimization, and the corresponding results 
are shown in Table 1. The difference in the objective 
functions among 12 methods is not significant. The 
soil water retention curves and unsaturated hydraulic 
conductivity functions drawn from these parameters 
were similar, especially for a water content between 
0.1 and 0.25 (Fig. 5A, 5B), and the measured water 
content at 30–75 days during the experiment mostly 
fell within this range. Correlations between parameters 
were found in the (n, θr) and (Ks, θs) pairs (R > 0.9) 
and the (Ks, α) pair (R > 0.8) (Fig. 5C, 5D). The 
coefficients of variability (CV) in θ and K calculated 
from the 12 sets of hydraulic parameters are shown in 
Fig. 4B. The CV was small in the middle range of the 
pressure head, but the values increased under highly 
wet and highly dry conditions. 

For the different optimization methods shown in 
Table 1, the parameter sets were chosen that gave the 
smallest objective function: the fixed (θs, α) pair for 
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the K plot and the fixed (θr, α) pair for the HD plot. 
The six-parameter optimization was performed for the 
selected parameters; however, the objective function 
did not decrease in either the K or the HD plot. 
Therefore, the results of five-parameter optimization 
with λ=0.5 were determined to be the final 
optimization result of the homogeneous soil profile 
(Table 2). 

 
3.2 Two-Zone Parameterization 

The dimensionless multi-dimensional indicators for 
detection of the first discontinuity for the K plot and 
for the first strategy of the HD plot were calculated as 
shown in Fig. 6. We selected the discontinuity from 
5-cm intervals except for the observation points, at the 
depth where the DMI was greater than τ =0.95, i.e., a 
depth of 15.25 cm (between the nodes of 15 cm and 
15.5 cm) for the K plot. The optimized parameters 
obtained from the homogeneous parameterization were 
used for the initial parameters for two-zone 
parameterization with a discontinuity at a 15.25-cm 
depth. We compared three methods of optimization. 
The first method optimized 10 parameters, except 
for λ, which is held constant, at the same time. The 
second method fixed θs and α first to optimize 6 
parameters (Ks, θr, n for 2 zones) and subsequently 
optimizing 10 parameters, which corresponds to the 
best strategy in the homogeneous optimization of the K 
plot in Table 1. The third method is SRP method, i.e., 
optimized the parameters in the order of the 
dimensionless indicators obtained in the homogeneous 
parameterization at a discontinuity depth of 15.25 cm. 
As a result, the objective functions for the first, second, 
and third methods were 101.11, 104.53, and 94.60, 
respectively. 

Because the objective function of the third method, 
SRP, was the smallest, the parameter set estimated 
using the third method was selected. Parameterization 
with 12 parameters (including λ) decreased the 
objective function from 94.604 to 94.597, and this 
value was determined to be the optimized parameter in 
the two-zone parameterization (Table 3). 

For the first strategy in the HD plot, the first 
discontinuity was selected at a depth of 25.25 cm, 
where the DMI was larger than τ =0.95 (Fig. 6), 
between the two measured depths of 20 cm and 30 cm. 
The refinement indicators at a depth of 25.25 cm were, 
in descending order, 0.9992 for α, 0.9986 for θr, 
0.9971 for n, 0.9947 for θs, and 0.8065 for Ks. 
Therefore, the parameters were sequentially optimized 
in this order. As a result, an objective function of 26.14 
was obtained, which was smaller than the objective 
function obtained with optimizing the 10 parameters at 
the same time. After that, 12-parameter optimization 
was conducted, and the objective function decreased to 
24.38. 

For the second strategy in the HD plot, a 

discontinuity was selected from the same depth as the 
first strategy, at 25.25 cm. The initial parameters of the 
upper zone (sand layer) were set to the result of 
homogeneous optimization, and the initial parameters 
of the lower zone (sandy loam layer) were taken from 
Table S1. By optimizing the 10 parameters 
simultaneously, we obtained an objective function of 
23.33. With the two-step optimization methods of 
fixing (Ks, α), (θs, α), and (θr, α) first, we obtained 
objective functions of 26.20, 22.78, and 28.05, 
respectively. The parameter set that produced the 
minimum objective function of 22.78 was optimized 
again with 12 parameters, including λ, and the 
objective function slightly decreased from 22.780 to 
22.779. Because the second strategy resulted in a 
smaller objective function compared with that of the 
first strategy, the second strategy was selected for the 
final parameter set, as shown in Table 3. 

Fig. 7 compares the change in the measured and 
simulated water content and shows that two-zone 
optimization was effective in simulating the overall 
behavior of the soil water change at the two depths. 
However, this method did not simulate a portion of the 
water change accurately. In particular, the change in 
water content at a depth of 20 cm in the K plot was not 
well simulated. The simulated change in water content 
in response to rainfall during the period of 50 days to 
75 days was more remarkable compared with the 
measured change. 

Fig. 8 compares the water retention curves obtained 
by two-zone parameterization with measured data. The 
discrepancy between the measured and estimated water 
retention curves of the sandy loam layer in the HD plot 
was remarkable. This difference might be due to the 
transient nature of the actual soil profile. In the 
simulated parameterization, we clearly separated the 
two zones at one discontinuity depth; however, in the 
field, a transient zone of sand and sandy loam layer 
was present in which the soil of the two layers was 
mixed at a depth between 20 cm and 30 cm. In that 
transient zone, the soil property gradually shifted from 
sand to sandy loam. Therefore, the water retention 
curve measured from the upper region of the sandy 
loam layer might have displayed the averaged 
properties of sand and sandy loam. 

 
3.3 Three-Zone Parameterization 

The DMI for the second discontinuity was 
calculated for both the K and HD plots (Fig. S2). From 
the criterion of τ =0.95, eight depths were selected in 
the K plot (every 5 cm on the interval 60.5–95.5 cm), 
and one depth was selected in the HD plot (35.25 cm). 
The parameters were optimized for each discontinuity. 
To avoid parameters with unrealistic water content 
values, we always held the θr and θs values constant in 
a zone without an observation point. SRP method was 
conducted, and the discontinuity was selected from the 
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lowest O(p) value. The results of the three-zone 
parameterization are shown in Table S3. In the HD 
plot, the objective function decreased only 0.13%, 
from 22.78 in the two-zone parameterization to 22.75 
in the three-zone parameterization. The objective 
function gradient was small and we stopped the 
calculation of the HD plot and used the two-zone 
parameterization for the final parameter set for the HD 
plot. In the K plot, the objective function decreased 
from 94.60 in the two-zone parameterization to 83.59 
in the three-zone parameterization. Because we 
restricted θr and θs as constants in the third zone, the 
soil water retention curves did not deviate much from 
those of the second zone (Fig. S3). The hydraulic 
conductivity in the third zone of the K plot was lower 
compared with that of the second zone. This difference 
might reflect the observed fact that clay accumulates in 
the lower horizon. A comparison of the saturated 
hydraulic conductivity estimated from the simulation 
with the measured values is shown in Fig. S4. In the 
HD plot, the saturated hydraulic conductivity changed 
at a depth of 30 cm, whereas in this study, 
discontinuity was detected at 25 cm because the 
location of the core sampling for Ks measurement was 
not exactly the same as the location of the water 
content measurement. 

We found the third discontinuity in the K plot at a 
depth of 85.5 cm to 95.5 cm (DMI > 0.95) and 
continued the calculation for four-zone 
parameterization using the same algorithm. The 
objective function did not decrease from that of the 
three-zone parameterization (83.59), and therefore, the 
iterations were stopped. 

Model selection criteria are shown in Table S4. If 
we use AIC as a stopping criteria, three-zone 
parameterization is selected as the best 
parameterization for both K and HD plots. If we use 
BIC as a stopping criteria, three-zone parameterization 
is selected for K plot and two-zone parameterization is 
selected for HD plot. 

 
3.4. Effect of Initial Parameters 

Homogeneous parameterization and two-zone 
parameterization were conducted with the initial 
parameters derived from the PTFs (IP2–IP5) shown in 
Table S1 using a similar calculation procedure as that 
of the initial parameters of IP1. At each stage of 
optimization of the homogeneous and two-zone soil 
profiles, several methods of fixed parameters were 
compared: (1) fitting five parameters; (2) fixing the (Ks, 
α), (θs, α), and (θr, α) pairs first; and (3) SRP method, 
sequential optimization in the order of refinement 
indicator (excluding the second strategy in the HD 
plot). 

The objective functions from two-zone 
parameterization are summarized in Table 4. 
Optimization with the PTF-derived initial parameters 

(IP2–IP5) produced smaller objective functions 
compared with the objective function derived from the 
measured parameters (IP1) for the K plot. For the HD 
plot, the overall performance of the second strategy 
was better compared with the first strategy. The soil 
water retention curves were drawn with the optimized 
parameter sets of each initial parameter set (Fig. 9) in 
which the result of the second strategy was used for the 
HD plot. In the K plot, IP2–IP5 had much larger AEV 
because the initial values of α were smaller (Table S1). 
In the HD plot, the estimated retention curves were 
similar, except for the near saturated region of the 
lower zone. Comparison of the simulated change in 
water content (Fig. S5) also showed that the 
uncertainty in the HD plot was small, whereas the 
uncertainty in the K plot was larger. Although the 
initial parameters were quite different, similar results 
were obtained for the HD plot, demonstrating the 
robustness of the method developed in this paper. 

 
4. Discussion 

The simulated water contents were not close to the 
measured water contents at certain depths and time 
periods. Several reasons might exist for this 
discrepancy, including (1) non-uniform water flow due 
to water repellency, (2) absence of pressure head 
measurement, (3) inaccuracy of rainfall data, (4) 
inaccuracy of potential evaporation, (5) effect of root 
uptake, (6) effect of seal and crust formation, (7) effect 
of hysteresis in soil water retention, and (8) effect of 
the calibration of soil water sensors. 

 
(1) Soil water repellency causes rain water to infiltrate 

into the soil as preferential flow paths (Dekker and 
Ritsema, 1994). Kajiura et al. (2012) showed that 
water repellency of soil is affected by two factors: 
soil organic matter and water content. Strong water 
repellency was observed in the soil from the HD 
plot and in the 20-cm surface soil of the K plot 
(Seki et al., 2010); therefore, preferential flow 
might have existed in the infiltration process. The 
measured water change in the period from 50 days 
to 75 days at a 20-cm depth in the K plot (Fig. 7B) 
might have involved the process of preferential 
flow, i.e., rainwater primarily infiltrated in the 
preferential flow paths, which did not pass through 
the buried soil water sensor. This phenomenon 
might explain why the soil was not fully saturated 
after the heavy rainfall of 15 cm on day 51. 
Subsequently, the soil gradually became saturated 
following many rainfall events. Preferential flow 
can be modeled by the two-dimensional simulation 
(Ritsema and Dekker, 2000) or one-dimensional 
double continuum approach (Kordilla et al., 2012); 
however, the one-dimensional simulation in this 
study did not simulate the process well. 

(2) Pressure head was not measured in this study, 
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which left uncertainty in the soil hydraulic 
properties. If the pressure head is measured with 
the water content, the water retention curve is 
actually measured in situ, and the uncertainty of the 
estimation of the soil water retention curve will 
decline, whereas the precision of the simulation 
will increase. 

(3) Rainfall intensity was measured in the HD plot. 
The K plot was located 1 km away from the HD 
plot; hence, the rainfall intensity at the K plot might 
have differed from that at the HD plot. For example, 
the rainfall event of 24 mm on day 57.5 caused an 
increase in the measured water content in the HD 
plot but did not cause a similar increase in the 
measured water content in the K plot. The actual 
rainfall at this time might have been less in the K 
plot compared with that of the HD plot. 

(4) In this study, direct measurements of such climate 
data as temperature and humidity were not 
available; hence, a rough estimate was used for 
potential evaporation. The accuracy of the potential 
evaporation may be improved by directly 
measuring the climate data and by treating potential 
evaporation as time variable. Temperature also 
affects hydraulic conductivity. As the study area is 
close to equator, temperature variation is smaller 
than higher latitude region, and fluctuation of 
temperature is smaller in soil than the ambient air. 
At the 10 cm depth of K plot, the difference in the 
maximum and minimum temperatures within the 
observation period of 75 days was only 2.4°C. 

(5) The effect of root uptake in the root-mat zone was 
omitted in this study, which might also affect soil 
water behavior; therefore, introducing parameters 
for the distribution of root water uptake might 
improve the estimates. 

(6) The effect of seal and crust formation at soil 
surface was neglected in this study. As the soil 
surface was covered with root mat, the effect of 
decrease in hydraulic conductivity due to crust 
formation should have been minimal. 

(7) Hysteresis of water retention was omitted in this 
study. We used only one set of soil hydraulic 
parameters for each soil layer. Estimates might be 
improved using different soil hydraulic parameter 
sets for the wetting and drying processes. 

(8) In this study, the water contents were measured by 
frequency domain reflectometry probes. The 
measured dielectric permittivity of the soil is 
usually converted to water content with an internal 
calibration equation provided by the manufacturer. 
Seki et al. (2010) measured the calibration curves 
for each soil sample collected from the field and 
found that the calibration equation in each soil was 
different than the manufacturer’s given equation. In 
this study, soil-specific calibration equations were 
used; hence, the error in the calibration of sensors 

was minimized. The manufacturer says that with 
soil-specific calibration, the relative precision is 1 
to 2 %. A general calibration curve is often used 
because it is time-consuming to obtain soil specific 
calibration curves. Therefore, error arising from the 
calibration curve might exist. Cardenas-Lailhacar 
and Dukes (2010) discussed the precision of several 
soil water sensors under field conditions. 

 
By obtaining information on the above factors from 

direct observation, we might be able to obtain more 
precise estimates of the hydraulic parameters. We 
could also attempt to obtain additional points of depth 
to observe the water content and pressure head and 
improve precision. If observation of the above factors 
is unavailable, we could introduce new parameters for 
the unknown factors and increase the number of 
parameters for estimation. However, we should be 
careful when increasing the number of parameters 
because it does not always result in better estimates of 
unknown parameters. One reason for this is that as the 
number of unknown parameters increases, a 
combination of possible correlations between 
parameters increases, and therefore, the uncertainty of 
the estimated parameters may also increase. Another 
reason is that according to the parsimony criterion, 
among all models that fit the data, those with fewer 
parameters have higher posterior probabilities 
(Malinverno, 2002). Therefore, by introducing new 
parameters (i.e., root uptake, hysteresis, etc.), the 
predictive power of the estimated parameters would 
decrease. For the same reason, the zones should not be 
over-split to retain as small a number of parameters as 
possible. 

Correlation was found between the estimated 
hydraulic parameters, as shown in Figs. 3C, 3D, 5C 
and 5D. Therefore, rather than verifying the 
uncertainty of individual parameters, it is better to 
verify the uncertainty of soil hydraulic functions, 
namely, water content and hydraulic conductivity at a 
certain pressure head. Uncertainty may be estimated by 
running several simulations with different initial 
parameter values and by drawing estimated soil water 
retention curves, as shown in Fig. 9. With known 
uncertainty in the results, the hydraulic parameter set 
obtained with this method could serve as good 
reference data about which parameters best describe 
the soil water change under specified field conditions. 

 
5. Conclusion 

Soil hydraulic parameters can be estimated from 
measured soil water contents and rainfall intensity 
using the multi-scale parameterization method. With 
the optimized parameters, the measured and simulated 
water contents showed quite good agreement in our 
analysis. As the water data is becoming more and more 
easily available and demand for estimation of 
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hydraulic parameter is increasing, this method can be 
applied to the field where only limited data is available. 
The original algorithm of Hayek et al. (2008) was 
improved using refinement indicators for determining 
not only the depth of discontinuity but also the 
sequence of parameters to be optimized. The measured 
values should be used for the initial parameters if they 
are available, but because they are not always available, 
hydraulic parameters estimated from pedo-transfer 
functions also can be used for the initial parameters. 
One of our results showed the robustness of our 
algorithm in which similar hydraulic functions were 
obtained for multiple simulations with different initial 
parameters; measured parameters, and parameters 
derived from four types of pedo-transfer functions. 
However, at another field site, agreement between 
measured and simulated water contents was not good 
and the robustness of the initial parameters were large. 
Therefore, uncertainty evaluation of the estimated 
hydraulic functions is recommended when applying 
this method to other locations. 
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Table 1. Objective function with homogeneous parameterization for each plot. 1st fit was conducted by fixing the 
listed parameters and fitting other parameters. 2nd fit was conducted with 5 parameters. Numbers in parenthesis are 
iteration counts in optimization. 
 
  K plot   HD plota 
Fixed parameters 1st fit   2nd fit   1st fit   2nd fit   
None -  124.36  (26) -  38.26  (28) 

Ks 123.86  (21) 123.67  (87) 38.48  (47) 38.48  (11) 

θs 124.83  (21) 123.63  (22) 38.12  (28) 38.12  (11) 

θr 123.93  (30) 123.93  (13) 38.00  (23) 38.00  (11) 

α 119.40  (23) 118.90  (16) 37.81  (22) 37.783  (16) 

n 128.54  (31) 128.54  (14) 38.08  (34) 38.02  (35) 

Ks, θs 141.03  (20) 123.72  (27) 58.29  (20) 38.33  (31) 

Ks, θr 123.22  (28) 123.19  (21) 37.93  (45) 37.93  (11) 

Ks, α 118.29  (27) 118.29  (11) 38.18  (220) 37.94  (25) 

θs, α 113.54  (26) 113.50b (17) 38.49  (23) 38.23  (17) 

θr, α 117.83  (24) 117.49  (16) 37.78  (23) 37.776b (15) 

Ks, θs, α 139.11  (22) 123.52  (22) 45.75  (24) 38.65  (43) 
 
aSecond strategy of fitting only one depth. 
bMinimum objective function. 
 
Table 2. Optimized parameters of homogeneous parameterization. 
 
  Parameter K plot HD plota 
Initial θr 0.0000  0.0244  
 θs 0.3760  0.3150  
 α (cm-1) 0.2260  0.1159  
 n 0.1154  0.4684  
 Ks (cm / s) 0.001771  0.013040  
 λ 0.5000  0.5000  
 O(p) 392.17  505.08  
 SE 0.1740  0.2792  
Optimized θr 0.0976 ± 0.0135 0.0243 ± 0.0056 

 θs 0.3756 ± 0.0140 0.3757 ± 0.0112 

 α (cm-1) 0.2294 ± 0.1116 0.1141 ± 0.0529 

 n 0.1122 ± 0.0087 0.3677 ± 0.0181 
 Ks (cm / s) 0.00939 ± 0.011601 0.005394 ± 0.001351 

 λ 0.5000  0.5000  

 O(p) 113.50  37.78  
  SE 0.0936  0.0764  

 
aSecond strategy of fitting one depth. 
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Table 3. Optimized parameters of two-zone parameterization. 
 

Zone Parameter K plot HD plot 
Zone 1 Depth (cm) 0 - 15.25 0 - 25.25 

 θr 0.0982  0.0843  
 θs 0.3533  0.2806  
 α (cm-1) 0.2120  0.1291  
 n 0.0970  0.5484  
 Ks (cm / s) 0.01321  0.07812  
 λ 0.5000  0.4868  

Zone 2 Depth (cm) 15.25 - 100 25.25 - 100 
 θr 0.1500a 0.0249  

 θs 0.3428  0.5186  
 α (cm-1) 0.3201  0.2553  
 n 0.0929  0.1143  
 Ks (cm / s) 0.009314  0.0003328  
 λ 0.5082  0.5001  
  O(p) 94.60  22.78 

 SE 0.0854 0.0419 
 
aUpper limit value 
 
Table 4. Objective function optimized with 2-zone parameterization. 
 
Plot Strategy Initial parametersa       
    IP1 IP2 IP3 IP4 IP5 
K plot  94.6 (c, e) b 76.8 (c, e) 77.81 (b, e) 76.0 (c, e) 76.8 (c, a) 
HD plot 1st 26.1 (a, a) 23.7 (a, e) 24.5 (a, e) 55.7 (a, a) 26.3 (a, e) 
  2nd 22.8 (d, c) 24.1 (c, a) 24.9 (b, a) 23.1 (b, a) 23.5 (a, b) 

 
aParameters shown in Table S1 
bSelected strategy with minimum objective function in homogeneous and 2-zone parameterizations; a: fit 5 
parameters, b: fix (Ks, α) first, c: fix (θs, α) pair first, d: fix (θr, α) pair first, e: SRP method. 
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Fig. 1. Increasing heterogeneity step by step, (A) homogeneous parameterization, (B) 2-zone parameterization and 
(C) 3-zone parameterization with multi-scale parameterization method. 
 

 
 
Fig. 2. Flow domain and boundary conditions. 
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Fig. 3. Estimated hydraulic parameters with homogeneous parameterization in the K plot: (A) Soil water retention 
curves of 12 sets of estimated parameters (12 lines) and measured data (closed circle for 12.5–15 cm, open triangle 
for 20–22.5 cm); (B) K(θ) curves of 12 sets of estimated parameters; (C) Relationship between Ks and θs; (D) 
Relationship between θr and n. 
 

 
 
Fig. 4. Coefficient of variability (CV) of the water content and hydraulic conductivity in the estimated θ(h) (solid 
line) and K(h) (dotted line) functions with homogeneous parameterization in (A) the K plot and (B) the HD plot 
(second strategy). 
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Fig. 5. Estimated hydraulic parameters of the sand layers with homogeneous parameterization (second strategy) in 
the HD plot: (A) Soil water retention curves of 12 sets of estimated parameters (12 lines) and measured data (closed 
circles); (B) K(θ) curves of 12 sets of estimated parameters; (C) Relationship between Ks and θs, a, respectively; 
(D) Relationship between θr and n. 
 

 
 
Fig. 6. Dimensionless multi-dimensional indicator (DMI) used to detect the first discontinuity of the K plot and the 
HD plot (first strategy). 
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Fig. 7. Measured (solid red line) and simulated (dotted blue line) water content: (A) K plot, 10-cm depth; (B) K 
plot, 20-cm depth; (C) HD plot, 20-cm depth (sand layer, low water content) and 30-cm depth (sandy loam layer, 
high water content). 
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Fig. 8. Hydraulic functions of two-zone parameterization. Water retention function θ(h) of: (A) the K plot and (B) 
the HD plot with measured data (closed circles and open triangles, respectively) and the unsaturated hydraulic 
conductivity function K(h) of (C) the K plot and (D) the HD plot. 
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Fig. 9. Estimated soil water retention curves optimized with two-zone parameterization with different initial 
parameter sets: IP1 (red line), IP2 (green line), IP3 (purple line), IP4 (blue line), and IP5 (orange line). Closed 
circle represents measured data: (A) K plot, upper zone; (B) K plot, lower zone; (C) HD plot, upper zone; (D) HD 
plot, lower zone. 
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Supplementary data 
 
Table S1. Initial hydraulic parameters of Brooks and Corey - Mualem model. IP1: Measured. 20-22.5 cm depth for 
K plot. IP2: PTF (pedotransfer function) of Wösten et al. (1999). IP3: PTF of Rosetta H3 model (Schaap et al., 
2001). IP4: PTF of Teepe et al. (2003) and Cosby et al. (1984). IP5: PTF of Puhlmann and von Wilpert (2012). PTF 
estimated van Genuchten parameters are converted to Brooks and Corey parameters. 
 
Soil Parameters IP1 IP2 IP3 IP4 IP5 

K plot θr 0.0000  0.0100  0.0552  0.0000  0.0690  
 θs 0.3760  0.3924  0.3771  0.4173  0.3901  
 α (cm-1) 0.2260  0.0518  0.0223  0.0066  0.0256  
 n 0.1154  0.1369  0.3839  0.1857  0.3462  
 Ks (µm / s) 17.71  2.265  0.6510  4.997  1.774  
 λ 0.5000  -3.7876  -0.7159  0.5000  -1.4980  
 θ500 0.2179 0.2550 0.1829 0.3342 0.2018 
 K500 (nm/s) 40.07 194.1 17.8 867.7 88.86 
 O(p) a 392.17 1444.6 2772.1 1093.5 3614.8 

HD plot θr 0.0244  0.0100  0.0422  0.0000  0.0690  
Sand θs 0.3150  0.4309  0.4234  0.4833  0.4577  
 α (cm-1) 0.1159  0.0877  0.0692  0.0103  0.0197  
 n 0.4684  0.3515  0.7923  0.4587  1.0792  
 Ks (µm / s) 130.40  6.3318  5.2782  39.52  11.5532  
 λ 0.5000  -0.4782  -0.7928  0.5000  0.1068  
 θ500 0.0678 0.1214 0.0652 0.2284 0.1019 
 K500 (nm/s) 19.39 19.09 5.1 1183 6.446 
 O(p) a 505.08 479.88 118.28 168.96 52.49 

HD plot θr 0.0000 0.0100  0.0561  0.0000  0.0690  
Sandy 
Loam θs 0.4230 0.5352  0.5244  0.6044  0.5001  
 α (cm-1) 0.4620 0.0528  0.0399  0.0143  0.1123  
 n 0.1170 0.1608  0.3695  0.2884  1.0505  
 Ks (µm / s) 9.654  8.0458  2.8280  24.11 49.03  
 λ 0.5000  -2.1185  -0.7478  0.5000  1.9021  
 θ500 0.2238 0.3203 0.2110 0.3430 0.0753 
 K500 (nm/s) 8.506 324.5 35.5 819.5 5.88.E-05 
 O(p) b 509.30 96.38 65.43 426.11 1988.1 

 
a,bObjective function with initial parameters with homogeneous soil profile (a) and 2-zone soil profile (b). 
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Table S2. Uncertainty of parameters of 2nd fit at K plot. 
 
Fixed parameters θr θs α (cm-1) n Ks (cm / s) 
None 0.1951  0.3698  3.0668  0.1519  0.05938  
Ks 0.0008  0.0020  0.0208  0.0006  0.00015  
θs 0.0537  0.1045  1.9255  0.0341  0.04967  
θr 0.0027  0.0070  0.1197  0.0018  0.00123  
α 0.0081  0.0139  0.1078  0.0061  0.00216  
n 0.0045  0.0072  0.1143  0.0045  0.00129  
Ks, θs 0.1565  0.3201  2.8991  0.1103  0.05865  
Ks, θr 0.0016  0.0045  0.0449  0.0011  0.00030  
Ks, α 0.0019  0.0045  0.0285  0.0013  0.00042  
θs, α 0.0135  0.0140  0.1116  0.0087  0.01160  
θr, α 0.0072  0.0180  0.1153  0.0046  0.00144  
Ks, θs, α 0.0620  0.0766  0.6236  0.0594  0.01370  
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Table S3. Optimized parameters of three-zone parameterization. 
 
Zone Parameter K plot HD plot 
Zone 1 Depth (cm) 0 - 15.25 0 - 25.25 

 θr 0.0982  0.0843  
 θs 0.3533  0.2804  
 α (cm-1) 0.2079  0.1291  
 n 0.0969  0.5484  
 Ks (cm / s) 0.02322  0.07812  
 λ 0.5000  0.4868  
Zone 2 Depth (cm) 15.25 - 60.5 25.25 - 35.25 
 θr 0.1500a 0.0242  
 θs 0.3428  0.5185  
 α (cm-1) 0.3046  0.2553  
 n 0.0926  0.1143  
 Ks (cm / s) 0.03472  0.000333  
 λ 0.5082  0.5001  
Zone 3 Depth (cm) 60.5 - 100 35.25 - 100 

 θr 0.1500b 0.0249b 
 θs 0.3428b 0.5185b 
 α (cm-1) 0.4073  0.2553  
 n 0.0924  0.1143  
 Ks (cm / s) 0.00620  0.000333  
 λ 0.5082  0.5001  
  O(p) 83.59  22.75  
 SE 0.0803 0.0419 

aUpper limit value 
bConstant 
 
 
Table S4. Statistical data and model selection criteria of each parameterization. 
 
Plot Zones N O(p) SE m AIC BIC 
K plot 1 12960 113.5 0.09359  6 -61390  -61345  
 2 12960 94.60 0.08544  12 -63739  -63649  
 3 12960 83.59 0.08031  16 -65334b -65215b 
 4 12960 83.59 0.08031  20 -65326  -65177  
HD plota 1 6480 37.78 0.07636  6 -33326  -33285  
 2 12960 22.78 0.04193  12 -82191  -82101b 
  3 12960 22.75 0.04190  16 -82200b -82080  

aSecond strategy of fitting only one depth. 
bMinimum value of model selection criteria for each plot 
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Fig. S1. Soil water retention curves of undisturbed soil samples. The measured curves are fitted with the Brooks 
and Corey equation. (A) Samples from 12.5-15 cm depth and 20-22.5 cm depth in the K plot. Only the curve fitted 
for 20–22.5 cm is shown. (B) Samples from 15-17.5 cm depth (sand layer) and 25-27.5 cm depth (sandy loam 
layer) in the HD plot. 
 
 

 
 
Fig. S2. Dimensionless multi-dimensional indicator used to detect the second discontinuity of the K plot and the 
HD plot. 
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Fig. S3. Hydraulic functions of three-zone parameterization of the K plot. Solid black lines indicate zone 1, dashed 
blue lines indicate zone 2, and alternate long and short dashed lines in red indicate zone 3: (A) Water retention 
function q(h) with measured data (closed circle for 12.5–15 cm depth and open triangle for 20–22.5 cm depth); (B) 
Unsaturated hydraulic conductivity function K(h). 
 
 

 
 
Fig. S4. Measured (closed circle) and simulated (solid line) saturated hydraulic conductivity: (A) K plot, 3-zone 
parameterization: (B) HD plot, 2-zone parameterization. 
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Fig. S5. Measured water content (solid red line) and simulated water content (dotted blue line) from five initial 
conditions: (A) K plot, 10-cm depth; (B) K plot, 20-cm depth; (C) HD plot, 20-cm depth (sand layer, low water 
content) and 30-cm depth (sandy loam layer, high water content). 
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