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A b s t r a c t. In order to establish sustainable agricultural prac-
tices and to avoid excess fertiliser application, it appears important 
to understand the process of water and solute transport. With a view 
to analysing transport through the soil, based on the data obtained 
by means of time domain reflectometry, the relationship between 
the volumetric water content, the apparent electrical conducti- 
vity, and the soil solution electrical conductivity should be known. 
This paper proposes a new method for estimating the three para- 
meters relationship by optimising the parameters obtained through 
Rhoades model with the Levenberg-Marquardt method. The pro-
posed method systematically determines the initial parameter set 
required to conduct nonlinear optimisation. The method was used 
to estimate the continuous apparent electrical conductivity data 
based on the time domain reflectometry dataset, obtained from 
the field and occasional measurement of soil solution electri-
cal conductivity data of the soil water, which was extracted by 
means of a suction sampler installed in the field. Compared with 
the conventional method where the parameters of Rhoades model 
are calibrated with a 2-step linear regression by means of labora-
tory experiment, the soil solution electrical conductivity estimated 
with the proposed method was closer to the field data, yielding 
smaller root mean square error values. Supplementary use of the 
dataset obtained through a laboratory experiment under dry and 
wet conditions improved the accuracy of parameter estimation.

K e y w o r d s: time domain reflectometry, Rhodes model, para- 
meter estimation

INTRODUCTION

In order to establish sustainable agricultural practices 
and to avoid excess fertiliser application, it is important 
to understand the process of water and solute transport. 
Measuring the volumetric water content (θ) and the appa- 
rent soil electrical conductivity (ECa) under field conditions 
is generally required for this purpose. Time domain reflec-

tometry (TDR) is widely used for determining θ and ECa 
simultaneously (Noborio, 2001). Moreover, multi-sensor 
probes have also been developed recently to assess θ and 
ECa, with continuous and non-destructive measurements 
(Scudiero et al., 2012; Vaz et al., 2013). By using these 
measurement techniques, we can easily obtain the θ and 
ECa data in fields.

It does not appear practical to assess solute transport 
in soil using ECa under transient conditions because of the 
strong dependence of ECa on θ. Therefore, ECa must be 
related to the soil solution electrical conductivity (ECw) so 
as to estimate the solution concentration under transient 
conditions with varying water content. The physico-empiri-
cal and / or theoretical models describing the dependence of 
ECa on ECw and θ (e.g. Rhoades et al., 1976; Rhoades et al., 
1989; Mualem and Friedman, 1991; Malicki and Walczak, 
1999; Hilhorst, 2000) are used to estimate ECw for a given 
combination of the measured ECa and θ in a particular soil 
(Mallants et al., 1996; Risler et al., 1996; Das et al., 1999; 
Muñoz-Carpena et al., 2005; Miyamoto et al., 2015).

Laboratory calibration experiments are conducted using 
repacked soil columns to obtain model parameters for the 
ECw − ECa − θ relationship (Heimovaara, 1995; De Neve et 
al., 2000; Muñoz-Carpena et al., 2005; Wilczek et al., 2012; 
Miyamoto et al., 2015). However, this calibration method 
is not suitable for field measurements because soils in the 
field are often structured and more naturally heterogeneous 
than the uniformly repacked soil columns. Moreover, the 
calibration procedure of a 2-step linear regression requires 
that multiple datasets of precisely the same water content 
or the same electrical conductivity are obtained, which 
is hardly available from the field data. Das et al. (1999) 



K. SEKI et al.114

proposed a field calibration procedure, which is an in situ 
mass balance approach with a TDR probe installed vertical-
ly on the soil surface. This calibration procedure, however, 
can be only applied to the top soil layer.

Sensor pairing is a field measurement method of the soil 
water characteristic (Baumgartner et al., 1994). The paired 
sensors, such as neutron moisture meter access tubes or 
TDR probes, and tensiometers are often used to simulta-
neously determine θ and the matric potential (ψ). As a re- 
sult, the θ − ψ values are obtained. In an similar way, the 
simultaneous measurements of ECw−ECa−θ values, using 
soil solution samplers and TDR probes, will also be a use-
ful method for an in situ determination of the ECw − ECa− θ 
relationship.

The objective of this study is to develop a method to 
identify the parameters of Rhodes model (Rhoades et al., 
1976) for the ECw − ECa − θ relationship based on a dataset 
of the ECw, ECa and θ values which are measured in the 
field. To this end, we have designed a calculation procedure 
by adopting the Levenberg-Marquardt optimisation method 
(Marquardt, 1963), which has become a standard in non-
linear least-square fitting among both soil scientists and 
hydrologists (Šimůnek and Hopmans, 2002; Seki, 2007). 
We have compared the ECw estimated from the proposed 
method with the one obtained from the conventional meth-
od of a 2-step linear regression, as shown by Miyamoto 
et al. (2015). In addition, we have discussed a supplemen-
tal use of the dataset of ECw, ECa and θ obtained through 
a laboratory experiment to improve the accuracy of the pro-
posed method.

MATERIALS AND METHODS

 The field data published in Miyamoto et al. (2015) were 
used in this study. The field experiment was carried out in 
the experimental field at the National Agriculture and Food 
Research Organization in Tsukuba, Japan. The soil at that 
site was an Andosol (IUSS Working Group, 2014). The soil 
profile was divided into two layers; the boundary between 
the surface and subsurface layers (topsoil and subsoil) was 
at 0.5 m depth. The bulk densities of topsoil and subsoil 
were 710 and 630 kg m-3, respectively. Saturated hydrau-
lic conductivities of these soils were 35.0 and 30.0 mm s-1, 
respectively. The soil water retention curves of topsoil and 
subsoil are shown in Fig. 1. The field was fertilised with 
20.0 g m-2 of N, 8.7 g m-2 of P and 16.6 g m-2 of K, used as 
chemical fertilisers, on 25 December 2007. The ground sur-
face was maintained in an unplanted condition throughout 
the field experiment until 31 August 2008.

Dielectric permittivity of the soil (εa) and ECa were meas-
ured with TDR probes installed horizontally into pit faces 
at three locations and at three depths (0.2, 0.4, and 0.6 m, 
respectively) during the experimental period, in order 
to detect the TDR waveforms reflected from the probes. 
A cable tester (Tektronix, 1502B) was used to detect the 

time domain of the electromagnetic wave, along with the 
probes. The observed data were recorded using a portable 
computer every hour. A copper-constantan thermocouple 
was installed in the central pit at each of the three depths 
to measure temperature in a continuous manner, which was 
recorded by means of a datalogger (Campbell Scientific 
Inc., CR10X) every hour. The relationship between εa and 
θ was calibrated through a laboratory experiment, and the 
values of εa were converted into the respective values of 
θ under field conditions, using the calibration equation. 
The measured ECa values were calibrated to the value at 
25°C with the temperature correction factor taken from 
Heimovaara et al. (1995).

The porous ceramic soil solution samplers were also 
buried at three depths. Two samplers were buried at each 
depth. The soil solution was sampled once to three times 
a month by applying a suction of 50-70 kPa during the field 
experiment. ECw was measured for each extracted soil solu-
tion using a portable EC meter (HORIBA ltd., Twin Cond). 
The average of 2 measured values obtained for each soil 
depth was used in the analysis. As a result, during 8 months 
of the measured period, 17 data points of ECw in the field 
were obtained.

Figure 2A shows the process of estimating ECw by 
means of the conventional method. Rhoades et al. (1976) 
derived the following equation: 

ECa = ECw θT + ECs, (1)

where: T is the transmission coefficient which accounts for 
the tortuous nature of the current lines and any decreases 
in the mobility of the ions near the solid-liquid and liquid-
gas interfaces, and ECs is the surface conductivity via 
exchangeable cations. They assumed that T is linear to θ, 
based on the empirical relationship by Gupta and Hanks 
(1972), which is as follows:

T = aθ + b, (2)

where: a and b are constants. Using the Eq. (2), the follow-
ing equation was derived:
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Fig. 1. Soil water retention curves of topsoil and subsoil in the 
experimental field.
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ECa = (aθ+b) θECw + ECs. (3)

The conventional method is a 2-step linear regression. In 
the first linear regression, for different sets of water content 
(e.g., θ = 0.35, 0.40, 0.50, 0.60 for the experiment con-
ducted by Miyamoto et al., 2015) the relationships between 
ECw and ECa were written, and the fitted lines with slope 
S = (aθ + b)θ and intersect ECs were obtained. In the second 
linear regression, S/θ was plotted against θ, and the linear 
fit yielded a and b. Finally, the Rhoades parameter set, a, b 
and ECs was used to estimate ECw based on the measured 
θ and ECa from Eq. (3). The conventional method requires 
that multiple datasets of precisely the same water content 
are plotted in the first regression to obtain parameters for 
the second regression.

In the proposed method, the field-obtained values of θ, 
ECa and ECw were basically used to determine a, b and ECs 
of Rhoades model (Fig. 2B), with a successive optimisation 
technique as follows. In the present study, we used 17 ECw 
data obtained from soil solution samplers. By coupling the 
data with the θ and ECa values measured with TDR probes 
in the field, both at the same depth and on the same day, 
we obtained 17 sets of measured data (θ, ECa, ECw), which 
were then used to estimate the parameter set (a, b, ECs). 
Eq. (3) can be transformed as follows:

. (4)

Equation (4) shows the linear relationship between θ 
and (ECa – ECs)/ECwθ. At first, ECs was assumed to be 0.25 
dS m-1, one of the values obtained in Rhoades et al. (1976), 
and the parameters a and b were obtained with the linear 
regression of equation (4). Then, a, b and ECs were opti-

mised with Eq. (3) simultaneously by the non-linear least 
square optimisation algorithm of Levenberg-Marquardt 
method (Marquardt, 1963).

Let the independent variable vector x in Eq. (3) be 
defined by x = (x1, x2) = (θ, ECw), and the parameter vec-
tor p be defined by p = (p1, p2, p3) = (a, b, ECs). The model 
Eq. (3) is rewritten as:

f(x, p) = (p1 x1+p2)x1 x2 + p3. (5)

Let the data points be denoted by:

(Yi, Xi) = (Yi, X1i, X2i), i = 1, 2, …, m, (6)

where: X1i, X2i, and Yi are the i-th data point of θ, ECw, and 
ECa, respectively. The objective function of the least square 
analysis O(p) is:

, (7)

where: the weights wi are normally set to 1 (unity). The 
Levenberg-Marquardt algorithm efficiently solves para- 
meter vector p so that O(p) is minimised. The Levenberg-
Marquardt method requires an initial estimate of parameter 
vector p. It then updates the estimate iteratively to find the 
final estimate of p. In the iterative procedure, vector p may 
not converge to a proper value when the initial estimate 
of the parameter is not close enough to the final solution. 
Therefore, selecting a reasonably good set of the initial 
parameter is a very important step for this algorithm. In the 
proposed method, the initial estimate of parameter vector p 
can be obtained systematically by the regression of Eq. (4) 
as described above.

The difference in the two methods shown in Fig. 2 con- 
cerns the methods of obtaining the Rhoades parameters 
(parameter vector p). The advantage of using the pro-
posed method is that it does not require separate laboratory 
experiments that are both time-consuming and tedious. 
The conventional method requires calibration curves of the 
ECw−ECa relationship for the same θ values. Such data are 
not usually available in the field, and thus the conventional 
method can only be used with laboratory data. The pro-
posed method does not require that the θ values be exactly 
controlled, and thus the field data can be directly used for 
obtaining Rhoades parameters. Moreover, as the conven-
tional method simultaneously optimises all the parameters, 
it may require a smaller dataset for estimation. To verify 
whether the proposed method requires a smaller amount 
of data, we also performed calculation with smaller data-
sets. From each month between January and August, one 
measuring dataset of (θ, ECa, ECw) was selected so that the 
interval between the data points was around 30 days, and 8 
data were used in the analysis.

The algorithm was implemented in the mathematics-
oriented programming language of GNU Octave. The 
programme first fits the given dataset of θ, ECw and ECa 
to Eq. (4) to get the initial estimate of the parameter set, 

Fig. 2. Estimation of electrical conductivity of the soil solution 
(ECw). (A) The conventional method (Miyamoto et al., 2015) (B) 
The method proposed in this study.
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and then the initial parameter set is successively optimised 
with the iterative procedure of the Levenberg-Marquardt 
method to get the final parameter set of a, b and ECs. In the 
programme, the parameters were constrained with a > 0 and 
0 < ECs< min (ECa).

RESULTS AND DISCUSSION

Table 1 shows the parameters used in Eq. (3) that were 
estimated on the basis of the ECw values of the extracted soil 
solution, and θ and ECa were measured with TDR probes 
using the developed method (Fig. 2B). Figure 3 shows the 
relationship between the measured and estimated ECa with 

parameters in Table 1 of the 3 TDR probes at each depth. 
The agreement between the measured and estimated ECa 
is not very good, compared to the laboratory calibration 
experiment outlined by Miyamoto et al. (2015), because 
the field experiment could not be controlled to the same 
extent as the laboratory experiment. However, many plots 
were found to be close to the identity line.

Figure 4 shows the change in the estimated ECw that 
was calculated from the θ and ECa values measured with 
TDR probes, and parameters in Table 1, compared with the 
ECw directly measured from the soil solution. The estima-
tion at topsoil (0.2 m depth) was not successful because the 

Ta b l e  1. Estimated parameters with field extracted soil solution and field measured TDR data

Depth 0.2 m 0.4 m 0.6 m

Probe ID 2A 2B 2C 4A 4B 4C 6A 6B 6C

a 3.7333 4.2508 5.1457 0.4019 0.3292 0.3689 0.0011 0.0000 0.0001

b -1.5934 -2.0348 -2.3268 0.5228 0.1762 0.1433 1.0683 1.0408 1.0429

ECs 0.0463 0.0182 0.0000 0.0000 0.0000 0.0000 0.0046 0.0000 0.0000
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Fig. 3. Measured and estimated apparent electrical conductivity 
(ECa) of each TDR probe for each depth, the closed circle, the 
open triangle and the cross representing TDR probes.

Fig. 4. Estimated ECw (solid line, dashed line and chain line, each re- 
presenting a TDR probe) and the measured ECw of the extracted 
soil solutions (the closed and open circles representing suction cups).
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fluctuation of the estimated ECw was very large (note that 
the data gap from mid-July to mid-August at the top panel 
in Fig. 4 was caused by unreasonable calculation results 
of the ECw), and RMSE was 0.34, 0.57, 0.68 dS m-1 for 
each probe. This was because the range of θ, when the soil 
solution was sampled, was too narrow as compared to the 
range of θ measured by TDR probes. As shown in Fig. 5, 
θ ranged from 0.40 to 0.57 in the field, while the extracted 
soil solution was in the θ range of 0.46 to 0.55 (the cor-
responding TDR measurement values). The soil solution 
was not extracted in the period of mid-July to mid-August, 
when the soil was relatively dry (0.40 < θ < 0.46). When the 
field data of θ exceeded the fitted range, the estimated ECw 
took unrealistic values. In some cases, the estimated ECw 
had negative values (from mid-July to mid-August). In the 
topsoil layer of 0.4 m, and the subsoil layer of 0.6 m, the 
discrepancy in the range of θ was not severe as compared 
to that at 0.2 m, and the estimation of ECw at 0.4 and 0.6 m 
depth was more stable than the data obtained at a depth of 
0.2 m; RMSE was 0.27, 0.22 and 0.42 dS m-1 for probes at 
a depth of 0.4 m, and 0.12, 0.12 and 0.18 dS m-1 for probes 
at a depth of 0.6 m. Compared with the estimation made by 
Miyamoto et al. (2015), which yielded RMSE of 0.42, 0.29 
and 0.42 dS m-1 for probes at a depth of 0.4 m, and 0.38, 
0.33 and 0.21 dS m-1 for probes at a depth of 0.6 m, the 
estimation with the proposed method was more close to the 
field-obtained data, especially at a depth of 0.6 m.

Figure 4 shows that the proposed method worked 
fine with the subsoil layer but did not work at a depth of 
0.2 m as well as expected. The main reason for failure 
was that we could not extract the soil solution from dry 
soil. Especially at the driest period of mid-July to mid-
August, the water content reached θ = 0.40 at topsoil and 
θ = 0.46 at subsoil, corresponding to 100 kPa matric suction 
(Fig. 1). Extracting the soil solution of such high matric 
suction through porous cups proved difficult.

We tried to overcome this difficulty (i.e. the unavail-
ability of the dry soil solution) by adding a small amount of 
experimental data for our analysis. Note that in the labora-
tory experiment the soil solution was centrifuged and data 
were available for lower water contents when compared to 
the field data. As our method aims at reducing the work-
load required for a laboratory experiment to be performed, 
we only introduced 2 data sets, i.e. (1) dry soil with small 
EC and (2) wet soil with high EC. Based on the laboratory 
data provided by Miyamoto et al. (2015), we used these 2 
data points; (1) θ = 0.35, ECa = 0.030 dS m-1, ECw = 0.49 
dS m-1 (2) θ = 0.60, ECa= 1.20 dS m-1, ECw = 3.94 dS m-1. 
In addition to 17 data points from the field, 2 data points 
from the laboratory experiment were used for estimating 
the Rhoades parameter sets. For compensating the numbers 
of data points in the laboratory, as compared to the field 
data, weights (wi in Eq. (7)) were set as 3 for the laboratory 
data and 1 for the field data.

Figure 5
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Fig. 5. Volumetric water content measured at depths of 0.2, 0.4 
and 0.6 m in three TDR locations (the solid line, the dashed line 
and the chain line representing TDR probes). The shadow area 
shows the range of the volumetric water content (the correspond-
ing TDR value) of the extracted soil solution.

Ta b l e  2. Estimated parameters with field extracted soil solution 
and field measured TDR data, with supplementary laboratory data 
at dry and wet conditions

Depth 0.2 m

Probe ID 2A 2B 2C

a 2.0421 1.8905 2.1467

b -0.7269 -0.6339 -0.7814

ECs 0.0304 0.0000 0.0000

Figure 6
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Fig. 6. estimated ECw (the solid line, the dashed line and the 
chain line representing TDR probes) and the measured ECw of the 
extracted soil solutions (the closed and open circles representing 
suction cups) at a depth of 0.2 m, estimated with the field extract-
ed soil solution and laboratory data under dry and wet conditions.
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The parameter set at the topsoil layer (0.2 m depth) 
estimated in this modified method is shown in Table 2. 
Figure 6 shows the change in the estimated ECw, calculated 
from θ and ECa measured with TDR probes, and para- 
meters in Table 2, when compared with to the ECw directly 
measured from the soil solution. The estimated curve is 
more stable than in Fig. 4, where no laboratory data was 
used. RMSE was 0.37, 0.50 and 0.53 dS m-1 for each probe.

Figure 7 shows a similar result as in Fig. 4, but with 
a reduced set of field data; 8 data were included out of full 
dataset comprising 17 entries. As for a depth of 0.2 m, the 
same data from the laboratory experiment, as shown in Fig. 
6, i.e., the two datasets of the dry and wet soils, were also 
used in the analysis. Weights were set as 1 for both the field 
and laboratory data. The estimated parameter in this figure 
is summarised in Table 3. By comparing the curves of 
Fig. 4 (for depths of 0.4 m and 0.6 m) and Fig. 6 (for a depth 
of 0.2 m) with Fig. 7, the estimated curves represent the 

measured data equally well. In other words, decreasing the 
measured data from 17 to 8 did not significantly deteriorate 
the estimation, as the reduced data included the driest data 
in mid-July and, therefore, the range of the water content 
of the reduced dataset was similar to that of the whole data.

In Figs 7, 8 data out of the full set of 17 data were 
used. The remaining 9 data were used for the validation 
set. RMSE for the estimated ECw for the validation set was 
0.41, 0.50 and 0.35 dS m-1 for probes at a depth of 0.2 m, 
0.27, 0.25 and 0.23 dS m-1 for probes at a depth 0.4 m depth, 
and 0.09, 0.12 and 0.09 dS m-1 for probes at a depth of 
0.6 m. This result was not particularly higher than the 
RMSE of the estimation from the whole set of data; in some 
of the probes, RMSE got smaller. Therefore, it was con-
firmed that the estimation of Fig. 7 did not deteriorate from 
Figs 4 and 6 although the numbers of data were reduced 
from 17 to 8.

As we have shown in the reduced set of field data, 
increasing the numbers of data points (from 8 to17) does 
not always improve the estimation. The estimation can be 
improved by using as wide range of water content as pos-
sible, from dry soil to wet soil, to minimise the discrepancy 
of the fitted range of water content and the monitored range 
of water content, as shown in Fig. 5. When it is technically 
difficult to obtain a wide range of water content, laboratory 
data under extreme water content conditions can be used to 
form an additional dataset, as shown in Fig. 6.

The estimation of ECw based on the parameter set deter-
mined under laboratory conditions (Fig. 3 in Miyamoto 
et al., 2015) was improved with the proposed method, 
which uses the parameter set determined directly from the 
field-obtained value. For example, in Miyamoto’s estima-
tion, the NO3-N concentration at a depth of 0.6 m was twice 
as large as the NO3-N concentration measured with the 
extracted soil solution because ECw rose twice as much as 
the soil solution ECw. In the proposed method, the highest 
value of the estimated ECw was similar to that of the meas-
ured ECw value. Therefore, a more realistic value of NO3-N 
can be obtained by the proposed method.

This is because the parameters estimated in the proposed 
method (Table 1) reflect the properties found under the site-
specific heterogeneous condition, and they are different 
from the parameters shown in Miyamoto et al. (2015); they 
are soil-specific parameters determined through a labora-
tory experiment. Therefore, the parameter set obtained at 
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Fig. 7. Estimated ECw (the solid line, the dashed line and the 
chain line representing TDR probes) and the measured ECw of 
the extracted soil solutions (the closed and open circles represent-
ing suction cups), estimated from a reduced set of field data. At 
a depth of 0.2 m, laboratory data under dry and wet condition was 
also used.

Ta b l e  3. Estimated parameters with reduced numbers of field data

Depth 0.2 m* 0.4 m 0.6 m

Probe ID 2A 2B 2C 4A 4B 4C 6A 6B 6C

a 2.1132 2.1481 2.2485 0.8123 0.2586 0.2307 0.0000 0.0890 0.0003

b -0.7660 -0.7975 -0.8430 0.2431 0.1851 0.1780 1.0088 1.3214 1.2144

ECs 0.0304 0.0001 0.0000 0.0000 0.0000 0.0000 0.0002 0.0002 0.0000
*Laboratory data at dry and wet condition was also used.
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one field site by using this method should not be used for 
other field sites even if the soil properties are similar. The 
parameters determined are not soil-specific but site-specific 
values.

CONCLUSIONS

1. Compared to the conventional method of estimat-
ing Rhoades parameters through a laboratory experiment, 
the method proposed in this study, where Rhoades param-
eters are estimated based on the field-monitored values of 
the time domain reflectometry and the field-extracted soil 
solution, can give better estimates of soil solution electri-
cal conductivity. The method is reliable since it is based 
on the actual soil solution electrical conductivity values 
measured in the field. It was made possible because our 
method determines the initial parameter set for non-
linear regression systematically and does not require 
a 2-step linear regression process as the one performed in 
the conventional method.

2. The key to success in this method is to obtain the 
soil solution of a wide range of water content. When a suf-
ficiently wide range of water content is not available in the 
field, a small amount of supplementary data obtained under 
laboratory conditions can be added to widen the calibration 
range.

3. When researchers, engineers or farmers want to esti-
mate the soil solution electrical conductivity accurately 
without much effort, the method proposed here may be use-
ful for them provided that they can access the field data of 
the soil solution electrical conductivity easily.
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