

Available online at www.sciencedirect.com

Science of the Total Environment

Science of the Total Environment 372 (2007) 595-604

www.elsevier.com/locate/scitotenv

Long-term mobility of fallout ⁹⁰Sr in ploughed soil, and ⁹⁰Sr uptake by wheat grain

N. Yamaguchi^{a,*}, K. Seki^b, M. Komamura^a, K. Kurishima^c

^a Soil Environment Division, National Institute for Agro-environmental Sciences, 3-1-3, Kan-non-dai, Tsukuba, Ibaraki, 305-8604, Japan

^b Faculty of Agriculture, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo, 113-8657, Japan

² WDB Co., Ltd., 1-6-1 Takezono, Tsukuba, Ibaraki, 305-0032, Japan

Received 18 May 2006; received in revised form 5 October 2006; accepted 10 October 2006 Available online 21 November 2006

Abstract

In this study, we evaluated the mobility of ⁹⁰Sr in ploughed upland soil, which affects the residual amount in the soil and plant uptake on the basis of long-term monitoring data. Paired samples of soil and wheat grain were taken annually from 1961 to 1995 from 8 agricultural fields in Japan, and the concentrations of exchangeable ⁹⁰Sr in soil and total ⁹⁰Sr in wheat grain were determined. The concentration of exchangeable ⁹⁰Sr in ploughed soil decreased exponentially with time. The environmental factor responsible for the decrease of exchangeable ⁹⁰Sr in the ploughed layer, λ_e , was determined from the monitoring data of exchangeable ⁹⁰Sr in the ploughed soil and the amount of fallout-derived deposition. The λ_e was larger from 1970 to 1980 than it was from 1980 to 1995, suggesting that an easily removable fraction of ⁹⁰Sr in soil was preferentially lost from ploughed soil. Among various soil properties that we investigated, the main factor controlling the long-term mobility of ⁹⁰Sr from ploughed soil. Among various soil and ⁹⁰Sr on a cation-exchange site retards the downward migration and wheat uptake of ⁹⁰Sr from ploughed soil. The empirical parameters that we obtained based on the long-term observation of a wheat-cultivated upland field in Japan could be used as reference data in order to roughly estimate the mobility of ⁹⁰Sr in ploughed soil and soil-borne ⁹⁰Sr transfer to wheat grain in the humid Japanese climate.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Radiostrontium; Ploughed soil; Mobility; Decreasing trend; Wheat; Concentration ratio

1. Introduction

Though more than 25 years have elapsed since the latest atmospheric nuclear test in 1980, long-lived artificial radionuclides, such as ¹³⁷Cs and ⁹⁰Sr, remain in the soil, and those trace amounts are still being absorbed by agricultural products (Komamura et al., 2005; Tsukada et al., 2005), resulting in a potential pathway of

* Corresponding author. Tel./fax: +81 29 838 8433. E-mail address: nyamag@affrc.go.jp (N. Yamaguchi). radiation to humans. The major source of ¹³⁷Cs and ⁹⁰Sr in soils in Japan is the global fallout derived from the testing of nuclear weapons. Once deposited on soil surface, the fallout-derived radionuclides tend to migrate down to subsurface layers. The migration characteristics of radionuclides in soil have been shown to vary depending on the soil properties, climatic conditions, land use, and management practices (Baes and Sharp, 1983; Fernandez et al., 2006; Ivanov et al., 1997). A notable characteristic of the Japanese climate is high annual precipitation, which enhances the downward