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Abstract - In practical situations where direct observation of the morphology and biomass
distribution of filamentous microorganisms is not feasible, there is at present some uncer-
tainty concerning the appropriate mathematical model to use to describe the substrate
uptake and growth kinetics of these organisms. Some authors have argued that a “cubic”
model was superior to available alternatives. In the present article, the experimental evi-
dence upon which this claim was based is reanalyzed in detail. We identify a conceptual
flaw in the rationale that led originally to that conclusion; we show that equally good fits to
experimental data are obtained with the classical exponential model as with the cubic
model. Finally, we demonstrate that a Monod-based nutrient uptake model outperforms
both the cubic and the exponential models, and allows the full data set to be fitted, includ-
ing a transition phase during which the rate of oxygen uptake decreases. Consequences
of these observations, and the simplifications they afford, for the modeling of environ-
mental or engineered systems are briefly addressed.
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INTRODUCTION

Microbiologists have known for many years that the growth curve of filamentous
organisms is characterized by the same succession of phases (from “lag” to
“decay”) than that typical of bacteria (Rigelato, 1975; Griffin, 1981). It is gener-
ally agreed that the first three growth phases can be approximated reasonably
well, as a whole, by logistic-type equations (e.g., Koch, 1975; Scow et al.,
1990). Consensus is lacking, however, about the best way to model mathemat-
ically, as an individual process, the growth that takes place once organisms
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inoculated in a new medium have overcome an initial lag period. In some cases
(e.g., Aiba and Kobayashi, 1971), the morphology and biomass distribution of
filamentous organisms may be observed directly and may provide guidance as
to the most suitable model. However, for many situations encountered in engi-
neering practice (e.g., polluted subsurface environments, large-scale engi-
neered systems), such direct observation is not possible. A more “black-box”,
less mechanistic approach to the description of filamentous growth, based sole-
ly on observations of substrate disappearance and encompassing a class of
models labeled as “unstructured”, is the only feasible option.

Several authors (e.g., Barclay et al., 1993; Garcia et al., 1997) consider that,
after an initial lag period, filamentous microorganisms (fungi or actinomycetes)
grow exponentially, following classical kinetics identical to that of unicellular
organisms. Other researchers (e.g., Prosser, 1982), however, argue that the
growth of filamentous microorganisms follows a markedly different, “cubic”
kinetics. A key reference in support of the latter viewpoint is a study by Marshall
and Alexander (1960), based on measurements of oxygen uptake by 6 fungal
strains. These authors interpreted the experimental results as evidence that the
cubic growth model was better suited than the exponential one to describe fun-
gal growth. Their conclusion is based on the premise that if filamentous fungi
grow exponentially, the plot of the logarithm of oxygen uptake versus time
should yield a straight line. Failure to observe such linearity was viewed by Mar-
shall and Alexander (1960) as indication that fungi did not exhibit an exponen-
tial growth pattern. 

In the present article, we assess the validity of this premise. We re-analyze
the original data of Marshall and Alexander (1960) on a sound theoretical basis.
We also compare a number of available models (the cubic and exponential
models, commonly used to simulate the growth of filamentous organisms, and
the Monod model, widely used to simulate the kinetics of microbial growth) to
determine which one best describes the experimental results. 

MATERIALS AND METHODS

When microorganisms grow exponentially, the substrate remaining in solution
at any given time after the onset of growth is given by the following equation
(e.g., Simkins and Alexander, 1984; Alexander and Scow, 1989):

(1)

where S0 is initial substrate concentration, S is substrate concentration, X0 is
the amount of substrate required to produce the initial population, µmax is the
maximum specific growth rate, and t is the time after growth started.

After calculating the difference (S0 – S) and taking the logarithm of both
sides of the resulting expression, one obtains an expression for the logarithm
of substrate uptake:

(2)
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The presence of the factor “-1” in the logarithm of the right side of this expres-
sion causes log (S0 – S) not to be, in general, a linear function of the time t, as
wrongly assumed by Marshall and Alexander (1960).

To compare the model prediction with experimental results, a first step is to
properly account for an initial period, clearly present in the experiments of Mar-
shall and Alexander (1960) and traditionally referred to as “lag”, during which
no noticeable substrate uptake occurs. This may be done by introducing a lag
time, t0, explicitly in the equation for substrate disappearance, as follows:

(3)

If fungal growth follows a cubic kinetics, i.e., if fungal mass at time (t-t0) is pro-
portional to (t-t0)3 (e.g., Prosser and Touch, 1991), then substrate uptake is
described as follows:

(4)

where a is an arbitrary proportionality constant. 
In addition we used a third modeling approach, where the growth rate of the

exponential phase is allowed to depend on substrate concentration, e.g., fol-
lowing Tessier’s or Monod’s equation. Under these equations, with the mathe-
matically more tractable Monod equation, the differential form of substrate dis-
appearance can be expressed as:

(5)

where Ks is the Monod saturation constant. The integral form of this equation
is:

(6)

After rearranging and introducing a lag time t0, one gets

(7)

which unfortunately cannot be transformed into an expression for (S0 – S) as a
function of t0, and therefore has to be fitted with experimental data of t versus
(S0 – S).

Each of the equations above (with t0 as an additional adjustable parameter)
was used to fit the original data from the experiments of Marshall and Alexander
(1960), in which they monitored the uptake of oxygen by Nocardia sp. over
time. Other data sets, such as that of Scow et al. (1990) were used to confirm
that the conclusions reached were not uniquely associated with Marshall and
Alexander’s (1960) experiments. Since these additional data sets yielded iden-
tical conclusions, they will not be mentioned further in the following.
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RESULTS AND DISCUSSION

Application of Equation (3) to the full data set of oxygen uptake by Nocardia sp.
over time provides a reasonable fit (Fig. 1a), yet it is clear that the model pre-
dictions deviate from experimental data between hours 30 and 35, perhaps due
to growth limitation (Marshall and Alexander, 1960). If the timeframe considered
in the curve fitting only extends until 30 hours, the fit is better (Table 1).

When, for comparison sake, Equation (4) is used to fit the experimental data
for Nocardia sp. within the whole time span, or within the first 30 hours only
(Fig. 1b), the fits appear slightly better in both cases than with the exponential
growth model. In particular, the curve obtained by fitting Equation (4) to the data
points until 30 hours is able to approximate experimental data reasonably well
up to about 34 hours, unlike Equation (3). Nevertheless, the differences in the
respective RMSE and R2 values (Table 1) are very small, especially between
the fits up to 30 hours. These small differences may be explained partially by
contrasting behaviors at early times. Indeed, Equation (4) leads to estimated
lag durations of the order of only 3.02 to 5.89 hours (Table 1), whereas the
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FIG. 1 – Fits of exponential (A) and cubic (B) equations to data of Marshall and
Alexander (1960) relative to oxygen uptake during the growth of Nocardia sp.;
•, Experimental data; ––––, whole data; – – –, until 30 hours.
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exponential model leads to corresponding estimates that are appreciably high-
er, at 13.78 and 11.43 hours.

For all the used models it was necessary to assume a significant lag time in
order to get a reasonable fit of the measured data. Lag duration is usually
explained by the duration of dormant state of fungi, and, more likely in the pres-
ent case, by the change of substrate and the subsequent adaptation of the
organisms to the new substrate (Schlegel, 1985). The lag phase is usually
determined from the biomass growth curve. As Marshall and Alexander (1960)
measured substrate consumption only, the length of the lag phase was used as
a fitting parameter. The actual lag time in the experiment might have been
smaller than the fitted values, but the substrate consumption caused by the ini-
tial activity of the microorganisms might have been too small to be detected.
The data support the assumption that the growth of filamentous organisms can
be described by the same three phases usually used to describe the growth of
unicellular organisms: a lag phase with a duration of approximately 10 hours,
an exponential growth phase lasting approximately 30 hours, and a transition
to a stagnation phase during which growth rate decreases because of substrate
limitation. 

However it is difficult to determine when each phase ends exactly. To a large
extent, the decision to ignore data beyond 30 hours when fitting Equations (3)
and (4) is arbitrary. Even though it is clear that growth becomes limited at some
time around 30 hours, it is not clear exactly when this limitation becomes sig-
nificant. By successive approximations, it may be possible to find a timeframe
that produces maximal R2 values or minimal RMSE values. However, a more
reasonable approach would be to find a way to fit the entire data set using a
single expression that accounts for all growth phases simultaneously. 

This can be achieved with a number of structured models, for example
involving two or more interacting compartments. A computationally simpler
approach is to use unstructured models, among which the Monod model
remains by far the most commonly used. The fit of Equation (7) to the whole
experimental data set (Fig. 2) is excellent, and is sizably better than that of
either the exponential or the cubic equations. The R2 values (calculated on the
basis of residuals at given times t, to enable a sound comparison with the pre-
viously calculated R2 values), and, more clearly, the RMSE values reflect this
better fit. 

The results summarized in Table 1 indicate that the choice of a model
affects severely the values obtained for common parameters. The lag phase,
t0, determined by the Monod equation is 10.87 hours, slightly shorter than the
11.4 hours needed in the experiment, before substrate consumption became
measurable. The exponential model also produces lag times that are of the
same order of magnitude as the lag time determined experimentally. By con-
trast, the values found with the cubic model are significantly shorter. For the
maximum specific growth rate, µmax, a comparison is only possible between the
exponential model and the Monod model. Values determined using the expo-
nential model were significantly smaller (0.07 h-1 and 0.13 h-1, respectively)
than that produced by the Monod model (0.21). 

In summary, the above comparison of models shows that it is not necessary
to invoke a cubic growth model to fit data of substrate uptake by filamentous
microorganisms. The classical exponential growth model performs equally well
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as the cubic growth model, and a more complete model, based on Monod’s
equation and traditionally used to describe substrate uptake by unicellular
microorganisms, outperforms both the exponential and cubic models. This
applicability of the classical Monod-based formulation should simplify greatly
the practice of modeling the nutrient uptake and growth kinetics of filamentous
organisms in complex systems, where direct observation of biomass morphol-
ogy and distribution is not feasible; not only can theoretical considerations relat-
ed originally to unicellular organisms (e.g., Baveye et al., 1989) be extrapolated
to filamentous fungi and actinomycetes, but, also, readily-available software
can be used to describe the fate of biodegradable solutes in the increasingly
numerous situations (e.g., Laughlin and Stevens, 2002) where fungi and actin-
omycetes are now believed to be significantly implicated.
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