論文

2006年

知識の関係構造を用いた新しい概念の生成

人工知能学会論文誌
  • 金盛 克俊
  • ,
  • 延澤 志保
  • ,
  • 太原 育夫

21
5
開始ページ
450
終了ページ
458
記述言語
日本語
掲載種別
研究論文(学術雑誌)
DOI
10.1527/tjsai.21.450
出版者・発行元
一般社団法人 人工知能学会

Discovery learning, which acquires new concepts or knowledge, is one of the most advanced forms of machine learning. Few systems have been proposed for discovery learning in practical use, and most of them are based on various heuristics. Discovery learning is considered to consist of two processes: inductive acquisition of general structure(relational structure) from existing knowledge base, and application of the relational structure to a domain knowledge for acquiring new concepts in the domain. In this paper we mainly focus on the application process, and propose a method of generating new concepts, that is, new predicates which do not occur in the domain knowledge, by applying the relational structure. We prove that the new generated clauses including the new predicates are consistent with the domain knowledge, and propose an algorithm for approximate calculating the new clauses from the relational structure and the domain owledge in finite steps. We give proof of some useful theorems for this algorithm. In addition, we discuss the the method for the acquisition of relational structure from an existing knowledge base.

リンク情報
DOI
https://doi.org/10.1527/tjsai.21.450
CiNii Articles
http://ci.nii.ac.jp/naid/10022006712
CiNii Resolver ID
http://ci.nii.ac.jp/nrid/9000004479651

エクスポート
BibTeX RIS