論文

国際誌
2023年10月31日

CDK4/6 signaling attenuates the effect of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer.

Translational lung cancer research
  • Naofumi Hara
  • Eiki Ichihara
  • Hirohisa Kano
  • Chihiro Ando
  • Ayako Morita
  • Tatsuya Nishi
  • Sachi Okawa
  • Takamasa Nakasuka
  • Atsuko Hirabae
  • Masaya Abe
  • Noboru Asada
  • Kiichiro Ninomiya
  • Go Makimoto
  • Masanori Fujii
  • Toshio Kubo
  • Kadoaki Ohashi
  • Katsuyuki Hotta
  • Masahiro Tabata
  • Yoshinobu Maeda
  • Katsuyuki Kiura
  • 全て表示

12
10
開始ページ
2098
終了ページ
2112
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.21037/tlcr-23-99

BACKGROUND: Epidermal growth factor receptor (EGFR) mutations, such as exon 19 deletion and exon 21 L858R, are driver oncogenes of non-small cell lung cancer (NSCLC), with EGFR tyrosine kinase inhibitors (TKIs) being effective against EGFR-mutant NSCLC. However, the efficacy of EGFR-TKIs is transient and eventually leads to acquired resistance. Herein, we focused on the significance of cell cycle factors as a mechanism to attenuate the effect of EGFR-TKIs in EGFR-mutant NSCLC before the emergence of acquired resistance. METHODS: Using several EGFR-mutant cell lines, we investigated the significance of cell cycle factors to attenuate the effect of EGFR-TKIs in EGFR-mutant NSCLC. RESULTS: In several EGFR-mutant cell lines, certain cancer cells continued to proliferate without EGFR signaling, and the cell cycle regulator retinoblastoma protein (RB) was not completely dephosphorylated. Further inhibition of phosphorylated RB with cyclin-dependent kinase (CDK) 4/6 inhibitors, combined with the EGFR-TKI osimertinib, enhanced G0/G1 cell cycle accumulation and growth inhibition of the EGFR-mutant NSCLC in both in vitro and in vivo models. Furthermore, residual RB phosphorylation without EGFR signaling was maintained by extracellular signal-regulated kinase (ERK) signaling, and the ERK inhibition pathway showed further RB dephosphorylation. CONCLUSIONS: Our study demonstrated that the CDK4/6-RB signal axis, maintained by the MAPK pathway, attenuates the efficacy of EGFR-TKIs in EGFR-mutant NSCLC, and targeting CDK4/6 enhances this efficacy. Thus, combining CDK4/6 inhibitors and EGFR-TKI could be a novel treatment strategy for TKI-naïve EGFR-mutant NSCLC.

リンク情報
DOI
https://doi.org/10.21037/tlcr-23-99
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/38025818
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654429
ID情報
  • DOI : 10.21037/tlcr-23-99
  • PubMed ID : 38025818
  • PubMed Central 記事ID : PMC10654429

エクスポート
BibTeX RIS