論文

査読有り 最終著者 責任著者 本文へのリンクあり 国際共著 国際誌
2023年2月15日

Uncovering hidden network architecture from spiking activities using an exact statistical input-output relation of neurons.

Communications biology
  • Safura Rashid Shomali
  • ,
  • Seyyed Nader Rasuli
  • ,
  • Majid Nili Ahmadabadi
  • ,
  • Hideaki Shimazaki

6
1
開始ページ
169
終了ページ
169
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1038/s42003-023-04511-z

Identifying network architecture from observed neural activities is crucial in neuroscience studies. A key requirement is knowledge of the statistical input-output relation of single neurons in vivo. By utilizing an exact analytical solution of the spike-timing for leaky integrate-and-fire neurons under noisy inputs balanced near the threshold, we construct a framework that links synaptic type, strength, and spiking nonlinearity with the statistics of neuronal population activity. The framework explains structured pairwise and higher-order interactions of neurons receiving common inputs under different architectures. We compared the theoretical predictions with the activity of monkey and mouse V1 neurons and found that excitatory inputs given to pairs explained the observed sparse activity characterized by strong negative triple-wise interactions, thereby ruling out the alternative explanation by shared inhibition. Moreover, we showed that the strong interactions are a signature of excitatory rather than inhibitory inputs whenever the spontaneous rate is low. We present a guide map of neural interactions that help researchers to specify the hidden neuronal motifs underlying observed interactions found in empirical data.

リンク情報
DOI
https://doi.org/10.1038/s42003-023-04511-z 本文へのリンクあり
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/36792689
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9932086
ID情報
  • DOI : 10.1038/s42003-023-04511-z
  • PubMed ID : 36792689
  • PubMed Central 記事ID : PMC9932086

エクスポート
BibTeX RIS