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Divergent data-driven estimates of global soil
respiration
Shoji Hashimoto 1,2✉, Akihiko Ito 2,3 & Kazuya Nishina 3

The release of carbon dioxide from the soil to the atmosphere, known as soil respiration, is

the second largest terrestrial carbon flux after photosynthesis, but the convergence of the

data-driven estimates is unclear. Here we collate all historical data-driven estimates of global

soil respiration to analyze convergence and uncertainty in the estimates. Despite the

development of a dataset and advanced scaling techniques in the last two decades, we find

that inter-model variability has increased. Reducing inter-model variability of global soil

respiration is not an easy task, but when the puzzle pieces of the carbon cycle fit together

perfectly, climate change prediction will be more reliable.

The increase in atmospheric carbon dioxide (CO2) concentration caused by human activity
since the Industrial Revolution has resulted in climate change, making the global ter-
restrial carbon cycle a major concern1. Land absorbs and emits about 10 times more

carbon than anthropogenic emissions2. Terrestrial vegetation takes in atmospheric CO2 through
photosynthesis, while respiration by vegetation and soil releases almost the same amount of CO2

back into the atmosphere. The size of land uptake and emission fluxes is estimated to be ~130 Pg
C yr−1 2. The difference between uptake and emissions represents the net carbon uptake by land,
and maintaining and even enhancing this uptake is critical for mitigating climate change. The
net carbon uptake by plants, which is the difference of photosynthetic carbon assimilation and
autotrophic respiration by plants, is referred to as net primary productivity. The mean ±
standard deviation and median of the estimates are 56.2 ± 14.3 and 56.4 Pg C yr–1, respectively,
based on an intensive review3.

The primary flux from the land to the atmosphere is the soil-to-atmosphere CO2 flux, also
known as soil respiration2,4. Soil respiration comprises two sources: heterotrophic respiration,
which is the decomposition of soil organic matter by microbes, and belowground autotrophic
respiration, which is plant root respiration5–7. The total soil CO2 production is the sum of these
two sources, and it can be measured as soil-to-atmospheric CO2 flux on the soil surface. Since
the 1980s, this flux has been intensively observed8. Soil respiration is a key flux of the global
carbon cycle because it is large and potentially increases with climate change due to the accel-
erated decomposition of stored soil organic carbon caused by warming, as well as potential
disturbances caused by changes in precipitation. Therefore, soil respiration flux is as important
as the uptake flux by vegetation9–11.

Accurately quantifying global carbon fluxes is essential to understanding the global carbon
cycle and predicting future climate more accurately. In 2011, an intensive literature review found
251 estimates of total terrestrial net primary productivity using various methodologies (i.e.,
inventory aggregation, modeling, remote sensing, etc.), demonstrating that uptake by vegetation
has been well-studied3. However, despite its importance, global soil respiration estimates have
been limited; for instance, the number of data-driven estimates is less than half of the net
primary productivity.
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The development of the global Soil Respiration Database (SRDB)
was a key milestone for soil respiration studies8. Soil respiration is
generally measured using the chamber method, which monitors
changes in CO2 concentration in a chamber placed on the soil sur-
face. Due to the large spatio-temporal variability of soil respiration
across sites, landscapes, biomes, climates, and globally, a substantial
amount of data is essential to comprehensively understand this
phenomenon and to obtain accurate scaled-up global estimates. In
general, observed data at various biomes, climate, and soil are used to
develop a data-driven model and the model is applied on a global
scale to obtain a global estimate of soil respiration. The SRDB collated
observed soil respiration values published in the literature, providing
easy access to a global dataset essential for upscaling field scale soil
respiration data to a global scale. Dozens of global estimates have
been reported12–14, but it is still unclear whether the total sum of
global soil respiration is consistent among various estimates, and how
much uncertainty remains in its spatio–temporal distributions. To
constrain the global carbon budget, an accurate estimate of global soil
respiration is crucial.

This Perspective aims to present the spatio–temporal uncertainty
of global soil respiration, discuss the potential causes of this uncer-
tainty and future research directions. First, we summarize the
methodologies and historical estimates. Next, we compile and
quantitively analyze available data-driven spatio–temporal estimates
of global soil respiration. We compared the spatial distributions of

soil respiration in these estimates and identified areas with notable
inter-model variability, and quantified the inter-model variability in
temporal trends. Finally, we reflect on the achievement of historical
estimates and address the remaining challenges.

Reviewing historical data-driven estimates of global soil
respiration estimates
We collected all global estimates of total soil respiration from various
sources, including literature surveys, data-repositories, and direct
contact with authors (Supplementary Table 1). We identified
23 studies of global estimates of total soil respiration, spanning from
the first estimate by Schlesinger in 1977 to a recent estimate by Jian in
2022. Out of these, map data were available for 14 studies. We
recalculated global estimates using the available map data, and
selected datasets with appropriate grid areas for analysis (see the
Method section). After screening, we obtained 11 spatial estimates of
global soil respiration. In addition to data-driven soil respiration data,
we analyzed heterotrophic respiration data from the Coupled Model
Intercomparison Project Phase 6 (CMIP6)15, specifically rh (soil
heterotrophic respiration of CMIP6 variables). More details of the
methods are described in Supplementary information.

Methodology of upscaling—data, techniques, resolutions.
Table 1 provides an overview of the upscaling methodology. The
compilation showed that since the release of the first SRDB in

Table 1 Summary of the methodologies used in historical global soil respiration estimates (data, method, spatio–temporal
resolutions).

ID Study Dataa Method Spatial resolutionb Temporal resolution

1970’s
1 Schlesinger19 Compilation Carbon balance NE Annual

1990’s
2 Raich and Schlesinger64 Compilation Area × Mean NE Annual
3 Raich and Potter25,65 Compilation Semi-empirical model 0.5° (~50 km) Monthly

2000’s
4 Peng and Apps24 Compilation Semi-empirical model 0.5° (~50 km) Annual
5 Raich et al.66,67 Compilation Semi-empirical model 0.5° (~50 km) Monthly

2010’s
6 Bond-Lamberty and

Thomson68
SRDB Linear model 0.5° (~50 km) Annual

7 Hashimoto69 Compilation Semi-empirical model 0.5° (~50 km) Monthly
8 Chen et al.70 Compilation Semi-empirical model 0.5° (~50 km) Annual
9 Hashimoto et al.12,71 SRDB Semi-empirical model 0.5° (~50 km) Monthly
10 Oertel et al.72 Compilation Area × Mean NE Annual
11 Xu and Shang73 SRDB+C+ E Area × Mean NE Annual
12 Adachi et al.74 Compilation Semi-empirical model 2 min (~4 km) Daily
13 Zhao et al.75 SRDB+C+ E+ S Machine learning 5 min (~10 km) Annual
14 Hursh et al.76 SRDB Statistical model & Semi-empirical

model
0.5° (~50 km) Annual

15 Jian et al.77 SRDB + compilation Machine learning & Semi-empirical
model

0.5° (~50 km) Annual & Monthly &
Daily

16 Jian et al.78 MGRsD + C Semi-empirical model 0.5° (~50 km) Monthly
17 Warner et al.79,80 SRDB Machine learning 30 s (~1 km) Annual

2020’s
18 Tang et al.37,38,81,82 SRDB + compilation Machine learning 0.5° (~50 km) Annual
19 Huang et al.83,84 SRDB+C+ E Machine learning & Semi-empirical

model
30 s (~1 km) Annual

20 Lei et al.85 SRDB Linear model 0.5° (~50 km) Annual
21 Lu et al.22,86 SRDB Machine learning 0.5° (~50 km) Annual
22 Stell et al.14,87 SRDB Machine learning 30 s (~1 km) Annual
23 Jian et al.57c Global GPP (DGRsD) Carbon balance & (Machine

learning)
NE
(0.1° (~10 km))

Annual
(Monthly)

aCompilation: data compilation by the author; SRDB: Global Soil Respiration Database; MGRsD: Monthly Global Soil Respiration Database; C: Chen et al.70, E: Epule88, S: Song et al.89; DGRsD: Global
Daily Soil Respiration Database.
bNE: spatial distribution was not estimated.
cMachine learning was used with DGRsD at monthly time resolution and 0.1° spatial resolution to provide a supporting estimate in the study.
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2010, most estimates were based on the SRDB, including solely
the SRDB or extended SRDB. The SRDB has been updated, and
the latest version is version 5, which includes 10,366 observations.
From the late 2010s, machine learning approaches replaced other
methods. Before that, semi-empirical modeling was the primary
approach. Regarding resolution, the most commonly used reso-
lution was 0.5°, and the very fine spatial resolution of 30 seconds
(~1 km) was also adopted from the late 2010s. Both 0.5° and 30 s
have been the most common resolutions in the past two decades.
In contrast to spatial resolution, the adopted temporal resolution
has been annual in the past decade, while older estimates with
semi-empirical models often used monthly time steps.

Is the total sum converging? Over the last 50 years, a total of 23
studies have reported global estimates of soil respiration (Fig. 1 and
Table 1). Global soil respiration ranged from less than 70 Pg C yr−1

to more than 100 Pg C yr−1 (range: 68–101 Pg C yr−1, excluding
screened estimates, see the Methods section). Before 2010,
the majority of estimates were below 80 Pg C yr−1 (mean value
74 Pg C yr−1, range: 68–80 Pg C yr−1), and after 2010, much higher
estimates were often reported. The mean estimate published after
2010 is 89 Pg C yr−1 (range: 68–101 Pg C yr−1). The higher values
reported after 2010 do not mean that the global estimates converged,
but rather that the variability increased (standard deviation before/
after 2010: 5.2, 9.0 Pg C yr−1, respectively). The global estimates after
2010 contain both higher and lower values (i.e., below 80 Pg C yr−1).
While machine learning approaches using the SRDB are more
common (Table 1), the difference between semi-empirical (including
linear model; mean value 90 Pg C yr−1, range: 80–98 Pg C yr−1) and
machine-learning estimates (mean value: 89 Pg C yr−1, range:
73–101 Pg C yr−1) was not significant (Supplementary Fig. 1).

Which regions have higher inter-model variability? Figure 2
illustrates the spatial distributions of soil respiration estimated in 11
studies. While soil respiration is generally high in warm, humid
regions and low in dry and/or cold regions, the maps demonstrate
varying magnitudes and spatial patterns of soil respiration. We
divided the land into 14 regions based on the continents, latitudes,
and primary biomes to identify areas with high inter-model varia-
bility, evaluated the regional inter-model variability using the
coefficient of variation (CV) (Fig. 3 and Supplementary Fig. 2). The
analysis showed that most regions had CV values below 25%, but
regions B2, C2, and C5 had higher values (>25%) (Fig. 3). These
regions include the north African dry area (e.g., the Sahara Desert,
B2), deserted areas in the central Eurasian continent (e.g., Gobi and
Taklamakan Deserts, C2), and the islands in Southeast Asia, such as
the Malay Peninsula, Sumatra, Java, Borneo, and New Guinea (C5).
Notably, the number of data points in each region did not always
correlate with CV (Supplementary Fig. 3). While regions B2, C2,
and C5 had fewer data points, CVs were smaller for many regions
with similar data points.

How the global soil respiration is changing with time? Time
series estimates demonstrated clear interannual variability (Fig. 4).

Fig. 1 Historical estimates of global soil respiration. Temporal change (a)
and violine plots for before 2010 and after 2010 (b). Each number label
represents a different study (see Table 1 for details). The blue line shows
the cumulative mean for all data, while the purple line shows the cumulative
mean for data published since 2010. Note that some studies reported
multiple estimates using different methodologies, and the estimates are
plotted according to the year of publication, as some studies did not specify
the exact year for the estimates.

Fig. 2 Estimates of the spatial distribution of soil respiration. The number indicated in brackets is the study ID (see Table 1).
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The anomaly suggests that the interannual variability of soil
respiration varies from −5 Pg C yr−1 to +5 Pg C yr−1, and the
magnitude of anomaly differs among estimates (Fig. 4). While all
estimates synchronized in some years, such as low in around
1984–1985 and 1992 and high in 1998 and 2010, which are cor-
related with El Nino-Southern Oscillation and global temperature
(1991 eruption of Mount Pinatubo for 1992 in part), the anomaly
varied in other years.

All but one estimate showed an increasing trend over time, but
the slope of the linear trend differed between estimates.
Examining the time period from 1980 to 2010, during which
multiple estimates were available, the trends ranged from 0.038
Pg C yr−1 (p= 0.13, R2= 0.05) to 0.23 Pg C yr−1 (p= 0.003,
R2= 0.61) with a mean of 0.11 Pg C yr−1. Although no negative
trend was found, the trends for some estimates were considerably
smaller than for others.

The global scale temperature sensitivity of soil respiration against
the anomaly of the global land mean annual temperature ranged
from 1.9 Pg C yr−1°C−1 (p= 0.005, R2= 0.23) to 5.0 Pg C yr−1°C−1

(p= 0.004, R2= 0.58), with a mean of 3.5 Pg C yr−1°C−1

(Supplementary Fig. 4).
Monthly seasonality was evaluated to a lesser extent (Supple-

mentary Fig. 5). Only four estimates were found, and they
demonstrated that global soil respiration was highest in July and
August or northern summer (8–9 Pg C mo−1) and lowest in
February (4–6 Pg C mo−1). Soil respiration in July was slightly
higher than that in August, but the values were almost
comparable within each study. The amplitude of the monthly
seasonal soil respiration ranged from 2 to 4 Pg C mo−1.

Comparing the data-driven estimates with the output of Earth
System Models (CMIP6). We compared the spatial inter-model
uncertainty of the data-driven global soil respiration estimates
with the heterotrophic respiration from Earth system models of
the Coupled Model Intercomparison Project Phase 6 (CMIP6)
(Fig. 5). The comparison showed that the inter-model variability
for the ESMs was, on the whole, twice as high as that for the data-
driven soil respiration estimates. This is mainly because ESMs
calculate heterotrophic respirations using process-based carbon
cycle models with varying parameter settings while data-driven
estimates are directly generated from observed soil respiration.
Moreover, the CVs for the B2 and C2 regions were also higher for
CMIP6, while that for C5 was of the same magnitude as that of
the data-driven estimates.

History of global soil respiration estimates. The earliest studies
of soil respiration date back to the late 19th and early 20th
centuries16–18, with the first attempt to estimate global soil
respiration made by Schlesinger in 197719, more than a century
after the first attempt to estimate global net primary productivity
by von Liebig3,20. While the history of global soil respiration
estimates is shorter and fewer in number than estimates of net
primary productivity, progress has been rapid in recent decades
due to the development of databases and machine learning
techniques. In the last decade, there has been a notable increase in
the number of studies as a result of the urgent need to understand
the global carbon cycle. However, surprisingly, the efforts to
estimate global soil respiration have not yet led to a convergence
of estimates. Instead, the divergence appears to be increasing. Our

Fig. 3 Relationships between the amount of soil respiration per region
and the coefficient of variation (CV). Refer to the map panel for the region
label. Color indicates the mean annual temperature of the region.

Fig. 5 Coefficient of variation values for the outputs of CMIP6.
Comparison between the inter-model coefficient of variation (CV) values
for data-driven soil respiration estimates and those for heterotrophic
respiration of the outputs of the Coupled Model Intercomparison Project
Phase 6 (CMIP6). The x-axis shows the amount of soil/heterotrophic
respiration per region. Refer to the map panel in Fig. 3 for the region label.

Fig. 4 Temporal variations in global soil respiration among studies
(N= 9). The number label indicates the study ID in panel (a). Refer to
Table 1 for the study ID. The red dashed line in panel (b) is the global mean
temperature.
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comprehensive review uncovered several key findings: (1) There
is an increase in inter-model variability in the total sum despite
the development of a global dataset and advanced scaling tech-
niques. (2) The inter-model variability varies across different
regions, with some regions having CV values exceeding 25%. (3)
There is substantial inter-model variability in the temporal
changes, as well as in their sensitivity to temperature, which is the
primary driver of these changes. To converge estimates, what do
we need (Fig. 6)?

To converge estimates. The creation of the global SRDB has been
the most outstanding factor in boosting the study of global soil
respiration estimates8. While tower flux data (FLUXNET)21 have
a standardized data network, there was previously no such dataset
for soil respiration data. All recent global estimates of soil
respiration are now based on the SRDB, which has tripled the
amount of observed soil respiration data in the last 20 years,
allowing for more data-driven global estimates. However, the
uneven spatial coverage of data remains an issue, and has been
identified as a critical problem in estimating global soil
respiration14,22,23. The data are biased toward temperate regions
and sparse in dry areas, northern areas, the African continent,
and South America14,23. This problem was noted as early as the
1990s24,25, suggesting that despite early cautions and the rapid
increase in data over the last two decades, the problem has not
been resolved. The finer spatio–temporal resolution of data is also
crucial. The SRDB has data with an annual time step, which
affects estimates. Ongoing efforts to develop high-resolution
temporal resolution data (COSORE (COntinuous SOil

REspiration))26 and advances in high-precision Global Naviga-
tion Satellite System technology27 could help to log more precise
location of observations at lower cost, making it easier to match
observational data with high-resolution forcing data28–31.
Advances in remote sensing of the terrestrial carbon cycle are also
promising32. However, scaling up from the field scale to the
global scale continues to be a source of uncertainty due to the
higher spatial heterogeneity of soil respiration at the field scale in
nature33, and variability caused by different observation
methods34,35.

In the past two decades, the use of machine learning has been
implemented to upscale global soil respiration estimates36. This
approach has shown higher performance in reproducing observed
data and extracting important explaining variables. However,
even with the same dataset and similar techniques, there has been
an increase in spatio–temporal inter-model variability. This
variability is partly due to different protocols and variations of
forcing data, such as land use, climate, and area size, indicating
the need for an international Model Intercomparison Project with
a standardized protocol (i.e., CMIP6)15 to evaluate uncertainty
rooted in the scale-up methodology. Analyzing the causes of this
variability of data-driven estimates is challenging when relying
solely on outputs like this study. Therefore, such intercompar-
isons will also be instrumental in identifying the key factors
influencing global soil respiration.

Heterotrophic and autotrophic respiration are based on different
processes, but measuring each separately has been challenging. This
has hindered our understanding and ability to constrain soil
respiration in the past7. However, in the past two decades, many

• Spatial coverage
• Finer spatial/time resolution
• Long-term monitoring
• Standardized protocol
• Network and database

• New/improved upscaling approaches
• Standardized protocol

•  Land use, climate, area size
•  Forcing data

• New forcing data
• Integration of remote sensing
• Sharing of output

• Other carbon fluxes
• Soil carbon stock and turnover
• ESMs/CCMs output

• Partitioning
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• Moisture sensitivity
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Convergence of global carbon cycle
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Fig. 6 Conceptual diagram of the future direction to better constrain global soil respiration estimates. These directions are categorized into four
fundamental pillars: data-driven modeling, observation data, mechanisms, and mutual, multiple constraints.
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studies have disentangled the complexity of soil respiration through
experiments, observations, modeling, and synthesis. The SRDB
contains both heterotrophic and autotrophic respiration, and has
contributed to global estimates of each respiration37,38, although
additional observational data for each respiration are necessary.
Some new processes are already incorporated in process-based
carbon cycle models (CCMs) (e.g., microbes)39, and newly
developed datasets on soil carbon28, minerals3, microbes40, and
fungi41,42 can improve the performance of machine learning
approaches. Although their effectiveness is unknown, some soil-
based functional types (e.g., soil functional type, decomposition
functional type, etc.) have been proposed43,44, which may
contribute to a better understanding and constraint of global soil
respiration. Isotopic studies (14C and 13C) are also essential to
separate autotrophic and heterotrophic respiration and disentangle
soil carbon processes45–48 through field observation and model
evaluation.

Temperature sensitivity and its impact on soil respiration have
been studied extensively, but they remain one of the most
important yet unsettled issues9,49. Recent studies have shed new
light on this topic, and ongoing discussions among
researchers50–52 are expected to lead to further insights. Changes
in precipitation patterns also play a crucial role in the sensitivity
of soil respiration to climate14. More refined temporal observa-
tions and modeling would incorporate short-term responses of
soil respiration to climate events such as droughts, freeze/thaw
cycles, precipitation events, and priming53 into global estimates.
The development of a new soil moisture dataset may replace the
use of precipitation as a proxy for moisture conditions in the
future54. These spatio–temporal changes in forcing data (e.g.,
climate) and sensitivity contribute to inter-model variability in
temporal trends of global soil respiration. In particular, deserted
areas in the B2 and C2 regions show different responses to
precipitation and variability of precipitation, which may have
caused the higher CV, while the reason for C5 is unclear. The mix
of heterotrophic and autotrophic respiration processes makes the
climate responses of soil respiration even more complex. Recent
studies suggest that each component may contribute differently to
total soil respiration based on observational data synthesis13,55,56.
Therefore, it is important to evaluate each type of respiration as
well as the total soil respiration.

In an effort to constrain global estimates based on the bottom-
up approach, another important way of constraint is mutual,
multiple constraints using other fluxes and stocks in global
carbon cycle. Global carbon fluxes and stocks on land are
interconnected and are often spatio–temporally estimated based
on independent observed data (e.g., gross primary productivity,
net primary productivity, soil carbon stock, net ecosystem
exchange). These mutual multiple constraints would not
decisively constrain all carbon fluxes and stocks, but would work
to lessen the uncertainty and find inconsistencies57. Like fitting
puzzle pieces together, constraining global soil respiration
estimates with multiple other fluxes and stocks are an essential
process.

Benchmarking of carbon cycle models and ESMs. The primary
purpose of global data-driven estimates of soil respiration is to
allow for benchmarking of carbon cycle models and ESMs. To
predict future climate, process-based carbon cycle models are
necessary, and it is essential to constrain them properly. Soil
respiration consists of heterotrophic and autotrophic respiration,
so constraining models with each respiration component is ideal.
However, for data-driven global estimates, total soil respiration is
the most intensively studied, while most ESMs only output

heterotrophic respiration. To improve the constraint on soil
processes in ESMs, more data-driven global estimates of both
total soil respiration and its individual components are needed.
ESMs should output separate estimates for heterotrophic and
belowground autotrophic respiration and use both the total soil
respiration and its individual components for constraining model
simulations58,59.

Comparing the total and heterotrophic respirations, our
analysis suggested that the inter-model variability from CMIP6
can potentially be reduced through processes, parameterization,
and constraints. Recent studies also suggest the importance of
selecting model predictions with comparable model performance
with data (emergent constraint)60–62, which can further reduce
inter-model variability in future predictions.

Outlook. We have traced back historical estimates of global soil
respiration in the last half-century to demonstrate the progress
made and remaining uncertainty. Future efforts to better con-
strain global soil respiration estimates can be categorized into
four fundamental pillars: data-driven modeling, observation data,
mechanisms, and mutual, multiple constraints. Reducing inter-
model variability is not an easy task, but when the puzzle pieces of
the carbon cycle fit together perfectly, climate change prediction
will be more reliable. Refining estimates of critical components
like soil respiration is a step towards ensuring all pieces of the
global carbon cycle fit together.

Data availability
The datasets used in this study are available from each repository or supplementary
information of each study or direct request to the authors of the original paper (see
Supplementary Table 1). The map data converted to NetCDF format is also available in
the ZENODO repository https://doi.org/10.5281/ZENODO.840474763.

Code availability
The scripts used are available from the corresponding author on reasonable request.
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