Relative Aerobic and Anaerobic Energy Contributions during Short-Duration Exercise Remain Unchanged over A Wide Range of Exercise Intensities

Shunsuke Shiraki ${ }^{1}$, Naoto Fujii ${ }^{2}$, Kohei Yamamoto ${ }^{3}$, Mitsugi Ogata ${ }^{2}$ and Kiyonobu Kigoshi ${ }^{2}$
${ }^{1}$ University of Tsukuba, Graduate School of Comprehensive Human Sciences, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan Shunsuke Shiraki (shunsuke6971@gmail.com)
${ }^{2}$ University of Tsukuba, Faculty of Health and Sports Sciences, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
${ }^{3}$ Fukui University of Technology, Faculty of Sports and Health Sciences, 3-6-1 Gakuen, Fukui, Fukui, 910-8505, Japan

[Received April 27, 2020; Accepted September 4, 2020; Published online September 28, 2020]

Abstract

The present study aimed to examine whether different exercise intensities, ranging from submaximal to supramaximal, modulate the relative contributions of aerobic and anaerobic energy systems during short-duration exercise. Eight competitive male track and field athletes (22.3 ± 1.0 years) performed a $30-\mathrm{s}$ pedaling test at seven different intensities corresponding to O_{2} demands of $40,50,60,70,80,90$, and $100 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$. The power outputs required at each O_{2} demand were determined from the extrapolated linear relationships between power and the steady-state O_{2} uptake obtained during submaximal-intensity exercise. The $\dot{\mathrm{V}} \mathrm{O}_{2}$ max test and 30-s Wingate anaerobic test were also performed. Relative aerobic and anaerobic energy contributions were estimated by the ratio of O_{2} uptake and O_{2} deficit, the latter being calculated as the difference between O_{2} demand and O_{2} uptake. The exercise intensity of the 30-s pedaling test ranged from 73.4 ± 7.4 to $180.9 \pm 18.2 \% \dot{V O}_{2}$ max. As exercise intensity increased, O_{2} uptake (13.9 ± 2.1 to $26.8 \pm 2.1 \mathrm{ml} / \mathrm{kg} / \mathbf{m i n}$) and O_{2} deficit (26.9 ± 2.1 to $73.7 \pm 2.2 \mathrm{ml} / \mathrm{kg} / \mathbf{m i n}$) during the $30-$-s pedaling test increased ($\mathrm{P}<0.05$). However, the relative aerobic (34.1 ± 5.1 to $26.7 \pm 2.0 \%$) and anaerobic (65.9 ± 5.1 to $73.3 \pm 2.0 \%$) energy contributions during the $30-\mathrm{s}$ pedaling test did not differ across all O_{2} demands $(\mathrm{P}>0.05)$. These results suggest that the relative aerobic and anaerobic energy contributions during short-duration exercise remain nearly constant over a wide range of exercise intensity.

Keywords: energy system contribution, exercise intensity, short-duration exercise, O_{2} uptake, O_{2} deficit

1. Introduction

Energy utilized for exercise is provided via the aerobic and anaerobic energy systems. Traditionally, the aerobic energy supply during exercise has been determined by measuring O_{2} uptake (\AA strand and Saltin, 1961). On the other hand, the estimation of anaerobic energy supply had not been established until Medbø et al. (1988) introduced the concept that the accumulated O_{2} deficit, as determined by the difference in estimated O_{2} demand and measured O_{2} uptake, may reflect the anaerobic energy supply during exercise. Since then, researchers evaluated O_{2} uptake and O_{2} deficit to estimate aerobic and/or anaerobic energy contributions during short-duration high-intensity exercise (Gastin,
2001). For example, Medbø and Tabata (1989) demonstrated that the aerobic energy contributions during exhaustive cycling lasting $30 \mathrm{sec}, 1 \mathrm{~min}$, and $2-3 \mathrm{~min}$ were $30 \pm 1 \%, 47 \pm 2 \%$, and $65 \pm 2 \%$, respectively. A similar response was also confirmed in subsequent studies employing different exercise modalities such as swimming (Ogita et al., 2003) and running (Duffield and Dawson, 2003). However, since both exercise duration and intensity varied in the above studies, it cannot be concluded whether exercise intensity modulates the relative energy contributions. Fixed exercise duration experiment is necessary to assess the influence of exercise intensity on relative aerobic and anaerobic energy contributions during exercise.

Some insights can be gleaned from previous work regarding the influence of exercise intensity on the relative aerobic and anaerobic energy contributions with a fixed exercise duration. Based on the data reported by Spencer and Gastin (2001), aerobic energy contributions during the first 20 sec of $200-\mathrm{m}, 400-\mathrm{m}$, $800-\mathrm{m}$, and $1500-\mathrm{m}$ maximal running on a treadmill were $34.4 \%, 32.0 \%, 39.5 \%$, and 59.1%, respectively. While this indicates that the relative aerobic energy contribution during exercise increases as exercise intensity decreases, the aforementioned study by Spencer and Gastin (2001) tested highly trained athletes of the selected each event. Since the physical fitness and/ or training status of participants is a determinant of relative energy system contributions (Calbet et al., 2003; Granier et al., 1995), a within-participant design is necessary to better understand the influence of exercise intensity on relative energy system contributions as reported in two previous studies (Gastin et al., 1995; Peyrebrune et al., 2014). Gastin et al. (1995) demonstrated that in physically active males the relative aerobic energy contribution during the first 30 s of constant-intensity exercises $\left(107 \pm 1 \% \mathrm{VO}_{2} \max\right.$ and $125 \pm 2 \% \dot{\mathrm{~V}}_{2} \max$) and $90-\mathrm{s}$ all-out exercise ($149 \pm 5 \% \dot{V}_{2}$ max) was $41.2 \%, 38.1 \%$, and 34.1%, respectively. This result suggests that a higher exercise intensity leads to a lower aerobic energy contribution, a finding that is consistent with the above-mentioned findings by Spencer and Gastin (2001). In contrast, Peyrebrune et al. (2014) reported that in competitive swimmers the aerobic energy contribution during a 30 -s exercise at 154 ± 6 and $165 \pm 2 \% \mathrm{VO}_{2}$ max was $25 \pm 4 \%$ vs. $33 \pm 8 \%$, respectively. Therefore, it remains inconclusive how different exercise intensities modulate relative energy system contributions. It should also be noted that the exercise intensities employed in the above studies were supramaximal only ($>100 \% \mathrm{VO}_{2} \mathrm{max}$). Hence, it remains to be determined if relative aerobic and anaerobic energy contributions differ over a wide range of exercise intensities from submaximal $\left(<100 \% \dot{V O}_{2} \max \right)$ to supramaximal. Assessing relative aerobic and anaerobic energy contributions during short-duration exercises over a wide range of exercise intensities is important since exercise intensities of training programs for anaerobic type athletes such as sprinters often vary from submaximal to supramaximal.

Therefore, the present study aimed to examine whether different exercise intensities ranging from submaximal to supramaximal modulate the relative
energy system contributions during $30-\mathrm{s}$ exercise duration. We hypothesized that the relative contribution of aerobic energy during short-duration exercise would decrease as exercise intensity increases. We elected to adopt $30-\mathrm{s}$ exercise as estimated accumulated oxygen deficit method during shorter duration of exercise (e.g., $10-20 \mathrm{~s}$ of exercise) can be more affected by O_{2} store and/or time delay required for increased muscle O_{2} consumption to be reflected in expiratory gases (Medbø and Tabata, 1989; Medbø, 2010). The present would advance our fundamental knowledge of metabolic responses during short-duration exercises, which would help assess and design training programs for athletes and coaches.

2. Methods

2.1. Participants

The participants were eight competitive male track and field athletes, including seven sprinters and one decathlete ($100-\mathrm{m}$ sprint time, mean \pm standard deviation, $11.09 \pm 0.38 \mathrm{sec})$. All participants were tested during off season. Their age, height, body mass, and body fat percentage were 22.3 ± 1.0 years, 1.77 ± 0.04 $\mathrm{m}, 70.1 \pm 6.1 \mathrm{~kg}$, and $10.5 \pm 3.2 \%$, respectively. Body fat percentage was assessed using a multifrequency segmental body composition analyzer (MC-190 SV, TANITA Co., Tokyo, Japan). All participants visited the laboratory before commencing the experiment to get accustomed with exercising on a cycle ergometer. The seat and handlebar heights were recorded and kept constant in all test. The present study was approved by the human ethical committee of the University of Tsukuba, in accordance with the Declaration of Helsinki. Written informed consent was obtained from all participants prior to participation.

2.2. Procedures

This study consisted of one preliminary session and seven subsequent experimental sessions. All preliminary and experimental sessions were completed within three weeks, each separated by $\geq 48 \mathrm{~h}$. The order of the seven experimental sessions was randomized (Table 1). All tests were performed using a mechanically braked cycle ergometer (Power max VIII, Combi Co., Tokyo, Japan) in an experimental room regulated to a room temperature of $24-26^{\circ} \mathrm{C}$ and relative humidity of $\sim 60 \%$. Before each session, the participants

Table 1 The schedule of the experiment

Day 1 (Preliminary session)	Randomization (Experimental session)						
	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8
Submaximal test $\dot{\mathrm{V}} \mathrm{O}_{2}$ max test	PedT 40	PedT 50 WAnT	PedT 60	PedT 70	PedT 80	PedT 90	PedT 100

All sessions were completed within three weeks, each separated by more than a day.
PedT: 30-s Pedaling Test at O_{2} demand of $40-100 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$
WAnT: 30-s Wingate Anaerobic Test
were instructed to avoid strenuous exercise, caffeine, and alcohol for at least 24 h . The participants were also instructed not to eat any food two hours before and during each session. They arrived at the laboratory at the same time for each session.

2.3. Preliminary session

2.3.1. Submaximal test

Upon arriving at the laboratory, the participants initially performed a 3 -min warm-up with a gradually increasing intensity protocol (from 40 to 240 W at a rate of $40 \mathrm{~W} / 30 \mathrm{sec}$). Thereafter, they performed a submaximal cycling test to estimate the O_{2} demands at the different exercise intensities. An initial workload for the submaximal cycling was set at 40 W and was increased by 40 W every 4 min interspaced with 2 -min rest periods. The exercise intensity, duration, and rest periods employed were determined based on studies by Finn et al. (2000) and Green and Dawson (1996). Blood samples were obtained from a warmed fingertip immediately after each exercise stage to evaluate blood lactate concentrations. The exercise was terminated when the blood lactate concentration exceeded 4 mM since O_{2} demand could be overestimated at intensities exceeding lactate/ventilatory threshold or respiratory exchange ratio (Hill and Vingren, 2011; Wilkerson et al. 2004). Workload (kp) and the pedal cadence during the submaximal test were determined using the following equations:

Pedal cadence $\quad(\mathrm{rpm})=0.14 \times$ Power $\quad(\mathrm{W})+37$
(equation 1)
Workload $(\mathrm{kp})=$ Power $(\mathrm{W}) /[$ Pedal cadence (rpm) $\times 0.98$] (equation 2)

Optimum pedal cadence exists at each workload as reflected by the efficient cadence that requires the smallest increase in O_{2} uptake (Böning et al., 1984;

Coast and Welch., 1985). Moreover, the optimum pedal cadence increases as power increases (Coast and Welch, 1985). Accordingly, pedal cadence was increased as workload increased in the submaximal test of the present study. The above equations were derived based on our pilot work, coupled with the previous data (Coast and Welch, 1985). For each individual, a linear relationship between power and O_{2} demand was established from the measured power and the steady-state O_{2} uptake at each stage of cycling with the blood lactate $<4 \mathrm{mM}$ and the respiratory exchange ratio <1.00 in the submaximal test.

2.3.2. $\dot{\mathrm{V}} \mathrm{O}_{2}$ max test

Twenty minutes after the submaximal cycling test, the participants performed an incremental cycling test to obtain $\stackrel{\mathrm{V}}{\mathrm{O}} \mathrm{O}_{2}$ max, an index of aerobic capacity. This test began with an initial workload of 2.3 kp , which was increased by 0.1 kp every 1 min . The pedal cadence was maintained at 90 rpm throughout the cycling until exhaustion. Exhaustion was defined as an inability to maintain a pedal cadence of $>85 \mathrm{rpm}$ for 5 sec . All participants exhibited a levelling off of O_{2} uptake despite increases in intensity (difference $<2.0 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$). $\dot{\mathrm{V}} \mathrm{O}_{2} \max$ was defined as the highest $\dot{\mathrm{V}} \mathrm{O}_{2}$ value averaged over a 30 -s interval.

2.4. Experimental session

2.4.1. 30-s pedaling test

After arriving at the laboratory, the participants initially performed a $10-\mathrm{min}$ warm-up at a 1.0 kp workload with a pedal cadence of 90 rpm . Thereafter, they completed a $20-\mathrm{min}$ post-exercise rest period and then performed a 30 -s pedaling test (Figure 1). Ten seconds before commencing the test, the participants started cycling with a workload of 0 kp and a gradual increase in cadence to 100 rpm (so-called rolling start) (Minahan et al., 2007). Subsequently, the participants
cycled at a pre-determined workload and a pedal cadence for 30 sec at an O_{2} demand of $40,50,60,70$, 80,90 , or $100 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$. This $30-\mathrm{s}$ pedaling test was repeated seven times with different target workloads and pedal cadences to obtain all seven O_{2} demand data.

2.4.2. Wingate Anaerobic Test

The participants conducted the Wingate Anaerobic Test (WAnT) approximately 20 min after completing the $30-\mathrm{s}$ pedaling test at an O_{2} demand of $50 \mathrm{ml} / \mathrm{kg} /$ min . The workload for WAnT was 7.5% of the body weight $\times \mathrm{kp}$. WAnT was undertaken with a rolling start as with the $30-\mathrm{s}$ pedaling test. Once the $30-\mathrm{s}$ WAnT commenced, the participants pedalled with maximal effort.

2.5. Measurements

An expired gas analysis was continuously per-

Figure 1 The experiment protocol of $30-\mathrm{s}$ pedaling test \downarrow : Measurements of the blood lactate concentration
formed using a gas analyzer (EXP mode, AE-310s, Minato Medical Science Co., Osaka, Japan) using the computerized standard open circuit technique. The obtained respiratory data were averaged over 5-s time intervals. Blood lactate concentrations were assessed using a lactate analyser (YSI 1500 SPORT L-Lactate Analyser, YSI Inc., Yellow Springs, OH, USA). Heart rate was measured using standard telemetry (Polar S610i, Polar Electro Japan, Tokyo, Japan).

2.6. Data analyses

The expired gas in the submaximal test, $\dot{\mathrm{V}} \mathrm{O}_{2}$ max test, and $30-\mathrm{s}$ pedaling test was analysed from 3 min before each exercise. Mean pedal cadence, mean power, steady-state O_{2} uptake, heart rate, and respiratory exchange ratio during each stage in the submaximal test were evaluated as an average value over the last 2 -min period. The O_{2} demand during each 30 -s pedaling test was estimated by linear extrapolations of power data and steady-state O_{2} uptake obtained in the submaximal test. The O_{2} deficit during each 30 -s pedaling test was calculated as the difference between O_{2} demand and O_{2} uptake (Figure 2). Relative aerobic and anaerobic energy system contributions were estimated by ratio of O_{2} uptake and the O_{2} deficit. O_{2} demand, O_{2} uptake, and O_{2} deficit during each 30 -s pedaling test were utilized to estimate energy demand and aerobic and anaerobic energy supplies. The linear extrapolations were used to calculate the relative intensi-

Figure 2 A model of calculating O_{2} demand and O_{2} deficit for the 30 -s pedaling test
The O_{2} demand during each 30 -s pedalling test was estimated by linear extrapolations of power data and steady-state O_{2} uptake obtained in the submaximal test. The O_{2} deficit during 30 -s pedalling test was calculated as the difference between O_{2} demand and O_{2} uptake.
ty index of $\% \dot{V}_{2} \max$ (Figure 2). Mean power and heart rate during the $30-\mathrm{s}$ pedaling test and WAnT were evaluated as an average value over the entire 30-s period. Mean power was evaluated as power per body weight. The blood lactate concentrations in the 30 -s pedaling test were measured before each exercise and 1,3 , and 6 min into the post-exercise recovery periods. The highest blood lactate concentration was defined as the peak. Mean power output during the 30 -s pedaling test was presented relative to that of the WAnT (\%).

2.7. Statistical analyses

Values are presented as mean \pm standard deviation. The linear relationship between the power and the O_{2} demand was analysed using the coefficient of determination. All variables presented in Table 3 were analysed using repeated-measures one-way analysis of
variance with a factor of the O_{2} demand. When a main effect of O_{2} demand was detected, a post hoc analysis was performed using a Holm-Bonferroni test to determine differences between O_{2} demands. The significance level for all comparisons was set at <0.05. The statistical analyses were performed using R version 3.4.4 (The R Foundation for Statistical Computing, Vienna, Austria).

3. Results

The mean, peak power of WAnT, and $\dot{\mathrm{V}} \mathrm{O}_{2}$ max were $10.3 \pm 0.3 \mathrm{~W} / \mathrm{kg}, 13.1 \pm 0.4 \mathrm{~W} / \mathrm{kg}$, and $56.0 \pm 5.6 \mathrm{ml} /$ $\mathrm{kg} /$ min.

The mechanical and metabolic variables assessed during the submaximal test are presented in Table 2. R^{2} value of the linear relationship between the power and the O_{2} demand was 0.994 ± 0.005.

The mechanical and metabolic variables assessed

Table 2 Mechanical and metabolic variables during the submaximal test

	Workload (Kp)	Mean pedal cadence (rev/min)	Mean Power (W)	Steady-state O_{2} uptake (m1/kg/min)	\% $\mathrm{V̇O}_{2}$ max	Mean Heart rate (beats/min)	Post Blood lactate concentration (mM)	Respiratory Exchange ratio
Stage 1	1.0	41.4 ± 0.9	42 ± 0.9	10.9 ± 0.9	19.6 ± 1.8	82 ± 11.8	1.0 ± 0.6	0.85 ± 0.02
Stage 2	1.7	46.1 ± 0.4	80 ± 0.7	16.0 ± 1.3	28.7 ± 2.5	93 ± 10.7	1.0 ± 0.3	0.89 ± 0.05
Stage 3	2.3	51.7 ± 0.1	121 ± 0.3	21.8 ± 1.6	39.1 ± 3.8	107 ± 11.0	1.4 ± 0.4	0.93 ± 0.03
Stage 4	2.7	56.5 ± 0.3	156 ± 0.7	28.1 ± 2.1	50.5 ± 4.0	122 ± 11.1	1.9 ± 0.5	0.96 ± 0.02
Stage 5	3.1	62.5 ± 0.6	198 ± 1.7	35.4 ± 2.6	63.5 ± 5.0	141 ± 12.6	3.0 ± 0.7	1.00 ± 0.03
Stage 6	3.5	68.5 ± 0.4	245 ± 1.4	43.4 ± 3.1	77.9 ± 6.5	161 ± 9.5	5.2 ± 1.2	1.03 ± 0.04

Date are mean \pm standard deviation

Table 3 Mechanical and metabolic variables during the 30 -s pedaling test

	O_{2} demand $(\mathrm{ml} / \mathrm{kg} / \mathrm{min})$							
	40	50		60		70		80

[^0]

Figure 3 Energy contribution rates during the 30 -s pedaling test There were no significant differences between each level of O_{2} demand.
during the 30 -s pedaling test are presented in Table 3. The main effect of O_{2} demand on the relative aerobic energy contribution was significant ($\mathrm{F}=7.39$, $\mathrm{P}<0.01$). However, the relative aerobic energy contribution during the 30 -s pedaling test did not differ across all O_{2} demands (Table 3, Figure 3). Both O_{2} uptake and O_{2} deficit during each exercise increased with increasing O_{2} demand (main effects of O_{2} demand on aerobic and anaerobic energy supplies were $\mathrm{F}=72.1, \mathrm{P}<0.01$ and $\mathrm{F}=727.1, \mathrm{P}<0.01$, respectively; Table 3). O_{2} uptake was different between an O_{2} demand of $40 \mathrm{vs} .70-100 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$, $50 \mathrm{vs} .60-100 \mathrm{ml} /$ $\mathrm{kg} / \mathrm{min}, 60$ vs. $80-100 \mathrm{ml} / \mathrm{kg} / \mathrm{min}, 70$ vs. $90-100 \mathrm{ml} /$ $\mathrm{kg} / \mathrm{min}, 80 \mathrm{vs} .90-100 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$, and $90 \mathrm{vs} .100 \mathrm{ml} /$ $\mathrm{kg} / \mathrm{min}$ (all $\mathrm{P}<0.05$; Table 3). O_{2} deficit differed across all O_{2} demands ($\mathrm{P}<0.01$; Table 3).

4. Discussion

The purpose of the present study was to examine if different exercise intensities ranging from submaximal to supramaximal modulate the relative energy system contributions during a fixed duration of exercise. We demonstrated that the O_{2} uptake and O_{2} deficit during each exercise increased as O_{2} demand increased. However, the relative aerobic and anaerobic energy system contributions during short-duration pedaling exercises at different intensities were nearly constant.

In the present study, O_{2} uptake during the 30 -s pedaling test increased as exercise intensity increased from 73.4 ± 7.4 to $180.9 \pm 18.2 \% \mathrm{VO}_{2} \max$ (Table 3). This result suggests that aerobic energy supply increases in an exercise intensity-dependent manner. Similarly, Wilkerson et al. (2004) compared the O_{2}
uptake kinetics of physically active males at seven different intensities (60% of the gas exchange threshold to $120 \% \dot{\mathrm{~V}}_{2} \max$) and indicated that the O_{2} uptake at 80 sec into each exercise was higher as intensity increased. Furthermore, Sousa et al. (2017) demonstrated that O_{2} uptake of competitor male swimmers during the first 30 sec of constant-intensity exercises increased as exercise intensity increased from 95% to $105 \% \mathrm{~V}_{2}$ max. Noteworthy, our results demonstrated that exercise intensity-dependent elevations in O_{2} uptake occurred above $100 \% \mathrm{VO}_{2}$ max levels. This may reflect exercise intensity-dependent rapid increases in O_{2} uptake upon the initiation of exercise, which requires future scrutiny.

The O_{2} deficit during the 30 -s pedaling test increased with exercise intensity as was observed for aerobic energy supply (Table 3). Along these lines, the peak blood lactate concentration, an indirect indicator of anaerobic energy supply (Jacobs, 1986), increased with elevations in intensity (1.5 ± 0.2 to $7.7 \pm 1.0 \mathrm{mM}, \mathrm{P}<0.05$) (Table 3). Hence, these results suggest that anaerobic energy supply from the glycolysis system increased with elevations in exercise intensity.
The relative aerobic and anaerobic energy system contributions during the 30 -s pedaling test did not differ across all O_{2} demands (Table 3, Figure 3). It is generally thought that the relative aerobic energy contribution decreases as exercise intensity increases (Hoffman, 2002), but this is not true according to our results. The lack of changes in relative energy system contributions over a wide range of exercise intensities was due to the fact that both aerobic and anaerobic energy supplies increased as exercise intensity increased, as discussed above.

We do not know why both aerobic and anaerobic energy supplies increased in an exercise intensitydependent manner, but our results are in line with those of studies showing that the O_{2} uptake during exercise relates to anaerobic energy supply (de Aguiar et al., 2015; Korzeniewski and Zoladz, 2004; Whipp et al. 1999). Whipp et al. (1999) reported that changes in O_{2} uptake paralleled those in creatine phosphate, the latter reflecting anaerobic energy supply. Similarly, other studies supported this result (Barstow et al., 1994; Rossiter et al., 2002). Additionally, the mitochondria, which play a critical role in aerobic energy production, are related to intracellular metabolites such as adenosine diphosphate, creatine phosphate, and inorganic phosphate (Korzeniewski and Zoladz,
2004). Thus, the O_{2} uptake response could be stimulated by increases in the metabolites involved in the anaerobic energy system (de Aguiar et al., 2015). In addition, muscle temperature would increase as exercise intensity increased due to elevated heat production in the active muscles. Elevated muscle temperatures could cause a rightward shift of the oxyhaemoglobin dissociation curve, resulting in greater release of O_{2} from haemoglobin and thus O_{2} uptake. Elevations in muscle temperature can also enhance anaerobic energy supplies (Febbraio et al., 1996). Therefore, the O_{2} uptake and the O_{2} deficit can similarly increase with elevations in exercise intensity.

Previous studies reported relative energy contribution with narrower range of exercise intensities of 154 ± 6 to $165 \pm 2 \% \mathrm{VO}_{2}$ max in competitive swimmers (Peyrebrune et al., 2014) and $107 \pm 1 \% \dot{\mathrm{~V}} \mathrm{O}_{2} \max$ to $125 \pm 2 \% \mathrm{~V}_{2} \max$ in physically active males (Gastin et al., 1995). Although Spencer and Gastin (2001) reported data obtained with a wide range of exercise intensity of 103 ± 6 to $201 \pm 3 \% \dot{\mathrm{VO}}_{2}$ peak, they tested highly trained athletes of the selected each running event. Also, Gastin et al. (1995) and Spencer and Gastin (2001) did not perform a statistical analysis to compare values between different exercise intensities. We compared relative energy contributions across a wide range of intensities from submaximal to supramaximal $\left(73.4 \pm 7.4\right.$ to $180.9 \pm 18.2 \% \dot{\mathrm{VO}}_{2}$ max;
Table 3) using the same male sprinters, providing important insights into relationship between exercise intensity and relative contributions of aerobic and anaerobic energy supplies.

4.1. Limitations

The most participants recruited in the present study were sprinters. Some studies (Calbet et al., 2003; Granier et al., 1995) reported that sprinters exhibit higher rates of anaerobic energy contributions during WAnT, compared with endurance athletes. Therefore, it appears that relative energy contributions during highintensity exercise can be influenced by individual's training background. Accordingly, our results obtained in male sprinters may not be simply applicable to other populations such as endurance athletes.

We examined the relative energy system contributions during 30 -s pedaling test at fixed O_{2} demands, as O_{2} deficit, but not O_{2} uptake, is a main component of O_{2} demand during short-duration exercises (Gastin, 2001). Additionally, O_{2} uptake appears to be modulat-
ed by absolute peripheral O_{2} utilization therefore increases in anaerobic and hydrolysis metabolites at the onset of exercises (Korzeniewski and Zoladz, 2004; Rossiter et al., 2002; Sahlin et al., 1988). Nevertheless, had we assessed responses at fixed relative exercise intensity of $\% \dot{\mathrm{~V}} \mathrm{O}_{2}$ max, our results may have been different.

Our results suggest that the relative energy contributions during short-duration exercise remain nearly constant over a wide range of exercise intensity. However, caution is needed to interpret our results since relative energy system contribution could be influenced by exercise duration (Medbø and Tabata, 1989). Had we examined responses with longer exercise durations, results may have been different.

5. Conclusion

We show that the relative aerobic and anaerobic energy contributions during short-duration (i.e., $30-\mathrm{s}$) exercise remained nearly constant over a wide range of exercise intensities from 73.4 ± 7.4 to 180.9 ± 18.2 \% ${ }^{\mathrm{V}} \mathrm{O}_{2}$ max.

References

Åstrand, P. O. and Saltin, B. (1961). Oxygen uptake during the first minutes of heavy muscular exercise. J. Appl. Physiol., 16: 971-976.
Barstow, T. J., Buchthal, S., Zanconato, S., and Cooper, D. M. D. (1994). Muscle energetics and pulmonary oxygen uptake kinetics during moderate exercise. J. Appl. Physiol., 77: 1742-1749.
Böning, D., Gönen, Y., and Maassen, N. (1984). Relationship between work load, pedal frequency, and physical fitness. Int. J. Sports Med., 5: 92-97.
Calbet, J. A., De Paz, J. A., Garatachea, N., Cabeza de Vaca, S., and Chavarren, J. (2003). Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. J. Appl. Physiol., 94: 668-676.
Coast, J. R. and Welch, H. G. (1985). Linear increase in optimal pedal rate with increased power output in cycle ergometry. Eur. J. Appl. Physiol., 53: 339-342.
de Aguiar, R. A., Lisbôa, F. D., Turnes, T., Cruz, R. S., and Caputo, F. (2015). The effects of different training backgrounds on VO_{2} responses to all-out and supramaximal constant-velocity running bouts. PloS one., 10: e0133785.
Duffield, R. and Dawson, B. (2003). Energy system contribution in track running. New Stud. Athlet., 18: 47-56.
Febbraio, M. A., Carey, M. F., Snow, R. J., Stathis, C. G., and Hargreaves, M. (1996). Influence of elevated muscle temperature on metabolism during intense, dynamic exercise. Am. J. Physiol., 271: R1251-R1255.
Finn, J., Gastin, P., Withers, R., and Green, S. (2000). The estimation of peak power and anaerobic capacity of athletes. In: Gore, C. J. (eds.) Physiological tests for elite athletes (pp. 37-49). Champaign: Human kinetics.
Gastin, P. B., Costill, D. L., Lawson, D. L., Krzeminski, K., and

McConell, G. K. (1995). Accumulated oxygen deficit during supramaximal all-out and constant intensity exercise. Med. Sci. Sports. Exerc., 27: 255-263.
Gastin, P. B. (2001). Energy system interaction and relative contribution during maximal exercise. Sports Med., 31: 725-741.
Granier, P., Mercier, B., Mercier, J., Anselme, F., and Préfaut, C. (1995). Aerobic and anaerobic contribution to Wingate test performance in sprint and middle-distance runners. Eur. J. Appl. Physiol. Occup. Physiol., 70: 58-65.
Green, S. and Dawson, B. T. (1996). Methodological effects on the VO_{2}-power regression and the accumulated O_{2} deficit. Med. Sci. Sports Exerc, 28: 392-397.
Hill, D. W. and Vingren, J. L. (2011). Maximal accumulated oxygen deficit in running and cycling. Appl. Physiol. Nutr. Metab., 36: 831-838.
Hoffman, J. (2002). Metabolic system and exercise. In J. Hoffman, Physiological Aspects of Sport Training and Performance (pp. 27-37). Champaign: Human Kinetics.
Jacobs, I. (1986). Blood lactate. Implications for training and sports performance. Sports Med. 3: 10-25.
Korzeniewski, B. and Zoladz, J. A. (2004). Factors determining the oxygen consumption rate $\left(\mathrm{VO}_{2}\right)$ on-kinetics in skeletal muscles. Biochem. J., 379: 703-710.
Medbø, J. I., Mohn, A. C., Tabata, I., Bahr, R., Vaage, O., and Sejersted, O. M. (1988). Anaerobic capacity determined by maximal accumulated O_{2} deficit. J. Appl. Physiol., 64: 50-60.
Medbø, J. I. and Tabata, I. (1989). Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J. Appl. Physiol., 67: 1881-1886.
Medbø, J. I. (2010). Accumulated oxygen deficit issues. In P. Connes et al. (eds.), Exercise Physiology: from a Cellular to an Integrative Approach (pp. 367-384). Amsterdam: IOS Press.
Minahan, C., Chia, M., and Inber, O. (2007). Does power indicate capacity? 30-s Wingate anaerobic test vs. maximal accumulated O_{2} deficit. Int. J. Sports Med., 28: 836-843.
Ogita, F., Onodera, T., Tamaki, H., Toussaint, H., Hollander, P., and Wakayoshi, K. (2003). Metabolic profile during exhaustive arm stroke, leg kick and whole body swimming lasting 15 s to 10 min . Biomech. Med. Swim., IX: 361-366.
Peyrebrune, M. C., Toubekis, A. G., Lakomy, H. K., and Nevil, M. E. (2014). Estimating the energy contribution during single and repeated sprint swimming. Scand. J. Med. Sci. Sports., 24: 369376.

Rossiter, H. B., Ward, S. A., Kowalchuk, J. M., Howe, F. A., Griffiths, J. R., and Whipp, B. J. (2002). Dynamic asymmetry of phosphocreatine concentration and O_{2} uptake between the onand off-transients of moderate-and high-intensity exercise in humans. J. Physiol., 541: 991-1002.
Sahlin, K., Ren, J. M., and Broberg, S. (1988). Oxygen deficit at the onset of submaximal exercise is not due to a delayed oxygen transport. Acta. Physiol. Scand., 134: 175-180.
Sousa, A., Vilas-Boas, J. P., Fernandes, R. J., and Figueiredo, P. (2017). VO_{2} at maximal and supramaximal intensities: lessons to high-intensity interval training in swimming. Int. J. Sports Physiol. Perform., 12: 872-877.
Spencer, M. R. and Gastin, P. B. (2001). Energy system contribution during $200-$ to $1500-\mathrm{m}$ running in highly trained athletes. Med. Sci. Sports Exerc., 33: 157-162.
Whipp, B. J., Rossiter, H. B., Ward, S. A., Avery, D., Doyle, V. L., Howe, F. A., and Griffiths, J. R. (1999). Simultaneous determination of muscle 31P and O_{2} uptake kinetics during whole body NMR spectroscopy. J. Appl. Physiol., 86: 742-747.
Wilkerson, D. P., Koppo, K., Barstow, T. J., and Jones, A. M.
(2004). Effect of work rate on the functional 'gain' of Phase II pulmonary O_{2} uptake response to exercise. Respir. Physiol. Neurobiol., 142: 211-223.

Name:
Shunsuke Shiraki
Affiliation:
University of Tsukuba, Graduate School of Comprehensive Human Sciences

Address:

1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan

Brief Biographical History:

Apr 2015- Mar 2017 Master's Program, Graduate School of Comprehensive Human Sciences, University of Tsukuba
Apr 2017- Doctoral Program, Graduate School of Comprehensive Human Sciences, University of Tsukuba

Main Works:

-Shiraki, S., Madokoro, S., Kajitani, R., Manabe, Y., Sakurai, K., Ogata, M., and Kigoshi, K. (2017). The characteristic of the seven and eight steps approach in the 110 -meter hurdle race: Comparison with sprint. Jpn. J. Stud. Athl., 110: 20-27. (in Japanese)

- Shiraki, S., Ogata, M., and Kigoshi, K. (2018). The relationship between exercise intensity and energy contribution on shortduration intensive exercises in each subject. Jpn. J. Phys. Educ. Health Sport Sci., 63: 433-440. (in Japanese)

Membership in Learned Societies:

- Japan Society of Physical Education, Health and Sport Sciences
- Japan Society of Athletics
- Japan Society of Training Science for Exercise and Sport
- The Japan Society of Coaching Studies

[^0]: Date are mean \pm standard deviation
 *, all values differed each other ($\mathrm{P}<0.05$)
 \dagger, all values differed each other with the exception that O_{2} demands of $40 \mathrm{vs} .50-60 \mathrm{ml} / \mathrm{kg} / \mathrm{min}, 60 \mathrm{vs} 70 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$, and $70 \mathrm{vs} .80 \mathrm{ml} / \mathrm{kg} /$ $\min (\mathrm{P}<0.05)$
 \ddagger, values differed for O_{2} demands of $40 \mathrm{vs} .70-100 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$, and $50 \mathrm{vs} .80 \mathrm{ml} / \mathrm{kg} / \mathrm{min}(\mathrm{P}<0.05)$

