Aerobic and Anaerobic Energy Contributions during Short-Duration Supramaximal Exercises with Different Exercise Intensities

Shunsuke Shiraki ${ }^{1}$, Kohei Yamamoto ${ }^{2}$, Mitsugi Ogata ${ }^{3}$, and Kiyonobu Kigoshi ${ }^{3}$
${ }^{1}$ Japan Institute of Sports Sciences, 3-15-1 Nishigaoka, Kita-ku, Tokyo, 115-0056, Japan shunsuke6971@gmail.com
${ }^{2}$ Fukui University of Technology, Faculty of Sports and Health Sciences,
3-6-1 Gakuen, Fukui, Fukui, 910-8505, Japan
${ }^{3}$ University of Tsukuba, Faculty of Health and Sports Sciences, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan

[Received January 27, 2023; Accepted May 10, 2023; Published online May 25, 2023]

Abstract

The study examined the relative energy contributions during 60-s supramaximal exercise with different exercise intensities. Nine male track and field sprinters performed a $60-\mathrm{s}$ Wingate anaerobic test and a $\mathbf{6 0 - s}$ cycling tests at five intensities of $\mathbf{5 5 \%}, \mathbf{6 5 \%}, \mathbf{7 5 \%}, \mathbf{8 5 \%}$, and $\mathbf{9 5 \%}$ mean power of the Wingate anaerobic test. The relative contributions of aerobic and anaerobic energy during the $60-\mathrm{s}$ cycling tests were estimated by the ratio of O_{2} uptake and O_{2} deficit, the latter being calculated as the difference between O_{2} demand and O_{2} uptake. $\% \dot{\mathrm{~V}} \mathrm{O}_{2}$ max of the $60-\mathrm{s}$ cycling tests ranged from 100 ± 7 to $163 \pm 11 \% \dot{\mathrm{~V}} \mathrm{O}_{2}$ max. As exercise intensity increased, O_{2} uptake, O_{2} deficit, and anaerobic energy contributions during the $60-\mathrm{s}$ cycling tests increased ($\mathbf{p}<\mathbf{0 . 0 5}$). In contrast, in the first $\sim 40 \mathrm{~s}$ during the $\mathbf{6 0 - s}$ cycling, the anaerobic energy contributions were not significant differences between each intensity. O_{2} uptake per 10 s increased with time course till 40 or 50 s in each intensity ($\mathrm{p}<0.05$). The different results of these at the first ~ 40 and 60 s during the $60-\mathrm{s}$ cycling tests could be attributed to the insufficient increase in O_{2} uptake during the last 20 s of the test. These results suggest that, as exercise intensity increases, the anaerobic energy contribution becomes more prominent in the latter half of the $\mathbf{6 0 - s}$ exercise (i.e., $\mathbf{5 0}$ and $\mathbf{6 0}$ s) compared to the first $\mathbf{3 0}$ and $\mathbf{4 0} \mathrm{s}$.

Keywords: energy system contribution, exercise intensity, sprint, O_{2} uptake, O_{2} deficit

1. Introduction

The energy utilized for exercise is provided by aerobic and anaerobic energy systems. Traditionally, aerobic energy supply during exercise has been determined by measuring O_{2} uptake (\AA strand and Saltin, 1961). Conversely, the estimation of anaerobic energy supply established by Medbø et al. (1988) introduced the concept that the accumulated O_{2} deficit, as determined by the difference in estimated O_{2} demand and measured O_{2} uptake, may reflect the anaerobic energy supply during exercise. Since then, researchers have evaluated O_{2} uptake and O_{2} deficit to estimate aerobic and/or anaerobic energy contributions during exhaustive exercises (Gastin, 2001). For example, Medbø and Tabata (1989) demonstrated that the aerobic energy contributions during exhaustive cycling lasting
$30 \mathrm{~s}, \quad 1 \mathrm{~min}$, and $2-3 \mathrm{~min}(119 \pm 2$ to $186 \pm$ $5 \% \mathrm{~V}_{2}$ max) were $30 \pm 1 \%, 47 \pm 2 \%$, and $65 \pm 2 \%$, respectively. This result indicates that aerobic energy contributions during exercise are higher for longer durations. However, since exercise intensity was lower with prolonged duration in these previous studies, it cannot be concluded whether exercise intensity modulates the relative energy contributions. Fixed exercise duration experiments are necessary to assess the influence of exercise intensity on the aerobic and anaerobic energy contributions during exercise.

According to some guidebooks on sports sciences for athletes and coaches, the anaerobic energy contribution increases with exercise intensity (Hoffman, 2002; Reilly and Bangsbo, 1999). However, Shiraki et al. (2020) reported that the aerobic/anaerobic energy contributions during 30 -s cycling did not differ across
a wide range of seven intensities (74 ± 7 to $\left.181 \pm 18 \% \dot{V}_{2} \max \right)$. In addition, the reason for the unchanged energy contributions was that O_{2} uptake increased with exercise intensity (Shiraki et al., 2020). Namely, the O_{2} uptake did not reach a plateau during the 30 -s exercises. Limited information is available on O_{2} uptake during short-duration supramaximal exercise. Therefore, it remains to be determined whether the aerobic and anaerobic energy contributions during 40,50 , and $60-\mathrm{s}$ exercises differ across a wide range of supramaximal intensities. Assessing relative energy contributions during ~ 60-s exercises across a wide range of intensities is important because intensities of training programs for anaerobic-type athletes, such as sprinters and team sports athletes, often vary over supramaximal. In other words, this assessment would advance our fundamental knowledge of metabolic responses during short-duration supramaximal exercises, which would help assess and design training programs for athletes and coaches.

Therefore, this study examined the relative energy contributions in $60-$ s supramaximal exercises with different intensities and fixed durations (i.e., the first 30, 40 , and 50 s). We elected to adopt a $60-\mathrm{s}$ exercise as there is a lack of information on energy profiles of 40, 50 , and $60-\mathrm{s}$ exercises, which is required in anaerobic training with supramaximal intensity (Iaia and Bangsbo, 2010).

2. Methods

2.1. Participants

The participants were nine competitive male track and field sprinters, including one dual player with decathlon ($100-\mathrm{m}$ sprint time, $11.20 \pm 0.22 \mathrm{~s}$). All participants were tested during the off-season. Their age, height, and body mass were 21.7 ± 2.6 years, $1.75 \pm 0.06 \mathrm{~m}$, and $65.6 \pm 5.7 \mathrm{~kg}$, respectively. All participants visited the laboratory before commencing the experiment and performed 40-s maximal effort cycling to become familiar with the exercise protocol. The seat and handlebar heights were recorded and kept constant in all the tests. This study was approved by the Human Ethical Committee of the University of Tsukuba in accordance with the Declaration of Helsinki. Written informed consent was obtained from all participants prior to their participation.

2.2. Procedures

This study consisted of one preliminary session and five subsequent experimental sessions. All sessions were completed within 3 weeks, each separated by $\geq 48 \mathrm{~h}$. To minimize the potential impact of training adaptations and metabolic variations, the order of the five experimental sessions was randomized. All tests were performed using a mechanically braked cycle ergometer (Power max VIII, Combi Co., Tokyo, Japan) in an experimental room regulated to a room temperature of $24-26^{\circ} \mathrm{C}$ and relative humidity of $\sim 60 \%$. Before each session, the participants were instructed to avoid strenuous exercise, caffeine, and alcohol for at least 24 h . The participants were instructed not to eat any food 2 h before and during each session. They arrived at the laboratory at the same time during each session.

2.3. Preliminary session

2.3.1. Submaximal test

The participants performed a submaximal cycling test to estimate O_{2} demands at different intensities. The submaximal test consisted of five 4-min submaximal exercises at $0.5-3.0 \mathrm{~W} / \mathrm{kg}$ interspaced with $2-\mathrm{min}$ rest periods. The exercise intensity, duration, and rest periods were determined based on previous studies (Finn et al., 2000; Green and Dawson, 1996). Blood samples were obtained from a fingertip immediately after the 5th stage to evaluate blood lactate concentrations. The blood lactate concentration and respiratory exchange ratio were confirmed to be within 4 mM and 1.00 , respectively, because O_{2} demand could be overestimated at intensities exceeding the lactate/ventilatory threshold or respiratory exchange ratio (Hill and Vingren, 2011; Wilkerson et al., 2004). The workload (kp) and pedal cadence during the submaximal test were determined using the following equations (Shiraki et al., 2020):

Pedal cadence $(r p m)=0.14 \times$ Power $(W)+37$
Workload $(\mathrm{kp})=$ Power $(\mathrm{W}) /[$ Pedal cadence (rpm)
$\times 0.98$]
(Equation 2)

The equations are based on an optimum pedal cadence for each workload, as reflected by the efficient cadence that requires the smallest increase in O_{2} uptake (Shiraki et al., 2020). Moreover, optimum
pedal cadence increases as power increases (Coast and Welch, 1985). Accordingly, pedal cadence increased as workload increased in the submaximal test in the present study. For each participant, a linear relationship between power and O_{2} demand was established from the measured power and the steady-state O_{2} uptake at each stage.

2.3.2. 60-s Wingate Anaerobic Test

The participants conducted the $60-\mathrm{s}$ Wingate Anaerobic Test (WAnT) to determine the intensity of a $60-\mathrm{s}$ cycling test. The workload for WAnT was 7.5% of the body weight $\times \mathrm{kp}$. Ten seconds before commencing the WAnT, the participants started cycling with a workload of 0.0 kp and a gradual increase in cadence to 100 rpm (the so-called rolling start) (Minahan et al., 2007). Once the WAnT commenced, the participants pedaled at the workload with maximal effort.

2.4. Experimental session

2.4.1. 60-s cycling test

The participants initially performed a 10 -min warm-up at a 1.0 kp workload with a pedal cadence of 90 rpm . Thereafter, they completed a $20-\mathrm{min}$ postexercise rest period and performed the $60-\mathrm{s}$ cycling test. The test was performed with a rolling start to reduce the effort required for the initial acceleration from zero to a target workload, as with the WAnT. Ten seconds before commencing the test, the participants started cycling with a workload of 0.0 kp and a gradual increase in cadence to 100 rpm . Once the test commenced, the participants cycled at a predetermined workload and a pedal cadence immediately for 60 s at $55 \%, 65 \%, 75 \%, 85 \%$, and 95% relative mean power of WAnT. This $60-\mathrm{s}$ cycling test was repeated five times with different target workloads and pedal cadences to obtain data on supramaximal exercises.

2.4.2. $\dot{\mathrm{V}} \mathrm{O}_{2}$ max test

Twenty minutes after the 60 -s cycling test with 55% relative mean power, the participants performed an incremental cycling test to obtain $\dot{\mathrm{V}} \mathrm{O}_{2}$ max, an index of aerobic capacity. This test began with an initial workload of $\sim 3.0 \mathrm{kp}$, which was increased by $0.1-0.2 \mathrm{kp}$ every 1 min . Pedal cadence was maintained at 90 rpm throughout cycling until exhaustion. Exhaustion was defined as the inability to maintain a pedal cadence of $>85 \mathrm{rpm}$ for 5 s . All participants exhibited a leveling off of O_{2} uptake despite an increase in
intensity (difference $<2.1 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$, Midgley et al., 2007). Additionally, secondary criteria ware also employed to increase the validity of $\dot{\mathrm{V}} \mathrm{O}_{2} \max$ measurements, including heart rate reaching at least 90% of the age-predicted maximum (220-age) or respiratory exchange ratio exceeding 1.1 (Midgley et al., 2007; Poole and Jones, 2017). $\mathrm{VO}_{2} \max$ was defined as the highest $\mathrm{V}_{\mathrm{O}}^{2}$ value averaged over a 30 -s interval.

2.5. Measurements

All tests were conducted on a mechanically braked cycle ergometer with an original mode that could transfer from 0.0 kp to target workloads (Power max VIII, Combi Co., Tokyo, Japan). The output data from the cycle ergometer were collected using a personal computer (Vostro 320, Dell Technologies Japan Inc., Japan) equipped with an A/D converter (KRS-3102FK, SANWA Co., Gunma, Japan) and an USB cable (BSUSRC0610BS, BUFFALO Inc., Aichi, Japan). Expired gas analysis was continuously performed using a gas analyzer (AE-310s, Minato Medical Science Co., Osaka, Japan) using a computerized standard open-circuit technique. The analysis mode was set to EXP mode, which is more valid in exercises with high respiratory frequency compared to the breath-by-breath mode (described in the user's manual). The obtained respiratory data were averaged over 5-s time intervals. Blood lactate concentrations were assessed using a lactate analyzer (YSI 1500 SPORT L-Lactate Analyser, YSI Inc., Yellow Springs, OH, USA). Heart rate was measured using standard telemetry (Polar S610i, Polar Electro Japan, Tokyo, Japan).

2.6. Data analyses

The expired gas in the submaximal test, $\dot{\mathrm{V}} \mathrm{O}_{2} \max$ test, WAnT, and $60-\mathrm{s}$ cycling test were analyzed from 3 min before each exercise. The mean pedal cadence, mean power, steady-state O_{2} uptake, heart rate, and respiratory exchange ratio during each stage in the submaximal test were evaluated as an average value over the last 2-min period. The O_{2} demand during the WAnT and the $60-\mathrm{s}$ cycling test was estimated by linear extrapolation of power data and steady-state O_{2} uptake obtained in the submaximal test. The O_{2} deficit during WAnT and the the $60-\mathrm{s}$ cycling test was calculated as the difference between O_{2} demand and O_{2} uptake (Figure 1). Aerobic and anaerobic energy con-

Figure 1 A model of calculating O_{2} demand and O_{2} deficit for the 60 -s cycling test
The O_{2} demand during each 60 -s cycling test was estimated by linear extrapolations of power data and steady-state O_{2} uptake obtained in the submaximal test. The O_{2} deficit during the 60 -s cycling test was calculated as the difference between O_{2} demand and O_{2} uptake.
tributions were estimated using the ratio of O_{2} uptake to O_{2} deficit. Linear extrapolation was used to calculate the relative intensity index of $\% \mathrm{~V}_{\mathrm{O}_{2}}$ max (Figure 1). The mean power and heart rate during the WAnT and the $60-\mathrm{s}$ cycling test were evaluated as an average value over the entire 60 -s period. To characterize the O_{2} response during the $60-\mathrm{s}$ cycling test, data was averaged over 10 -s time intervals. As the averaging bins were used, the influence of breaths variability has been considered (Thomas et al., 2016). The mean power was evaluated as power per body weight. Blood lactate concentrations in the WAnT and the $60-\mathrm{s}$ cycling test were measured before each exercise and 1,3 , and 6 min during the post-exercise recovery period. The highest blood lactate concentration was defined as the peak value. The mean power output during the $60-\mathrm{s}$ cycling test is presented relative to that of the WAnT (\%).

2.7. Statistical analyses

Values are presented as the mean \pm standard deviation. The linear relationship between power and O_{2} demand was analyzed using the coefficient of determination. All variables presented in Table 1 were analyzed using repeated-measures one-way analysis of variance with a factor of the relative mean power of the WAnT. O_{2} uptake responses at each level of the relative mean power of the WAnT were analyzed
using repeated-measures two-way analysis of variance with factors of the relative mean power and time course during the $60-\mathrm{s}$ cycling test. The relative energy contributions at each level of the relative mean power of the WAnT were also analyzed using repeated-measures two-way analysis of variance with factors of the relative mean power and time $(0-30,40$, $50,60 \mathrm{~s}$) in the $60-\mathrm{s}$ cycling test. A post hoc analysis was performed using the Holm-Bonferroni test when a significant F value was detected. The significance level for all comparisons was set at $\mathrm{p}<0.05$.

3. Results

The mean, peak power of WAnT, and $\dot{\mathrm{V}}_{2}$ max were $8.2 \pm 0.3 \mathrm{~W} / \mathrm{kg}, 12.6 \pm 1.0 \mathrm{~W} / \mathrm{kg}$, and $57.0 \pm 4.2 \mathrm{ml} / \mathrm{kg} /$ min , respectively. R^{2} value of the linear relationship between the power and the O_{2} demand was 0.997 ± 0.001.

The mechanical and metabolic variables assessed during the $60-\mathrm{s}$ cycling test are presented in Table 1. The main effect of the relative mean power on the aerobic energy contribution was significant ($\mathrm{F}=21.2$, $\mathrm{p}<0.05$). The aerobic/anaerobic energy contribution decreased/increased with increasing intensity (55 vs . $75-95 \% ; 65$ vs. $85-95 \% ; 75 \%$ vs. 95%; $\mathrm{p}<0.05$). $\% \mathrm{~V}_{2} \mathrm{max}$, mean power, mean heart rate, O_{2} uptake, O_{2} deficit, and peak blood lactate concentration during each exercise increased significantly with increasing

Table 1 Mechanical and metabolic variables during the 60 -s cycling test

	60 -s cycling test (relative mean power of $60-\mathrm{s}$ WAnT)						$\begin{gathered} \text { 60-s } \\ \text { WAnT } \end{gathered}$
	55\%	65\%	75\%	85\%	95\%		
\% mean power relative to WAnT	55.4 ± 0.9	65.1 ± 1.3	75.0 ± 0.6	85.6 ± 1.4	94.8 ± 0.9	*	100.0 ± 0
\% $\mathrm{V}^{\text {O }}{ }_{2}$ max	100 ± 7	115 ± 9	131 ± 9	149 ± 11	163 ± 11	*	172 ± 11
Mean power (W)	299 ± 33	351 ± 38	405 ± 44	462 ± 50	511 ± 52	*	539 ± 56
Mean heart rate (beats/min)	127 ± 4	129 ± 7	133 ± 9	141 ± 8	150 ± 9	\dagger	158 ± 7
Peak blood lactate concentration (mM)	4.3 ± 0.6	5.7 ± 0.4	7.2 ± 0.8	8.6 ± 0.6	10.1 ± 0.7	*	12.1 ± 1.1
O_{2} demand ($\mathrm{ml} / \mathrm{kg}$)	56.6 ± 2.8	65.4 ± 3.2	74.5 ± 3.3	84.4 ± 4.0	92.8 ± 4.4	*	97.6 ± 4.3
O_{2} uptake ($\mathrm{ml} / \mathrm{kg}$)	25.4 ± 1.4	28.5 ± 2.7	30.6 ± 1.9	33.5 ± 2.3	35.7 ± 2.6	*	37.7 ± 3.6
O_{2} deficit ($\mathrm{ml} / \mathrm{kg}$)	31.2 ± 2.7	37.0 ± 2.8	44.0 ± 2.6	50.9 ± 3.3	57.1 ± 4.1	*	59.9 ± 4.2
Aerobic energy contribution (\%)	44.9 ± 2.7	43.5 ± 3.5	41.0 ± 2.1	39.7 ± 2.3	38.5 ± 2.6	\pm	38.6 ± 3.3
Anaerobic energy contribution (\%)	55.1 ± 2.7	56.5 ± 3.5	59.0 ± 2.1	60.3 ± 2.3	61.5 ± 2.6	\pm	61.4 ± 3.3

Date are mean \pm standard deviation
*, all values differed each other in the 60 -s cycling test ($\mathrm{p}<0.05$)
\dagger, all values differed each other with the exception that relative mean power of 55 vs. $65-75 \%, 65 \%$ vs 75%, and 75 vs. 85% (p<0.05)
\ddagger, all values differed each other with the exception that relative mean power of $55 \mathrm{vs} .65 \%, 65 \%$ vs $75 \%, 75 \mathrm{vs} .85 \%, 85 \mathrm{vs} .95 \%$ (p <0.05)

Figure 2 Mean O_{2} response at each level during the 60-s cycling test The each level was expressed in relative mean power of the 60-s WAnT. SD was exhibited to only the 55% and 95% levels for more clarity.
$*$, vs. the previous points in the 55% and 95% levels ($\mathrm{p}<0.05$)
a, 55% vs. $95 \% ~(p<0.05)$
b, 55% vs. $85 \%(\mathrm{p}<0.05)$
c, 55% vs. $75 \%(\mathrm{p}<0.05)$
d, 55% vs. $65 \%(\mathrm{p}<0.05)$
intensity $(\mathrm{F}=1220.9, \mathrm{~F}=3301.9, \mathrm{~F}=29.4, \mathrm{~F}=107.3$, $\mathrm{F}=457.8$, and $\mathrm{F}=296.9$, respectively; all variables were $\mathrm{p}<0.05$; Table 1).

The O_{2} uptake responses and aerobic energy contributions during the 60 -s cycling test are presented in Figures 2 and 3, respectively. The interaction effect of the relative mean power of the WAnT and O_{2} uptake over time was significant ($\mathrm{F}=5.0, \mathrm{p}<0.05$). The O_{2} uptake increased with time course till 40 or 50 s
$(0<10<20<30<40<50-60 \mathrm{~s}$ in 55% and 75% level, $\mathrm{p}<0.05 ; 0<10<20<30<40 \mathrm{~s}$ in $65 \%, 85 \%$, and 95% level, $\mathrm{p}<0.05$). O_{2} uptake also increased with increasing intensity (Figure 2). The interaction effect of the relative mean power and aerobic energy contribution over time was significant ($\mathrm{F}=24.8$, $\mathrm{p}<0.05$). The aerobic energy contribution increased with time $(0-30<0-40<0-50<0-60 \mathrm{~s}$ at all levels, $\mathrm{p}<0.05$). The anaerobic energy contributions also

Figure 3 Relative aerobic contribution at each level during the $60-\mathrm{s}$ cycling test
The each level was expressed in relative mean power of the $60-\mathrm{s}$ WAnT.
*, vs. $55 \%(\mathrm{p}<0.05)$
\dagger, vs. $65 \%(\mathrm{p}<0.05)$
\ddagger, vs. $75 \%(\mathrm{p}<0.05)$
increased with increasing intensities in the first 50 and $60 \mathrm{~s}(\mathrm{p}<0.05)$, but there were not significant differences across the intensities in the first 30 and 40 s (p>0.05, Figure 3).

4. Discussion

The purpose of the present study was to examine whether different exercise intensities modulate relative energy contributions during a fixed duration of supramaximal exercise. We demonstrated that higher intensities in 60-s exercises resulted in higher values of O_{2} uptake, O_{2} deficit, and anaerobic energy contributions. However, in the first 30 and 40 s of the 60 -s exercises, there were no significant differences in the aerobic and anaerobic energy contributions between each intensity.

Here, O_{2} uptake during the $60-\mathrm{s}$ cycling test increased as exercise intensity increased from 100 ± 7 to $163 \pm 11 \% \mathrm{VO}_{2} \max$ (Table 1). This result suggests that the aerobic energy supply increases in an exercise intensity-dependent manner. Similarly, Sousa et al. (2017) demonstrated that O_{2} uptake during the first 60 s of constant-intensity exercises increased as exercise intensity increased from 95 to $105 \% \dot{\mathrm{~V}}_{2}$ max. Notably, our results demonstrated that exercise intensity-dependent elevations in O_{2} uptake occurred far above $100 \% \dot{V}_{2}$ max. Comprehensively, O_{2} uptake responses seem to exhibit three phases over time (Figure 2). In general, the O_{2} kinetics exhibit three phases: cardiodynamic, primary, and steady-state phases (Poole and Jones, 2012). In the present study,
the first, second, and final phases seem to occur in the first $20 \mathrm{~s}, 20$ to 40 s , and last 20 s , respectively. Similarly, Wittekind and Beneke (2011) showed the three phases in O_{2} uptake during a 60-s WAnT. Exercise intensity-dependent elevations in O_{2} uptake seem to occur mainly in the second phase (Figure 2). This may reflect exercise intensity-dependent rapid increases in O_{2} uptake upon short exercises, which requires further scrutiny.

The O_{2} deficit during the 60 -s cycling test increased with exercise intensity, as was observed for aerobic energy supply (Table 1). Along these lines, the peak blood lactate concentration, an indirect indicator of anaerobic energy supply (Jacobs, 1986), increased with elevations in the intensities (4.3 ± 0.6 to $10.1 \pm 0.7 \mathrm{mM}, \mathrm{p}<0.05$) (Table 1). Hence, these results suggest that the anaerobic energy supply from the glycolysis system increases with increasing exercise intensity.

The aerobic and anaerobic energy contributions during the $60-\mathrm{s}$ cycling test decreased and increased with increasing intensities, respectively (Table 1, Figure 3). However, in the first 30 and 40 s , the relative energy contributions did not differ across all intensity levels. It is generally thought that the aerobic energy contribution decreases as exercise intensity increases (Hoffman, 2002; Reilly and Bangsbo, 1999), but this is not true according to our results. Additionally, Shiraki et al. (2020) showed a result similar to that in this study, which was the unchanged aerobic and anaerobic energy contributions during 30-s cycling with seven intensities (73.4 ± 7.4 to $180.9 \pm 18.2 \%$ $\left.\dot{\mathrm{V}}{ }_{2} \mathrm{max}\right)$. The lack of changes in relative energy contributions across a wide range of supramaximal in the first 30 and 40 s was due to the fact that both aerobic and anaerobic energy supplies increased as exercise intensity increased. Conversely, the changes in relative energy contributions during the first 50 to 60 s of the 60 -s cycling test could be attributed to the insufficient increase in O_{2} uptake during the last 20 s of the test (Figure 2).

It is unknown why both aerobic and anaerobic energy supplies increased in an exercise intensitydependent manner, but our results are in line with those of studies showing that O_{2} uptake during exercise is correlated to anaerobic energy supply (de Aguiar et al., 2015; Korzeniewski and Zoladz, 2004; Whipp et al., 1999). Whipp et al. (1999) reported that changes in O_{2} uptake paralleled those in creatine phosphate, with the latter reflecting anaerobic energy
supply. Additionally, the mitochondria, which play a critical role in aerobic energy production, are related to intracellular metabolites, such as adenosine diphosphate, creatine phosphate, and inorganic phosphate (Korzeniewski and Zoladz, 2004). Thus, the O_{2} uptake response can be stimulated by an increase in the metabolites involved in the anaerobic energy system (de Aguiar et al., 2015). Therefore, O_{2} uptake and O_{2} deficit can similarly increase with elevation in exercise intensity.

We conducted a comparison of the relative energy contributions across a wide range of intensities and durations in 60-s supramaximal exercises (100 ± 7 to $163 \pm 11 \% \mathrm{VO}_{2} \max ;$ Table 1) using male sprinters. These insights could be useful for sprinters, team sports athletes, and their coaches in assessing and designing anaerobic training programs, as relative energy contributions are influenced by exercise intensity depending on exercise duration. For instance, anaerobic-type athletes may benefit from training that specifically targets the anaerobic energy system, using higher-intensity $60-\mathrm{s}$ exercises or supramaximal exercises less than 40 s . However, it is important to note that these findings are only one piece of the puzzle when it comes to designing training programs for athletes. Other factors, such as individual differences, training history, and sport-specific demands, should also be considered.

5. Conclusion

We show that the aerobic and anaerobic energy contributions during $60-\mathrm{s}$ exercises decreased and increased, respectively, across a wide range of intensities from 100 ± 7 to $163 \pm 11 \% \dot{V}_{2}$ max. However, no significant differences were observed in the first 30 and 40 s during the $60-\mathrm{s}$ exercises. Therefore, our results suggest that, as exercise intensity increases, the anaerobic energy contribution becomes more prominent in the latter half of the $60-\mathrm{s}$ exercise (i.e., 50 and 60 s) compared to the first 30 and 40 s .

Acknowledgments

We would like to thank Editage (www.editage.com) for English language editing.

References

Åstrand, P. O. and Saltin, B. (1961). Oxygen uptake during the first minutes of heavy muscular exercise. J. Appl. Physiol., 16: 971-976.
Coast, J. R. and Welch, H. G. (1985). Linear increase in optimal
pedal rate with increased power output in cycle ergometry. Eur. J. Appl. Physiol. Occup. Physiol., 53: 339-342.
de Aguiar, R. A., Lisboa, F. D., Turnes, T., Cruz, R. S., and Caputo, F. (2015). The Effects of Different Training Backgrounds on VO_{2} Responses to All-Out and Supramaximal Con-stant-Velocity Running Bouts. PLoS One, 10: e0133785.
Finn, J., Gastin, P., Withers, R., and Green, S. (2000). The estimation of peak power and anaerobic capacity of athletes. In: C. J. Gore. (ed.) Physiological tests for elite athletes (pp. 37-49). Champaign: Human kinetics.
Gastin, P. B. (2001). Energy System Interaction and Relative Contribution During Maximal Exercise. Sports Med., 31: 725-741.
Green, S. and Dawson, B. T. (1996). Methodological effects on the VO_{2}-power regression and the accumulated O_{2} deficit. Med. Sci. Sports Exerc., 28: 392-397.
Hill, D. W. and Vingren, J. L. (2011). Maximal accumulated oxygen deficit in running and cycling. Appl. Physiol. Nutr. Metab., 36: 831-838.
Hoffman, J. (2002). Metabolic system and exercise. In J. Hoffman (ed.), Physiological Aspects of Sport Training and Performance (pp. 27-37). Champaign: Human Kinetics.
Iaia, F. M. and Bangsbo, J. (2010). Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scand. J. Med. Sci. Sports, 20 Suppl 2: 11-23.
Jacobs, I. (1986). Blood lactate. Implications for training and sports performance. Sports Med., 3: 10-25.
Korzeniewski, B. and Zoladz, J. A. (2004). Factors determining the oxygen consumption rate $\left(\mathrm{VO}_{2}\right)$ on-kinetics in skeletal muscles. Biochem. J., 379: 703-710.
Medbø, J. I., Mohn, A. C., Tabata, I., Bahr, R., Vaage, O., and Sejersted, O. M. (1988). Anaerobic capacity determined by maximal accumulated O_{2} deficit. J. Appl. Physiol., 64: 50-60.
Medbø, J. I. and Tabata, I. (1989). Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J. Appl. Physiol., 67: 1881-1886.
Midgley, A. W., McNaughton, L. R., Polman, R., and Marchant, D. (2007). Criteria for determination of maximal oxygen uptake: a brief critique and recommendations for future research. Sports Med., 37: 1019-1028.
Minahan, C., Chia, M., and Inbar, O. (2007). Does power indicate capacity? 30 -s Wingate anaerobic test vs. maximal accumulated O_{2} deficit. Int. J. Sports Med., 28: 836-843.
Poole, D. C. and Jones, A. M. (2012). Oxygen uptake kinetics. Compr. Physiol., 2: 933-996.
Poole, D. C. and Jones, A. M. (2017). Measurement of the maximum oxygen uptake $\dot{\mathrm{V}} \mathrm{O}_{2}$ max: $\dot{\mathrm{V}} \mathrm{O}_{2}$ peak is no longer acceptable. J. Appl. Physiol., 122: 997-1002.

Reilly, T. and Bangsbo, J. (1999). Anaerobic and aerobic training. In B. Elliott (ed.), Training in sport: Applying sport science (pp. 351-409). New York: Wiley.
Shiraki, S., Fujii, N., Yamamoto, K., Ogata, M., and Kigoshi, K. (2020). Relative Aerobic and Anaerobic Energy Contributions during Short-Duration Exercise Remain Unchanged over A Wide Range of Exercise Intensities. Int. J. Sport and Health Sci., 18: 253-260.
Sousa, A., Vilas-Boas, J. P., Fernandes, R. J., and Figueiredo, P. (2017). VO_{2} at Maximal and Supramaximal Intensities: Lessons to High-Intensity Interval Training in Swimming. Int. J. Sports Physiol. Perform., 12: 872-877.
Thomas, C., Delfour-Peyrethon, R., Bishop, D. J., Perrey, S., Leprêtre, P. M., Dorel, S., and Hanon, C. (2016). Effects of pre-exercise alkalosis on the decrease in VO_{2} at the end of all-
out exercise. Eur. J. Appl. Physiol., 116: 85-95.
Whipp, B. J., Rossiter, H. B., Ward, S. A., Avery, D., Doyle, V. L., Howe, F. A., and Griffiths, J. R. (1999). Simultaneous determination of muscle 31P and O_{2} uptake kinetics during whole body NMR spectroscopy. J. Appl. Physiol., 86: 742-747.
Wilkerson, D. P., Koppo, K., Barstow, T. J., and Jones, A. M. (2004). Effect of work rate on the functional 'gain' of Phase II pulmonary O_{2} uptake response to exercise. Respir. Physiol. Neurobiol., 142: 211-223.
Wittekind, A. and Beneke, R. (2011). Metabolic and performance effects of warm-up intensity on sprint cycling. Scand. J. Med. Sci. Sports, 21: e201-207.

Name:

Shunsuke Shiraki

Affiliation:

Japan Institute of Sports Sciences

Address:

3-15-1 Nishigaoka, Kita-ku, Tokyo, 115-0056, Japan

Brief Biographical History:

2017-2021: Doctoral Program, Graduate School of Comprehensive Human Sciences, University of Tsukuba (Received a Ph.D. degree)
2021-2022: Assistant, Ibaraki Christian University
2022-Present: Researcher, Japan Institute of Sports Sciences

Main Works:

-Shiraki, S., Fujii, N., Yamamoto, K., Ogata, M., and Kigoshi, K. (2020). Relative aerobic and anaerobic energy contributions during short-duration exercise remain unchanged over a wide range of exercise intensities. Int. J. Sport and Health Sci., 18: 253-260.

- Shiraki, S., Mitsugi O., Yamamoto, K., and Kiyonobu, K. (2022). Energy profile of repetition sprint exercises with different rest durations. Japan J. Phys. Educ. Hlth. Sport Sci., 67: 199-211. (in Japanese)

Membership in Learned Societies:

- Japan Society of Physical Education, Health and Sport Sciences
- Japan Society of Athletics

