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Abstract: I present a sequent calculus that extends a nonmonotonic re-
flexive consequence relation as defined over an atomic first-order language
without variables to one defined over a logically complex first-order lan-
guage. The extension preserves reflexivity, is conservative (therefore non-
monotonic) and supraintuitionistic, and is conducted in a way that lets us
codify, within the logically extended object language, important features of
the base thus extended. In other words, the logical operators in this calculus
play what Brandom (2008) calls expressive roles. Expressivist logical sys-
tems have already been proposed for propositional logics (see Hlobil, 2016,
and Kaplan, 2018) but not for first-order logics. An advantage of this cal-
culus over standard first-order calculi (e.g., those in Gentzen, 1935/1964)
is that universally quantified variables behave as they should even in the
presence of arbitrary nonlogical axioms. I claim that because of this robust
well-behavedness of variables, this calculus also provides logical inferen-
tialists with a way to understand the meanings of variables in terms of the
roles those variables play in a wide range of inferences that is not limited to
purely logical ones (e.g, mathematical inferences).

Keywords: nonmonotonic logic, first-order logic, sequent calculus, logical
inferentialism, logical expressivism

1 Introduction: Two philosophical motivations

1.1 Logical inferentialism

Variables seem to play an essential role in various phases of our linguistic
practices. This is most evident in mathematical practices, where we explic-

1This paper is the product of a joint work with the research group of Bob Brandom. The
technical results reported here are mine. For valuable discussions and comments, I thank Bob
Brandom, Ulf Hlobil, Dan Kaplan, Rea Golan, Stephen Mackereth, Mansooreh Kimiagari,
Adrian Anhalt-Gutierrez, Yao Fan, and the audience of Logica 2018 conference and several
other conferences and workshops at which earlier versions of this paper were presented.
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itly employ variables for particular aims that do not seem accomplishable by
other means. For example, when we want to prove that for all right-angled
triangles, the square of the hypotenuse is equal to the sum of the squares
of the other two sides, it seems necessary to reason with an arbitrary right-
angled triangle, say, t. Similarly, when we want to specify an equation or
a function, it seems inevitable for us to use variables, “x”, “y”, “z”, etc., to
talk about those arbitrary relata that are related in a particular manner within
the equation or function at issue. Here, variables seem to play a distinctive
role—they function as though referring to arbitrary objects.

However, it is not only in mathematics that we need to talk or think
about arbitrary objects; such occasions are prevalent in our ordinary linguis-
tic practice. Consider, for instance, how we explain the meaning of “match”
to children. We say something like “if you strike a match, it lights.” We are
talking about neither this or that match, but rather an arbitrary match (oth-
erwise, this explanation would be of little use). Thus, although the original
sentence does not explicitly contain a variable, it seems to say something
that is more explicitly said by using a variable: “For any x, if x is a match
and you strike x, then x lights.”

Variables seem to let us talk about objects without specifying them. This
seemingly distinctive function of variables, however, perplexed Bertrand
Russell—one of the first philosophers to notice the great potential use of
variables for the analysis of natural-language sentences (see, e.g., Russell,
1905). This is because he also clung to the view that the meaning of an
expression is specified in terms of what it represents or refers to. What
then does a variable, say “x,” mean? This question confronts Russell with
a formidable dilemma (see, e.g., Russell, 1994, p. xxxv). Apparently, no
particular object counts as the proper referent of “x.” If the meaning of “x”
is specified by its referent, it follows that “x” has no specifiable meaning.
Or one may bite the bullet here and claim that there exist arbitrary objects
along with usual particular ones, and “x” refers to one of them. This horn,
however, immediately invites many tough questions, such as where and how
such arbitrary objects exist, how they can ever be distinguished from each
other despite their arbitrariness, and so on.2 Thus, both horns appear diffi-
cult to grasp. Let us call this Russell’s dilemma of the meaning of variables.

Several attempts have been made to solve Russell’s dilemma by seeking
an account of the meanings of variables while maintaining his representa-

2Frege (1979, p. 160), for instance, expresses his doubts about the notion of arbitrary ob-
jects.
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tionalist assumption that meanings are explained in terms of references (e.g.,
Fine, 1985, 2007). However, one of the two main aims of this paper is to
propose a different way out of this dilemma. It seems to me quite natural
to regard variables as (parts of) logical operators. According to some, the
meanings of logical operators may be explained more naturally by looking
at the rules governing their proper inferential use than by looking for things
that they might refer to. A common example is the conjunction. It is noto-
riously difficult to seek the referent of the conjunction. Nevertheless, we all
seem to know what it means. What do we explain, then, when we explain
the meaning of the conjunction? A natural answer seems to be the rule gov-
erning its proper use—in particular, the rule governing what a conjunctive
is properly inferred from and what is properly inferred from it. This line of
thought is sometimes called logical inferentialism.3 What I pursue in this
paper is a logical inferentialist approach to Russell’s dilemma of the mean-
ings of variables. That is, I explain the meanings of variables by looking
for a set of rules governing their proper inferential use, rather than for what
they might refer to.

One may wonder, though, if we already have such rules, because due to
Gentzen (1935/1964) and his successors, there are suitable proof systems
for various first-order logics in which such rules are conveniently isolated
for the variable-involving logical operators.

Somewhat surprisingly, however, it is difficult to find a proof system
in the literature that can fulfill the current aim. It seems that in order to
evaluate whether given rules for the universal quantifier—one of the major
variable-involving logical operators—do justice to its intuitive meaning, it is
an essential criterion that those rules guarantee the following biconditional:
Γ implies ∀xA ⇔ for any a: Γ implies A[a/x], where x does not freely
occur in Γ. Let us call this the universal principle. As far as I know, the
universal rules of most proof systems guarantee this principle only within
the limits of purely logical inferences—namely, only under the condition
that they are free from proper axioms (I discuss why in the next section). As
the examples mentioned at the beginning of this paper illustrate, however,
variables seem to play an essential role not only in purely logical inferences,
but also in mathematical or even more casual inferences. Thus, logical in-

3See, e.g., Peregrin, 2014. The possibility of logical inferentialism, which is inspired by the
famous remark of Gentzen (1935/1964, p. 295) on his natural deductions (“The introductions
represent, as it were, the ‘definitions’ of the symbols concerned . . . ”), has been investigated by
many both philosophically and technically. Peregrin (ibid. pp. 3-6) offers a nice overview of
this research tradition that covers most recent works.
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ferentialists who wish to systematically explain the meanings of variables in
these wider contexts4 need a new proof system equipped with a set of rules
that guarantees the well-behavedness of universals more robustly.

1.2 Logical expressivism

The second important aim of this paper is to submit a proof system that
can also help advance the enterprise of logical expressivism, proposed and
developed by Brandom (1994, 2000, 2008). Once we widen our focus from
purely logical inferences to more casual ones, we may also be able to widen
the scope of inferentialism: we may be able to explain not only the meanings
of logical vocabulary but also those of nonlogical vocabulary in terms of
the roles they play in the widened range of inferences.5 If the meanings
of logical and non-logical vocabulary are explained alike in terms of their
inferential roles, it may be wondered how these two types of vocabulary can
be distinguished in the first place. Logical expressivism is an inferentialist
answer to this demarcation problem of logic.

Brandom (2009, p. 11) aspires to characterize logical vocabulary as “the
organ of semantic self-consciousness”—the organ that is potentially avail-
able to anyone who can talk and that, once actualized, lets one talk about
what one means when one talks. In Brandom (2008, pp. 52–54), this slo-
gan is cashed out as two conditions for a piece of vocabulary to count as
logical. First, the inferential roles of sentences involving that would-be log-
ical operator can be mechanically determined on the basis of the inferential
roles of sentences without it. Thus, logical vocabulary comes for free, as it
were, for anyone who master nonlogical vocabulary. This condition, which
Brandom calls algorithmic elaboration, is shown to be met by providing a
proof system for a language containing the would-be logical operator that
systematically determines the inferential roles of all the sentences involving
that operator on the basis of those of atomic sentences. Second, the would-
be logical operator must let us codify, without disturbing it, some aspect of
the inferential role of the nonlogical vocabulary. A typical instance of this
role, which Brandom calls explicitation or expression, can be played by the
conditional. In a proof system in which the so-called deduction theorem
and its converse hold (i.e., Γ implies A → B ⇔ Γ ∪ {A} implies B), the
conditional lets us codify, within the object language, the information that

4It may be worth stressing here that Gentzen (1935/1964) himself explicitly states his in-
tention to use his proof systems for the analysis of inferences in mathematics (p. 288, p. 291).

5Strictly speaking, this is what Brandom (2000, p. 28) calls “weak inferentialism.”
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one thing (i.e., A) implies another (i.e., B) in a given context (i.e., Γ). In
this way, the conditional lets us talk about implications, which, according
to inferentialism, (partly) constitute the meanings of the sentences invovled.
The nondisturbance proviso is also met if the proof system is conservative.

The ambition of logical expressivists as sketched above imposes several
requirements on a proof system. First, since logical expressivists want to
talk about the meanings of nonlogical (as well as logical) vocabulary (such
as “match”), it needs to deal with nonlogical (as well as logical) inferences
in terms of which those meanings are supposed to be understood. For in-
stance, to understand the meaning of “match,” it seems that one needs to
understand, say, that “a is a match” and “a is struck” jointly implies, other
things being equal, “a lights.” As this example illustrates, inferences of
this type, which are sometimes called “material inferences,”6 often seem to
be defeasible, and therefore nonmonotonic. Thus, a logical expressivist’s
proof system must be able to accommodate such a nonmonotonic material
consequence relation as proper axioms, and to conservatively extend it to a
logically complex one. Let us call this constraint Nonmonotonicity. Second,
as illustrated above, the deduction theorem and its converse are unnegotiable
for logical expressivists, because otherwise the conditional cannot play its
expressive role to codify an implication. Similar biconditional constraints
are imposed on the negation and other logical operators that are supposed
to express different aspects of the underlying material consequence relation.
Let us call this constraint Expressivity.7

There are already several nonmonotonic proof systems equipped with
logical operators playing different expressive roles, such as expressing im-
plication, incoherence, local monotonicity (see, e.g., the original work by
Hlobil, 2016 for a supraintuitionistic system and its extension—with sev-
eral improvements—to a supraclassical system proposed by Kaplan, 2018).
One limitation of these systems, however, is that they are all propositional
logics. From the logical expressivist viewpoint, this means that we can only
talk about the meanings of entire sentences (e.g., “a is a match”), but we
cannot yet talk about the meanings of their component expressions (e.g.,
“match”). For if we want to talk specifically about the meaning of, say,
“match,” it seems that we must say something like this: “For any x, if x is
a match and x is struck, then x lights.” Given the universal principle, the
universally quantified variable “x” here codifies, roughly, that the pattern

6See, e.g., Sellars (1953) and Brandom (1994, 2000, 2008).
7For a more rigrous and generalized characterization of Expressivity, see Kaplan (2018,

sec. 2).
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of inference stated above holds irrespective of the individual term involved.
This operator thus seems to let us talk purely about the inferential role of
“is a match” (in connection with the other predicates such as “strike” and
“lights”) while bracketing that of “a”.

So far, we have seen how the two philosophical ideas, logical inferen-
tialism and logical expressivism, motivate us to pursue a proof system in
which the universal principle robustly holds even in the presence of arbi-
trary proper axioms. In the next section, I explain why most of the currently
available proof systems fail to satisfy this demand. In section 3, I introduce
my alternative nonmonotonic proof system. Finally, in section 4, I prove
that this system has several desirable properties, such as preserving reflex-
ivity, being conservative, and guaranteeing the universal principle even in
the presence of arbitrary proper axioms, along with other such biconditional
properties demanded by Expressivity. In that section, I also show that the
system is supraintuitionistic.

2 The problem

Most of the currently available proof systems fail to assure the universal
principle in the presence of some proper axioms. Although logical infer-
entialism has usually been pursued within the framework of natural deduc-
tions, I focus on sequent calculi because they can make the problem at issue
more straightforwardly visible. As long as the different frameworks of proof
systems capture the same logic, however, problems shown to occur in one
must also occur in the other. Furthermore, as will be seen below, the problem
arises easily from a few common features shared by many different logics,
including classical, intuitionistic, relevant, and modal logics. Thus, I claim,
the scope of the problem is quite wide.

In sequent calculi of various logics, the inferential contributions from
the universal quantifier are usually specified by the following pair of left
and right rules8:

Γ, A[τ/ξ] |∼ Θ
L∀

Γ,∀ξA |∼ Θ

Γ |∼ A[ζ/ξ],Θ
R∀

Γ |∼ ∀ξA,Θ
where no ζ freely occurs in Γ, ∀ξA, or Θ

8Note that below I use the snake turnstile (i.e., |∼) instead of the regular turnstile (i.e., `)
to indicate that the consequence relation at issue can be nonmonotonic.
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The additional clause of the right universal rule is the so-called “eigenvari-
able condition,” which is supposed to secure the “arbitrariness” of the vari-
able substituted (i.e., “ζ”) and thereby justify its substitution by the univer-
sally quantified variable (i.e., “ξ”). Notice that in the standard setting it is
only via free occurrences of eigenvariables that we can introduce universal
quantifiers on the right. How, then, can free eigenvariables be introduced
in the first place? In the standard systems, there is no inference rule for in-
troducing a free variable. Thus, they must come from axioms. And this is
where the problem arises.

To see how, suppose that we are given a sequent calculus with a set of
inferential rules including the ones mentioned above and a set of logical ax-
ioms. Also suppose that our language contains two predicates, say P and
Q, standing for “is a bachelor” and “is unmarried,” respectively. Given this
translation, it must hold that for each individual constant a: Pa |∼ Qa. So
let us add these implications as proper atomic axioms (i.e., these are mate-
rial inferences in which the meanings of “P” and “Q” partly consist). Now,
given the standard right rule of the conditional, it follows that for each indi-
vidual constant a: |∼ Pa → Qa. However, because in the standard setting
any open sequents in which free eigenvariables occur must come from log-
ical axioms (i.e., those implications that are formally valid irrespective of
the expressions involved in them, such as tautologies [i.e., A |∼ A] or the
explosion [i.e., ⊥ |∼]), there is no way to derive the sequent in which the
corresponding free eigenvariable occurs: |∼ Py → Qy. And because it is
only via such an open sequent that we can derive the target sequent with
the corresponding universal on the right—i.e., |∼ ∀x(Px → Qx)—, the
left-to-right direction of the universal principle fails.

There are two possible routes to blocking this underproduction problem:
adding more open sequents or modifying the right universal rule. One im-
mediate response from the first route would simply be to add the required
open sequent as an extra proper axiom: Py |∼ Qy. After all, one may think,
given that for any a, Pa |∼ Qa is materially good, Py |∼ Qy must also
be materially good, and therefore count as a proper axiom. This option is,
however, not available to us as logical inferentialists with respect to vari-
ables. Our aim is to explain the meaning of a variable in terms of the rules
governing its inferential use. Yet, if we were simply to stipulate a crucial
aspect of variable use as above in the form of a proper axiom, we would
rather exploit our presupposed understanding of its meaning than explain
that meaning. The aspect in question should be derived from some funda-
mental rule(s) governing the inferential use of the variable in question (i.e.,
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“y”) instead of being simply stipulated.
Before turning to my own solution, I should also mention the response

from the second route. One may think that the underproduction problem
can also be straightforwardly solved by letting the right rule for the univer-
sal “look directly at” the material inferences—the inferences in which the
meanings of individual constants and predicates such as “a,” “P ,” and “Q”
(partly) consist. After all, if |∼ Pa → Qa for an arbitrary a, it ipso facto
seems plausible to derive |∼ ∀x(Px→ Qx). Thus, the following modified
right universal rule may suggest itself:

Γ |∼ A[α/ξ],Θ
R∀’

Γ |∼ ∀ξA,Θ
where no α occurs in Γ or Θ,

where the modified eigenvariable condition at the bottom is supposed to en-
sure the “arbitrariness” of the relevant constant α. A serious problem with
this solution, however, is that in the presence of proper axioms, the modi-
fied condition no longer ensures the arbitrary substitutability of α at all. For
that matter, the eigenvariable condition and any of their variants can play
its intended role only under the assumption that each term has exactly the
same inferential potential (i.e., Γ[τ1/ξ] |∼ Θ[τ1/ξ]⇔ Γ[τ2/ξ] |∼ Θ[τ2/ξ]).
This holds as long as we limit our focus to logical inferences in which the
inferential potential that is characteristic of individual constants is generally
ignored; but that assumption may no longer hold once we take such potential
into account by adding the relevant proper axioms. Suppose, for instance,
that b, c, andR stand for “Tokyo,” “Japan,” and “is hit by a typhoon,” respec-
tively. Given this translation, the following implication seems to count as a
proper axiom: Rb |∼ Rc. However, in the presence of this axiom, the mod-
ified right universal rule presented above lets us derive an obviously invalid
implication: Rb |∼ ∀xRx (note that the modified eigenvariable condition is
satisfied here as no c occurs in Rb).

In my view, the real culprit of the problem of underproduction is not the
right universal rule, but the fact that the standard systems are devoid of any
inferential rules that govern the use of variables in such a way as to make
them mean what they mean—any inferential rules that let us derive the set
of new open sequents that are not formally valid but materially good given
the inferential potential of the other expressions (encapsulated in the set of
proper axioms). In the next two sections, I demonstrate how such rules can
be built into a supraintuitionistic sequent calculus that meets Nonmonotonic-
ity and several conditions of Expressivity.
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3 The system

Let L0 be the atomic language with the bottom (“⊥”), V ar the set of all the
variables, and Con the set of all the individual constants, where I assume
that Con is finite. Let L0− = L0 − {⊥}, and Lc0[−] is the largest closed
subset of L0[−] (i.e., Lc0[−] = {p | p ∈ L0[−], and p is a closed sentence}.
Note that the square brackets are used here to indicate that the bracketed
element (i.e., “−”) is optional (thus, here I set Lc0 and Lc0− at a stroke). For
notational convenience, I shall often use such square brackets.

Next, let |∼0 be a material consequence relation over Lc0. Because |∼0

is material, |∼0 varies depending on what particular vocabulary Lc0 con-
tains and how such vocabulary should be used in our discursive practice.
Although it is an important task to think about how to identify |∼0 within
a given discursive practice, that is beyond and orthogonal to my purposes
here. Thus, I simply take |∼0 as given. I assume, though, that |∼0 meets at
least a few structual constraints, as follows:

Definition 1 |∼0⊆ P(Lc0−) × Lc0, where (i) Lc0− |∼0 ⊥; (ii) ∅ |6∼0 ⊥;
(iii) |∼0 is reflexive; (iv) if for any ∆0 ⊆ Lc0− : ∆0,Γ0 |∼0 ⊥, then for any
p ∈ Lc0 : Γ0 |∼0 p.

Note that (iv) is a weak version of the explosion principle, which I call,
after Hlobil (2016), “Ex Falso Fixo Quodlibet” (ExFF). Because I treat the
premises as a set, contraction and permutation are also granted. However, I
do not impose weakening on this base consequence relation in order to make
room for it to be defeasible (and therefore nonmonotonic). Transitivity is not
imposed either, for the same reason.9

Now, let us turn to the extension of a material consequence relation thus
defined over Lc0 (i.e., |∼0) to the (indexed) consequence relation over the
logically complex language L (i.e., |∼[↑X]

[S] ). L = L− ∪ {⊥}, where the
syntax of L− is given as follows:

Syntax of L−: ϕ ::= p | ϕ→ ϕ | ¬ϕ | ϕ&ϕ | ϕ ∨ ϕ |�ϕ | ∀xiϕ | ∃xiϕ.

For technical convenience, I assume that variables in L consist of “x” with
varying indices (i.e., V ar = {x1, x2, . . . xi, . . .}).

The extension of |∼0 over Lc0 in this logically complex language is con-
ducted via a sequent calculus, which I call the first-order nonmonotonic

9Transitivity forces monotonicity in the presence of the conditional satisfying the deduction
theorem and its converse. See, ibid. sec. 4.3.
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sequent calculus (FNM). Note that FNM not only specifies the snake turn-
stile ( |∼) that represents the extended consequence relation, but also intro-
duces those with indices ( |∼↑XS ) in order to keep track of important features
of |∼ concerning subjunctive robustness and universalizability of inferen-
tial pattern. The indexed upward-arrow is supposed to track a range of
subjunctive robustness (i.e., Γ |∼↑X A ⇔ for any ∆ ∈ X ⊆ P(Lc0−):
Γ,∆ |∼ A), whereas the substitution memory S is supposed to register a
range of variable substitutability salva consquentia (i.e., Γ |∼S A⇔ for any
α ∈ N ⊆ Con s.t. < N, i >∈ S: Γ[α/xi] |∼ A[α/xi]). Although FNM
thus deals with countably many turnstiles, the main turnstile is the plain
snake, within which several important features of the extended consequence
relation (including those tracked by the two indices above) can eventually
be expressed with the help of logical operators such as→, ¬, �, and ∀ (see
section 4.3).

First, a given material consequence relation is taken as the axioms of
FNM.

Axiom: If Γ |∼0 p, then Γ |∼↑∅∅ p is an axiom.
Convention 1: |∼↑∅S can be abbreviated as |∼S .
Convention 2: |∼[↑X]

∅ can be abbreviated as |∼[↑X].

Convention 3: |∼↑P(L
c
0−)

[S] can be abbreviated as |∼↑[S].

Then, FNM extends this base consequence relation by closing it under the
following sequent rules.

Γ |∼↑S A Γ, B |∼↑XS C
LC

Γ, A→ B |∼↑XS C

Γ, A |∼↑XS B
RC

Γ |∼↑XS A→ B

Γ |∼↑XS A
LN

Γ,¬A |∼↑XS ⊥
Γ, A |∼↑XS ⊥

RN
Γ |∼↑XS ¬A

Γ, A,B |∼↑XS C
L&

Γ, A&B |∼↑XS C

Γ |∼↑XS A Γ |∼↑XS B
R&

Γ |∼↑XS A&B

10
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Γ, A |∼↑XS C Γ, B |∼↑XS C
L∨

Γ, A ∨B |∼↑XS C

Γ |∼↑XS Ai
R∨

Γ |∼↑XS A1 ∨A2

where i = 1 or 2

Γ, p1, . . . , pn |∼S A Γ |∼↑XS A
PushUpUN

Γ |∼↑{{p1,...,pn}}∪XS A
where p1, . . . , pn ∈ Lc0−

Γ, A |∼↑XS B
LB

Γ,�A |∼↑XS B

Γ |∼↑S A
RB

Γ |∼[↑]
S �A

Γ[α/xi] |∼↑XS A[α/xi]
AB1

Γ |∼↑XS∪{<{α},i>} A
where there is no < N, i >∈ S

Γ[α/xi] |∼↑XS A[α/xi]
AB2

Γ |∼↑XS A

where there is no < N, i >∈ S

Γ |∼↑XS∪{<N,i>} A Γ |∼↑XS∪{<N ′,i>} A
vUN

Γ |∼↑XS∪{<N∪N ′,i>} A

Γ, A |∼↑S∪{<N,i>} B
pLA

Γ,∀xiA |∼[↑]
S−{<N,i>} B

Γ |∼↑XS∪{<Con,i>} A
RA

Γ |∼↑XS−{<Con,i>} ∀xiA

Γ, A |∼↑XS∪{<Con,i>} B
LE

Γ,∃xiA |∼↑XS−{<Con,i>} B

Γ |∼↑XS∪{<N,i>} A
RE

Γ |∼↑XS−{<N,i>} ∃xiA

Γ |∼↑S A pW

Γ, B |∼[↑]
S A

Γ |∼↑S ⊥
ExFF

Γ |∼[↑]
S A

Most of these rules are adopted from the Non-Monotonic Modal sequent
calculus in Hlobil (2016) (with obvious adjustments and a few minor modi-
fications), for which I omit justifications. Among others, AB1 (for “abstrac-
tion”) and vUN (for “variable unification”) are crucial for the substitution
memory to do its intended job, and given them RA is the key for the uni-
versal principle to hold. The top sequent of pLA must be indefeasible, since
otherwise replacement of A by ∀xiA on the left might defeat the implica-
tion or incoherence at issue. In this way, FNM maps |∼0⊆ P(Lc0−)×Lc0 to
|∼↑XS ⊆ P(L−)× L, where X ⊆ P(Lc0−) and S ⊂ P(Con)× N.
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4 Main properties

4.1 Conservativeness

To begin with, it is straightforward to show that FNM is a conservative ex-
tension of the underlying material consequence relation, as there is no sim-
plifying rule (such as Cut) in FNM.

Proposition 1 For any Γ0 ⊆ Lc0− and for any p ∈ Lc0, Γ0 |∼ p ⇔
Γ0 |∼0 p.

Proof. (⇒) is straightforward. (⇐) is also straightward from the fact that no
rule of FNM reduces the complexity of a formula on either side of |∼. �

As we stipulated that |∼0 can be nonmonotonic, so can |∼, which is a con-
servative extention of |∼0. Thus, we have shown that FNM satisfies Non-
monotonicity.

4.2 Preservation of reflexivity

Next, reflexivity as stipulated at the base is preserved by FNM. With some
preparations, the preservation of reflexivity is first shown with respect to the
atomic open sentences.

Definition 2 S is unique⇔ for any N such that < N, i >∈ S, (i) N 6= ∅,
and (ii) there is no N’ such that N ′ 6= N and < N ′, i >∈ S.

Lemma 1 For any Γ ⊆ L−, for any p ∈ L0−, for any X ⊆ P(Lc0−), and
for any finite unique S ⊂ P(Con)× N, Γ, p |∼↑XS p.

Proof. By double induction on the number of distinct variables occuring in
p and the cardinality of S. �

We are now in a position to show reflexivity across the board.

Proposition 2 For any Γ ⊆ L−, for anyA ∈ L−, and for any finite unique
S ⊂ P(Con)× N, Γ, A |∼[↑]

S A.

Proof. By induction on the complexity of A. The base case is straightfor-
ward from Lemma 1, and the only tricky cases in the induction step are those
in which A is the universal or the existential. Let A be ∀xiB. By induction
hypothesis, for any a ∈ Con, B[a/xi] |∼↑S B[a/xi], from which leaves
∀xiB |∼[↑]

S ∀xiB is derivable via AB1, pLA, AB1, vUN (|Con|−1 times),
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and RA. Note, however, that if for some N,< N, i >∈ S, then the leaves
must instead beB[xj/xi][a/xj ] |∼[↑]

S B[xj/xi][a/xj ], where such j is cho-
sen that xjdoes not freely occur in B, and there is no < N, j >∈ S (other-
wise, AB1 could not be applied). These leaves lead to ∀xj(B[xj/xi]) |∼[↑]

S

∀xk(B[xj/xi]), where ∀xj(B[xj/xi]) is, by definition, syntactically equiv-
alent to (or an “alphabetical variant” of) ∀xiB. Finally, if needed, Γ can be
added to the left by pW (|Γ| times). The case in which A is the existential
can be treated in the parallel manner. �

4.3 Expressivity

4.3.1 Implication and incoherence

According to logical expressivism, logical operators codify, within the ob-
ject language, some features of the underlying material consequence rela-
tion. For instance, the conditional lets us talk about implications, whereas
the negation lets us talk about incoherences. To justify such expressivist
readings of logical operators in FNM, we first need to show the following
lemma, which is repeatedly used in the proofs below.

Lemma 2 If Γ |∼↑XS A, then S is unique.

Proof. By induction on proof height. �

Now, the following proposition justifies a reading of the conditional and
negation on the right as codifying implications and incoherences, respec-
tively.

Proposition 3 Conditional: Γ |∼↑XS A→ B⇔ Γ, A |∼↑XS B. Negation:
Γ |∼↑XS ¬A⇔ Γ, A |∼↑XS ⊥. Conjunction: Γ |∼↑XS A&B ⇔ Γ |∼↑XS A

and Γ |∼↑XS B.

Proof. (⇒) is by induction on proof height. (⇐) is straightforward from
RC, RN, and R&. �

4.3.2 Local monotonicity

Another important feature of the underlying material consequnece relation
that logical expressivists wish to codify is its local monotonicity. Although
material inferences and incoherences often seem defeasible (e.g., “a is a
match,” “a is struck” |∼ “a lights”), some may be indefeasible (e.g., “a
is a bachelor” |∼ “a is unmarried”). In FNM, such local monotonicity is

13



Shuhei Shimamura

kept track of by the upward-arrowed snake turnstile ( |∼↑) and eventually
expressed by the monotonicity box (�).10 This claim is underwritten by the
following lemmas and proposition.

Lemma 3 Γ |∼↑XS A⇔ for any ∆ ∈ X , Γ,∆ |∼S A.

Proof. By induction on proof height. �

Lemma 4 Γ |∼↑XS �A⇔ Γ |∼↑S A.

Proof. By induction on proof height. �

Proposition 4 Γ |∼S �A⇔ for any ∆ ⊆ L−, Γ,∆ |∼S A.

Proof. Immediate from Lemma 3 and Lemma 4. �

4.3.3 Universalizability

Finally, let us turn to our key proposition, that is, the universal principle. We
first need to do some preparation.

Sublemma 1 If τ1 6= ζ, τ2 6= ξ, and ξ 6= ζ,A[τ1/ξ][τ2/ζ] = A[τ2/ζ][τ1/ξ].

Proof. By induction on the complexity of A. �

This lets us prove the following key lemma, which ensures that the substitu-
tion memory can store information about the range of variable substitutabil-
ity salva consequentia.

Lemma 5 (i) If Γ |∼↑XS∪{<N,i>} A is proved at height n, then for any

a ∈ N,Γ[a/xi] |∼↑XS−{<N,i>} A[a/xi] is provable at a height 5 n. (ii) If

for any a ∈ N,Γ[a/xi] |∼↑XS−{<N,i>} A[a/xi], then Γ |∼↑XS∪{<N,i>} A.

Proof. (i) is by induction on proof height, where Sublemma 1 is used for
the cases of the induction step in which the sequent at issue comes by AB1
or AB2. (ii) is straightforward from AB1 and vUN. �

The next lemma says that the information about universal substitutability
(i.e., a special case of the above) stored in the memory is expressible by the
universal on the right.

10This technical apparatus was originally devised by Hlobil (2016).
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Lemma 6 Γ |∼↑XS−{<Con,i>} ∀xiA ⇔ Γ |∼↑XS∪{<Con,i>} A, where xi
does not freely occur in Γ, and there is no < N, i >∈ S.

Proof. (⇒) is by induction on proof height, where Lemma 5 (i) is used for
the cases of the induction step in which the sequent at issue comes by pLA
or LE. (⇐) is straightforward from RA. �

We are now in a position to prove the universal principle.

Proposition 5 Γ |∼ ∀xiA⇔ for any a ∈ Con,Γ |∼ A[a/xi], where xi
does not freely occur in Γ.

Proof. Straightforward from Lemmas 5 and 6. �

4.4 Logical strength

Before closing, let us see where FNM is located within the familiar terrain
of the other standard logics. FNM is supraintuitionistic. To demonstrate
this, I first specify a special region of |∼↑XS . Then, I embed intuitionistic
logic there. Finally, I show that the special region is a local region of the
material consequence relation represented by |∼.

Let us start with a few definitions.

Definition 3 S is adequate for Γ |∼↑XS A⇔ for any xi freely occurring
in Γ orA, there is someN such that< N, i >∈ S. S is minimally adequate
for Γ |∼↑XS A⇔ S is adequate, and if < N, i >∈ S, then xi freely occurs
in Γ or A.

Definition 4 S is full⇔ for any < N, i >∈ S, N = Con.

We are now in a position to specify a special region of |∼↑XS in which intu-
itionistic logic is going to be embedded.

Definition 5 Γ |∼F A ⇔ Γ |∼↑S A, where S is unique, minimally ade-
quate, and full.

Next, let us show how to embed intuitionistic logic in |∼F . This is
done by showing that all the rules of LJ—the sequent calculus for first-
order intuitionistic logic proposed by Gentzen (1935/1964)—can be added
without disturbing |∼F—that is, they are admissible within |∼F . First, we
need to define the notion of admissibility within |∼F .
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Definition 6 A rule R of the form:
Γ1 |∼ A1 . . . Γn |∼ An

Γ |∼ A
is

admissible within |∼F ⇔ if Γ1 |∼F A1, . . . ,Γn |∼F An, then Γ |∼F A.

Now, let us prove the admissibility of the rules of LJ within |∼F . It is conve-
nient to disucuss Cut and the rest of the rules separately. The admissibility of
the latter can first be shown with the help of the following two sublemmas.

Sublemma 2 All the connective rules concerning the propositional part
of FNM (i.e., LC, RC, LN, RN, L&, R&, L∨, and R∨) are admissible within
|∼F .

Proof. RC, LN, RN, and L& are straightforward, whereas LC, R&, L∨, and
R∨ are handled with the help of AB1 and vUN. �

Sublemma 3 If Γ |∼F A, then for any ∆ ⊆ L−, Γ,∆ |∼F A.

Proof. Straightforward from Lemma 3. �

Lemma 7 All the rules of LJ except for Cut are admissible within |∼F .

Proof. All the rules except for those involving the quantifiers are straight-
forward from Sublemmas 2 and 3. The right universal and left existential
rules are also straightforward from RA and LE respectively. Finally, the left
universal and right existential rules are taken care of by pLA and RE with
the help of Lemma 5. �

As to the admissibility of Cut, let us first prove the so-called “substitution
lemma” with respect to |∼F . This is shown via the following sublemma.

Sublemma 4 (i) If ζ does not freely occur in A, A[ζ/ξ][τ/ζ] = A[τ/ξ].
(ii) A[α/ξ][α/ζ] = A[ζ/ξ][α/ζ].

Proof. By induction on the complexity of A, where (i) is used in the induc-
tive proof of (ii). �

Lemma 8 If Γ |∼F A, then Γ[τ/xi] |∼F A[τ/xi].

Proof. By proof by cases, where cases are divided depending first on whether
xi freely occurs in Γ or A, then on whether τ is a variable, and, if so, furhter
on whether τ freely occurs in Γ or A. In some of these cases, Lemma 5 and
Sublemma 4 are appealed to. �

16



A First-Order Sequent Calculus for Logical Inferentialists/Expressivists

At this stage, we can appropriate Gentzen’s (ibid.) well-known result of
the eliminability of Cut in LJ: given the substitution lemma, any sequents
derivable in LJ via Cut are derivable without Cut.

Lemma 9 Cut is also admissible within |∼F .

Proof. Straightforward from Lemma 7, Lemma 8, and the eliminability of
Cut in LJ. �

Given these, we are now in a position to prove that |∼F is supraintuitionistic.

Lemma 10 |∼F is at least as strong as intuitionistic logic.

Proof. Straightforward from Proposition 2, Lemma 7, and Lemma 9. �

Finally, let us show that |∼F⊆ |∼, which immediately follows from the
lemma below.

Lemma 11 (i) If Γ |∼↑XS A, then Γ |∼↑X A. (ii) If Γ |∼↑X A, then
Γ |∼ A.

Proof. By induction on proof height. �

Corollary 1 If Γ |∼F A, then Γ |∼ A.

Thus, we are eventually in a position to show supraintuitionisity of |∼.

Proposition 6 |∼ is at least as strong as intuitionistic logic.

Proof. Straightforward from Lemma 10 and Corollary 1. �

5 Conclusion

This paper was motivated by two philosophical aims. One is to explain the
meanings of variables in terms of their inferential roles; the other is to im-
plement a logical system that can codify (i.e., talk about), within the object
language, the inferential roles (i.e., meanings) of predicates. I argued that
it is essential for both of these aims to have a proof system in which what I
call the universal principle holds even in the presence of arbitrary nonlogical
axioms. To the best of my knowledge, however, no currently available sys-
tem meets this demand. Thus, I propose an alternative system in which the
use of variables is explicitly controlled by an extra set of inferential rules
in such a way that the universal principle holds robustly. This system is
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nonmonotonic and conservative, preserves reflexivity, and satisfies several
biconditionals essential for its logical operators to codify important features
of the underlying consequence relation, such as implications, incoherences,
local monotonicity, and the universalizability of inferential patterns. The
system is also supraintuitionistic.
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