論文

2021年1月

Quantifying internal strains, stresses, and dislocation density in additively manufactured AlSi10Mg during loading-unloading-reloading deformation

MATERIALS & DESIGN
  • X. X. Zhang
  • ,
  • H. Andrae
  • ,
  • S. Harjo
  • ,
  • W. Gong
  • ,
  • T. Kawasaki
  • ,
  • A. Lutz
  • ,
  • M. Lahres

198
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.matdes.2020.109339
出版者・発行元
ELSEVIER SCI LTD

The plastic deformation of the AlSi10Mg alloy manufactured via laser powder bed fusion (LPBF) is incompatible at the microscale, which causes residual strains/stresses and dislocation pile-ups at the Al/Si interfaces and grain boundaries. Hence, it is of fundamental significance to clarify these microscopic properties during plastic deformation. Here, in-situ neutron diffraction is employed to explore the residual strains, stresses, and dislocation density in the LPBF AlSi10Mg during loading-unloading-reloading deformation. It is found that the maximum residual stresses of the Al and Si phases in the loading direction reach up to about -115 (compressive) and 832 (tensile) MPa, respectively. A notable dislocation annihilation phenomenon is observed in the Al matrix: the dislocation density decreases significantly during unloading stages, and the amplitude of this reduction increases after experiencing a larger plastic deformation. At the macroscale, this dislocation annihilation phenomenon is associated with the reverse strain after unloading. At the microscale, the annihilation phenomenon is driven by the compressive residual stress in the Al matrix. Meanwhile, the annihilation of screw dislocations during unloading stages contributes to the reduction in total dislocation density. (C) 2020 The Author(s). Published by Elsevier Ltd.

リンク情報
DOI
https://doi.org/10.1016/j.matdes.2020.109339
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000606822400011&DestApp=WOS_CPL
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85096853799&origin=inward 本文へのリンクあり
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85096853799&origin=inward
ID情報
  • DOI : 10.1016/j.matdes.2020.109339
  • ISSN : 0264-1275
  • eISSN : 1873-4197
  • SCOPUS ID : 85096853799
  • Web of Science ID : WOS:000606822400011

エクスポート
BibTeX RIS