Vol. 12, No. 3, pp. 274-288, September 2018 doi: https://doi.org/10.5572/ajae.2018.12.3.274 ISSN (Online) 2287-1160, ISSN (Print) 1976-6912

Technical Information

AAE

Measurements of 50 Non-polar Organic Compounds Including Polycyclic Aromatic Hydrocarbons, n-Alkanes and Phthalate Esters in Fine Particulate Matter $(PM_{2.5})$ in an Industrial Area of Chiba Prefecture, Japan

Yujiro Ichikawa^{*}, Takehisa Watanabe, Yasuhide Horimoto, Katsumi Ishii, Suekazu Naito

Chiba Prefectural Environmental Research Center, 1-8-8 Iwasaki Nishi, Ichihara, Chiba 290-0046, Japan

*Corresponding author. Tel: +81-436-21-6371 E-mail: y.ichkw17@pref.chiba.lg.jp

Current affiliation Chiba Prefectural Environmental and Community Affairs Department Air Quality Division, 1-1 Ichiba-cho, Chuo-ku, Chiba, Chiba 260-8667, Japan Tel: +81-43-223-3804

Received: 29 March 2018 Revised: 1 June 2018 Accepted: 27 June 2018 **ABSTRACT** Quantitative data of 50 non-polar organic compounds constituting PM₂₅ were continuously collected and analyzed from June 2016 to October 2017 (approximately 17 months) at Ichihara, one of the largest industrial areas in Japan. Target nonpolar organic compounds including 21 species of polycyclic aromatic hydrocarbons (PAHs), 24 species of n-alkanes and 5 species of phthalate esters (PAEs) were simultaneously measured by gas chromatography/mass spectrometry. Basically, the average concentrations of the total PAHs, n-alkanes and PAEs in each season remained nearly level, and seasonal variations were little throughout the study period. These results suggest that the emission sources, which are not influenced by the seasons, are the dominant inputs for the target organic compounds. Diagnostic ratios of PAHs, assessment of n-alkane homologue distributions, carbon preference index, and the contribution of wax n-alkanes from plants were used to estimate source apportionments. These results indicate that anthropogenic sources were the main contributor for most PAHs and n-alkanes throughout the study period. The concentrations of PAEs selected in this study were low because emission amounts of these chemicals were little within the source areas of the sampling site. To our knowledge, this study is the first attempt to simultaneously measure a high number of non-polar organic compounds in PM_{2.5} collected from the ambient air of Japan, and the resultant data will provide valuable data and information for environmental researchers.

KEY WORDS PM_{2.5}, Polycyclic aromatic hydrocarbons, n-Alkanes, Phthalate esters, Organic compounds, Japan

1. INTRODUCTION

Particulate matter (PM) is an atmospheric pollutant that has received widespread concern as it causes public health problems and plays important roles in regulating regional and global climate (Fuzzi, *et al.*, 2015; IPCC, 2013; WHO, 2013; Jacob, 1999). Among the PM, particle sizes with aerodynamic diameter less than 2.5 μ m (PM_{2.5}) are particularly hazardous to public health because of their

Copyright © 2018 by Asian Journal of Atmospheric Environment

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons. org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ability to penetrate into the alveoli of lungs and they are therefore more likely to increase the incidence of respiratory and cardiovascular diseases (Ueda, 2011; Schwartz and Neas, 2000).

According to the information provided by the Ministry of the Environment Japan, 74.5% of stations monitoring general ambient air, and 58.4% of stations monitoring auto-exhaust emissions met environmental quality standards for $PM_{2.5}$ during the 2015 fiscal year (from April to March of the following year), and further countermeasures to reduce the level of $PM_{2.5}$ are required (http://www.env.go.jp/press/103858.html, in Japanese, Accessed on June 1, 2018). For an effective reduction of $PM_{2.5}$ levels, it is important to identify their emission sources and describe their chemical properties in the ambient air. Long time series of quantitative data of the chemical compositions that constitute $PM_{2.5}$ are necessary to provide the required information to achieve $PM_{2.5}$ reduction.

Along with chemical compounds that are utilized for the assessment of $PM_{2.5}$ emission sources (e.g., trace metals), some organic compounds have definitive chemical structures that can be correlated to emission sources and are known as molecular markers. They can originate from many sources, including combustion of fossil fuels, biogenic origin, biomass burning, motor vehicles, waste incineration, steel/plastic manufacturing, cooking, and road dust (Hayakawa *et al.*, 2016; Kawamura and Bikkina, 2016; Wang *et al.*, 2016; Zhang *et al.*, 2013; Alves *et al.*, 2009; Alves, 2008; Brandenberger *et al.*, 2005; He *et al.*, 2004; Simoneit, 2002; Oros *et al.*, 1999; Khalili *et al.*, 1995; Rogge *et al.*, 1993a, 1993b, 1993c; Simoneit *et al.*, 1991).

A wealth of publications have reported that the organic fraction of $PM_{2.5}$ consists of various kinds of organic compounds with different abundances in different areas of the world (Ichikawa *et al.*, 2017; Mikuška *et al.*, 2017; Ahmed *et al.*, 2016; Fang *et al.*, 2016; Li *et al.*, 2016; Alves *et al.*, 2015; Yadav *et al.*, 2013; Park *et al.*, 2006; Simoneit *et al.*, 2004). Moreover, increasing attention has been paid to the study of the organic compounds in $PM_{2.5}$ to improve understanding of the emission sources and source apportionment. However, in Japan, most $PM_{2.5}$ studies have focused on metallic elements, carbonaceous components, and water-soluble inorganic components, and studies into organic compounds remain deficient.

Therefore, we intensively measured 50 different nonpolar organic compounds including 21 species of polycyclic aromatic hydrocarbons (PAHs), 24 species of n-alkanes and 5 species of phthalate esters (PAEs) in $PM_{2.5}$ in a long time series at Ichihara, a major industrial area in Japan. Selected non-polar organic compounds were simultaneously measured employing GC/MS. To the best of our knowledge, this paper is the first attempt to simultaneously measure as many non-polar organic compounds in $PM_{2.5}$ collected for a long time series (approximately 17 months) from the ambient atmosphere of Japan. Our results aim to provide useful insights and data for use in improving understanding of the target organic compounds in $PM_{2.5}$ and thereby contribute to better air quality management strategies.

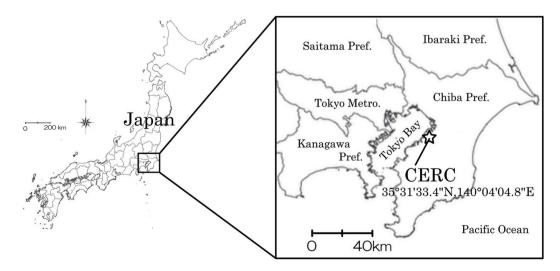


Fig. 1. Map indicating the location of Chiba Prefectural Environmental Research Center (CERC).

2. MATERIALS AND METHODS

2.1 Sampling Site Description

Sampling was conducted on the roof (12 m height above the ground) of the Chiba Prefectural Environmental Research Center (CERC). The CERC is located between the industrial zone of Tokyo Bay (a large industrial base including gas power plants, heavy petrochemical industries, and many light industries within ca. 2 km radius), and the residential zone of Ichihara, Chiba Prefecture, Japan (Fig. 1). The site is located approximately 200 m southeast of the Japanese National Route 16 (average weekday 24-hour traffic of 42,007 vehicles, of which 29.1% are large-sized vehicles). Ichihara is about 40 km southeast of central Tokyo, and the estimated population is nearly 277,000.

2.2 Sample Collection

PM_{2.5} samples were collected on 47 mm diameter quartz filter (Pall Corp., 2500QAT-UP, Q-filter) from 13 June 2016 to 25 October 2017. The flow rate of the low volume air sampler (Rupprecht and Patashnick Co., Inc., Partisol-FRM Model 2000 Air Sampler) was 16.7 L/min with a constant sampling rate (accumulating to ca. $24 \text{ m}^3/\text{d}$). From our previous study, daily air volumes per sample ($24 \text{ m}^3/\text{d}$) were too low to quantify some of the organic compounds present in relatively small amounts in the ambient atmosphere, so the samples in this study were sampled on a weekly basis (Ichikawa *et al.*, 2017). Park *et al.* (2006) also pointed out the difficulty of detailed analysis of organic compounds by gas chromatography/mass spectrometry (GC/MS) from daily sampling, supporting the decision to analyze samples on a weekly basis. Some amount of organic compounds may be decomposed or evaporated from the Q-filter during the sampling. However, due to the reason mentioned above those were not taken into consideration in this study.

The sampling periods are described in Table 1. Based on the definition used by the Japanese Meteorological Agency, the four seasons were assigned as follows: March to May for spring, June to August for summer, September to November for autumn and December to February for winter.

Typically, Q-filters are combusted in a furnace with high temperatures to remove the existing organic car-

Table 1. Details of sampling period in each seas
--

Year	Season ^{*1)}		Sampling period		n
	Summer	Jun. 13-Jul. 20 Jul. 4-Jul. 11	Jun. 20-Jun. 27 Jul. 11-Jul. 18	Jun. 28-Jul. 4 Aug. 22-Aug. 29	6
2016	Autumn	Aug. 29-Sep. 5 Sep. 20-Sep. 27 Oct. 17-Oct. 25 Nov. 8-Nov. 15	Sep. 5-Sep. 12 Oct. 3-Oct. 11 Oct. 25-Nov. 1 Nov. 15-Nov. 22	Sep. 12-Sep. 20 Oct. 11-Oct. 17 Nov. 1-Nov. 8 Nov. 29-Dec. 2	12
	Winter	Dec. 2-Dec. 7 Dec. 21-Dec. 28 Jan. 11-Jan. 18 Jan. 31-Feb. 8 Feb. 22-Mar. 1	Dec. 7-Dec. 14 Dec. 28-Jan. 4 Jan. 18-Jan. 25 Feb. 8-Feb. 15	Dec. 14-Dec. 21 Jan. 5-Jan. 10 Jan. 25-Jan. 31 Feb. 15-Feb. 22	13
	Spring	Mar. 1-Mar. 8 Mar. 22-Mar. 29 Apr. 12-Apr. 19 May 2-May 10 May 24-May 31	Mar. 8-Mar. 15 Mar. 29-Apr. 5 Apr. 19-Apr. 26 May 10-May 17	Mar. 15-Mar. 22 Apr. 5-Apr. 12 Apr. 26-May 2 May 17-May 24	13
2017	Summer	May 31-Jun. 7 Jun. 21-Jun. 28 Jul. 12-Jul. 19 Aug. 2-Aug. 8 Aug. 23-Aug. 30	Jun. 7-Jun. 14 Jun. 28-Jul. 5 Jul. 19-Jul. 26 Aug. 8-Aug. 16	Jun. 14-Jun. 21 Jul. 5-Jul. 12 Jul. 26-Aug. 2 Aug. 16-Aug. 23	13
	Autumn	Aug. 30-Sep. 4 Sep. 20-Sep. 27 Oct. 11-Oct. 17	Sep. 4-Sep. 12 Sep. 27-Oct. 4 Oct. 17-Oct. 25	Sep. 12-Sep. 20 Oct. 4-Oct. 11	8

*1)The four seasons were assigned based on the definition used by the Japanese Meteorological Agency.

bon (OC) prior to sampling. However, combustion could activate the Q-filter, resulting in positive artifacts due to the absorption of gas phase organic materials onto the filter. As described in Section 2.3, gravimetric measurements of $PM_{2.5}$ collected in Q-filters were designed in this study and to eliminate the possible positive artifacts during transport, sampling and storage, Q-filters were not combusted.

Travel blank filters were prepared and placed in the same container as the samples and were transported and treated in the same way (e.g., making contact with the sampling devices, and being exposed to the conditions of the sampling site, storage, and all analytical procedures). Sample results reported in this paper were corrected based on the travel blank filters.

Sample filters were placed in petri dishes and enclosed in a sealed bag. All samples were stored in a freezer at -30° C until chemical analysis to prevent evaporation and degradation of components constituting PM_{2.5}. A total of 68 effective samples were collected in this study, which included 3 blank samples.

2.3 PM_{2.5} Mass Concentration

Both PM_{2.5} sample filters and travel blank filters were weighed using an electronic microbalance (A&D Company Ltd., BM-20) with a reading precision of 1 µg. Prior to weighing, all Q-filters were kept under equilibrated conditions of constant temperature ($21.5 \pm$ 1.5° C) and relative humidity ($35 \pm 5\%$) for at least 24 hours. An ionizing blower was used to eliminate the effects of static electricity on the weighing process. Obtained PM_{2.5} mass (µg) was calculated by subtracting pre-weight from post-weight of the Q-filters. The PM_{2.5} mass concentrations (µg/m³) were calculated by PM_{2.5} mass per total volume of suction.

For the accuracy testing of gravimetric measurement, $PM_{2.5}$ mass concentration was measured in parallel using an automatic instrument (Horiba Ltd., APDA-3750A) employing a beta-ray absorption technique. Automatic instrument was installed at the monitoring station of the CERC, at a height of 7 m above the ground. $PM_{2.5}$ mass concentrations observed by two different methodologies showed good positive correlation (n = 64, R = 0.84).

2.4 OC Measurement

The OC was measured by the thermal/optical reflectance carbon analysis system (Sunset Laboratory Inc., Lab OC-EC Aerosol Analyzer). The analytical conditions of the IMPROVE method (Chow *et al.*, 1993) were used with the thermal optical reflection protocol (Chow *et al.*, 2001). A total of four fractions (OC1, OC2, OC3, and OC4) and the optical pyrolysis correction of OC (PyC) were determined. The OC was calculated as OC1 + OC2 + OC3 + OC4 + PyC.

2.5 Organic Compounds Measurement

The measured non-polar organic compounds in this study were 21 species of PAHs, 24 species of n-alkanes and 5 species of PAEs, producing a total of 50 species. Details of these compounds, including individual abbreviations, are presented in Tables 2 and 3.

2.5.1 Pretreatment Procedure

A Q-filter was placed in a 10 mL glass flask with stopper and spiked with defined amounts of the internal standard (IS) substances. The IS substances employed in this study were as follows. For PAHs: anthracene-d₁₀ (Ant- d_{10}), pyrene- d_{10} (Py- d_{10}), benzo(a)pyrene- d_{12} (BaP- d_{12}), and benzo(g,h,i)perylene- d_{12} (BghiP- d_{12}). For n-alkanes: n-tetracosane- d_{50} (C₂₄- d_{50}). For PAEs: diethyl phthalate- d_4 (DEP- d_4), di-n-butyl phthalate- d_4 (DBP- d_4), bis(2-ethylhexyl)adipate- d_8 (DEHA- d_8), and benzyl butyl phthalate- d_4 (BBP- d_4). Samples were extracted in 5 mL dichloromethane solution twice using an ultrasonic bath for 15 min, followed by filtration through a hydrophilic PTFE syringe filter (ADVANTEC Co. Ltd., DISMIC, pore size of 0.22 µm) to remove insoluble particles and quartz fibers. The extracts were evaporated to dryness under a gentle stream of high purity nitrogen gas and re-dissolved in 100 µL of toluene for GC/MS analysis.

2.5.2 GC/MS Analysis

Analysis of the target organic compounds in the $PM_{2.5}$ samples was carried out by GC/MS (6890 GC/5973 MSD, Agilent Technology) under the following conditions: capillary column DB-5MS (length; 60 m, internal diameter; 0.25 mm, film thickness; 0.25 µm film thickness, Agilent J&W) was used for separation of the compounds; high-purity helium was used as the carrier gas with flow rate of 1.0 mL/min; sample injection amount was 1 µL in splitless mode; the GC oven temperature was initially held at 100°C for 1 min, increasing 20°C/min until 270°C and held for 17 min, increasing 15°C/min until 320°C and then held for 32 min; the injection temperature was set to 280°C and the MS source and

PAHs
ratios of]
g/m ³); 1
AHs (n
), and F
: (μg/m ³
n ³), OC
i _{2.5} (μg/1
is of PM
entration
), conce
PAHs (%
iges of F
percenta
ecovery Hs.
g/m ³), r ween PA
ls (ng betr
tion of PAH mostic ratios
of detec and diag
re, limit o ind OC;
nperatur r PM _{2.5} a
e 2. Temp inting for P
Table 3 account

Range

(n = 13)

(n = 13)

(n = 13)

14.7-36.4 6.2-14

-0.8-29.4

-3.5 - 21.3

17.5-36.6

(n = 6)2016

9.4-16

7.0-16

5.3-15

4.4-11

Summer

Spring 2017

Winter 2016

Autumn (n = 12)-0.4-32.4

Summer

LOD

Recovery (%) (n = 4)

Abbreviation Unit

2016

2017

0.66-3.1 11-22

1.1-2.4 11-19

1.3-3.7 17-26

0.80-3.3 12-28

0.81-1.3 9.4-18

μg/m³ μg/m³ %

ç

Temperature

 $PM_{2.5}$

00

OC/PM2.5

PAHs

ons of $\text{PM}_{2.5}(\mu\text{g/m}^3),$ OC $(\mu\text{g/m}^3),$ and PAHs (ng/m^3); ratios of PAHs	$_{.5}(\mu g/m^3),$	OC (µg	(/m ³), aı	IAI bu	Hs (ng/	/m ³); rai	tios of I	AHs
					Average			
Autumn 2017 $(n=8)$	Total $(n = 65)$	Summer 2016	Autumn 2016	Winter 2016	Spring 2017	Summer 2017	Autumn 2017	Total
10.5-32.2 4.9-9.4 1.0-1.9 14-22	- 3.5-36.6 4.4-16 0.66-3.7 9.4-28	25.4 7.5 0.96 13	18.8 10 1.9 19	7.9 11 2.3 20	14.4 12 1.8 1.8	25.3 9.0 1.3 14	20.7 7.4 1.4 19	18.5 9.9 1.7 17
N.D0.033 N.D0.043	N.D0.070 N.D0.30	N.D. 0.0080	N.D. 0.0069	0.035 0.16	0.033	0.020 0.021	0.023 0.022	0.022 0.063
N.DN.D.	N.D0.22	0.012	ND.	0:044	0.0084	0.021	N.D.	0.018
0.097-0.21	0.082-0.82	0.28	0.19	0.40	0.39	0.21	0.15	0.28
N.DN.D.	N.DN.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
N.DU.D.	N.D0.18 N.D0.35	0.14	0.066	0.17	0.16	/cn.n 0.098	07070 N.D.	0.11
0.11-0.20	N.D0.89	0.37	0.27	0.45	0.33	0.24	0.16	0.31
N.DN.D.	N.DN.D.	N.D.	ND.	N.D.	N.D.	N.D.	N.D.	N.D.
0.065-0.15	0.054-0.40	0.16	0.12	0.22	0.16	0.14	0.10	0.15
0.045-0.097	N.D0.35	0.17	0.13	0.18	0.15	0.10	0.069	0.13
0.13-0.24	0.12-0.86	0.36	0.26	0.30	0.28	0.30	0.18	0.28
N.DN.D.	N.DN.D.	N.D.	ND.	N.D.	N.D.	N.D.	N.D.	N.D.
0.12-0.25	N.D1.1	0.37	0.29	0.41	0.30	0.33	0.20	0.32
0.12-0.24	0.078-0.88	0.07	0.088	0.06	0.046	0.047	0.030	0.000
N.D0.046	N.D0.26	0.11	0.11	0.098	0.063	0.060	0.032	0.079
N.DN.D.	N.D0.31	0.13	0.15	N.D.	N.D.	0.031	N.D.	0.061
N.DN.D. 1.1-2.1	N.D0.11 1.1-7.6	0.0/5 3.4	0.047 2.6	N.D.	N.D.	N.D. 2.5	N.D.	0.037 2.9
0.015-0.032	0.011-0.073	0.043	0.027	0.035	0.027	0.027	0.023	0.030
0.089-0.16	0.062-0.55	0.33	0.16	0.18	0.19	0.20	0.12	0.19
0.019-0.074	0.019-0.43	0.027	0.021	0.24	0.15	0.062	0.053	0.10
0.48-0.91	0.44-3.3	1.5	1.1	1.5	1.3	1.1	0.70	1.2
0.32-0.57	0.32-2.3	1.0	0.88	0.96	0.71	0.75	0.48	0.80
0.40-0.46	0.38-0.58	0.44	0.46	0.51	0.48	0.44	0.44	0.46
0.36-0.60	0.29-0.71	0.52	0.58	0.35	0.33	0.42	0.46	0.43
0.53-0.55	0.50-0.57	0.53	0.54	0.55	0.54	0.52	0.54	0.54
0.92-1.2	0.52-1.7	0.81	1.1	1.3	1.1	0.99	1.1	1.1

N.D.-0.066 N.D.-0.094 0.094-0.57

0.016-0.24

0.045-0.30 N.D.-0.22 0.22-0.96

N.D.-0.016 0.020-0.067

N.D.-N.D.

0.092-0.53

0.14-0.56

0.16-0.69

N.D.-0.066

N.D.-0.070

N.D.-N.D. N.D.-0.021

N.D.*1)-N.D.

0.013

N.D.-0.024 N.D.-0.034

0.0096

 ng/m^3

Phenanthrene Fluoranthene

Fluorene

Anthracene

ng/m³

0.016

0.084-0.55 N.D.-N.D. N.D.-0.16

0.14-0.61 N.D.-N.D.

0.18-0.82 N.D.-N.D.

0.082-0.43 N.D.-N.D.

0.12-0.54 N.D.-N.D.

0.0077 0.009 0.063

88 97 99 99 99 99 95

ng/m³ ng/m³ ng/m³ ng/m³

Benzo(c)phenanthrene

Pyrene

Benz(a)anthracene

Chrysene

Fl Phe Ant Fluor Py BcP BaA

0.037-0.12 0.059-0.27

0.038-0.14 N.D.-0.35 0.14-0.89 N.D.-N.D. 0.087-0.38

0.052-0.16

0.067-0.18

0.032 0.057 0.037 0.038

N.D.-0.13 0.10-0.46 N.D.-N.D.

N.D.-0.35 0.17-0.84 N.D.-N.D. 0.082-0.33

0.054-0.40 0.094-0.75

0.089-0.23

0.065-0.19 0.072-0.23 0.090-0.35

N.D.-0.32 0.13-0.86 N.D.-N.D. N.D.-0.15 0.11-0.88 N.D.-0.24

0.080-0.21 0.12-0.37 0.13-0.45

0.08-0.31

0.11-0.61

0.12-0.68

0.15-0.46 N.D.-N.D. N.D.-0.45

0.13-0.70 0.17-0.81

0.024

BeP BaP 3MC

0.088-0.35

0.040 0.019

0.051

 ng/m^3

BjF BkF

Benzo(k)fluoranthene Benzo(j)fluoranthene

Benzo(e)pyrene Benzo(a)pyrene

90

7,12DaA

ng/m³ ng/m³ ng/m³

Chry BbF

Benzo(b)fluoranthene

7,12-Dimethylbenz

(a) anthracene

N.D.-0.75 N.D.-N.D.

0.17-0.47 N.D.-N.D.

N.D.-0.34

0.12-1.1

0.15-0.46

N.D.-N.D. 0.13-0.85

N.D.-0.13 0.14-0.80 N.D.-0.21

0.043-0.14 0.078-0.39 0.054-0.17

0.054-0.19 0.049-0.26

0.019 0.013 0.036 0.056

ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³

DBahA BghiP DBalP DBaiP DBahP

£

Indeno(1,2,3-cd)pyrene

3-Methylcholanthrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

Dibenzo(a,l)pyrene Dibenzo(a,i)pyrene

Dibenzo(a,h)pyrene ΣPAHs^{*2)}

ΣΡΑΗs/PM_{2.5} ΣΡΑΗs/OC Σ3-rings^{*3)}

0.11-0.82 N.D.-0.19 N.D.-0.11

0.13-0.94

0.046 0.026

N.D.-N.D.

N.D.-N.D. N.D.-0.072

0.76-1.3

0.91-1.5

0.52-1.6

0.65-1.0

0.52-0.57 1.2-1.7

0.042-0.56

0.44-0.53

0.47-0.58 0.29-0.57 0.48-0.52

0.38-0.54 0.48-0.71 0.50-0.56

0.42-0.46 0.34-0.70 0.52-0.56 0.51-0.55

0.38-1.3

0.44-3.3 0.41-0.47 0.30-0.65 0.48-0.56 0.50-0.54

0.57-3.0 0.35-1.9

0.54-1.9

0.72-3.2 0.35-2.3

0.45-1.7 0.62-1.8 0.32-2.3

0.37-1.0 0.29-0.41 0.49-0.53 0.52-0.57

0.013-0.053

0.011-0.040

0.024-0.057

0.018-0.041

0.026-0.073

1.1-7.4

1.7 - 4.7

1.7-7.6

1.3-4.5

1.6-7.3

0.065-0.37 0.019-0.18 0.27-1.7

0.074-0.33 0.052-0.29

0.097-0.25 0.093-0.43 0.52-2.3

0.062-0.35

0.20-0.55 0.41-1.7

0.019-0.035

0.019-0.065

ng/m³ ng/m³

% %

ng/m³ ng/m³

0.31-1.3

N.D.-N.D.

N.D.-N.D. N.D.-N.D.

N.D.-N.D. N.D.-N.D.

0.12-0.31 N.D.-0.11

N.D.-0.070

0.14-0.41 N.D.-0.098

IP/(IP + BghiP) Fluor/(Flour + Py)

BghiP/BaP

BeP/(BeP + BaP)BaA/(BaA + Chr)

Σ5-rings^{*5)}

 $\Sigma 6$ -rings^{*6)}

 $\Sigma4$ -rings^{*4)}

Except for the temperature, all of the measured values have been rounded to no more than three significant figures. ¹⁰ND. : Not detected (below LOD) ²⁰DFAHS = FI + Phe + Ant + Fluor + Py + BcP + BaA + Chry + BbF + 7,12DaA + BjF + BkF + BeP + BaP + 3MC + IP + DBahA + BghiP + DBalP + DBahP ²⁰DFAHS = FI + Phe + Ant ²⁰DFAHS = FI + Phe + Ant ²⁰DFAHS = FI + BiF + BFF + BaP + BaA + Chry + 7,12DaA ⁴⁰DFAHS = FI + BiF + BFF + BaP + BaP + 3MC + DBahA ⁴⁰DFAHS = FI + BghiP + DBaIP + DBahP ⁴⁰DFAHS = FI + BghiP + DBaIP + DBahP

Compounds and

ratios

d PAEs	
.lkanes an	
ios of n-a	
³) and rat	
Es (ng/m)
s and PAJ	
n-alkane:	
ations of	
concentr	
AEs (%),	
nes and P	
of n-alkaı	
centages)
overy per	
ng/m ³), rec	
Es (
lkanes and PA	loc.
n-a	PM _{2.5} and
Table 3. LOD of	ccounting for
Tabl	accol

accommission 1 112.5 and 000	nim S'Zrat t	;																
Compounds.		:	Recovery (%)					Range							Average			
ratios and index	Abbreviation	Unit	(n = 4)	LOD	Summer 2016 $(n=6)$	Autumn 2016 $(n = 12)$	Winter 2016 $(n = 13)$	$\begin{array}{c} \text{Spring 2017} \\ (n=13) \end{array}$	Summer 2017 $(n = 13)$	Autumn 2017 $(n=8)$	$\begin{array}{c} Total \\ (n=65) \end{array}$	Summer 2016	Autumn Winter 2016 2016	Winter 2016	Spring 2017	Summer Autumn 2017 2017	Autumn 2017	Total
n-Alkanes																		
n-Heptadecane	C ₁₇	ng/m ³	87	0.0095	0.025-0.076	0.014-0.15	0.052-0.19	0.028-0.15	N.D. ^{*1)} -0.050	N.D0.067	N.D0.19	0.044	0.050	0.11	0.065	0.027	0.017	0.056
n-Octadecane	C_{18}	ng/m ³	78	0.0072	0.016-0.071	0.014-0.060	0.027-0.12	0.018-0.094	N.D0.27	N.D0.058	N.D0.27	0.037	0.030	0.066	0.046	0.080	0.023	0.050
n-Nonadecane	C ₁₉	ng/m	84	0.0042	0.016-0.060	0.014-0.096	0.054-0.16	0.018-0.095	0.0051-0.11	N.D0.050	N.D0.16	0.035	0.041	0.09	0.047	0.026	0.024	0.046
n-Eicosane	υ [%] υ	ng/m²	68 2	0.0062	0.021-0.085	0.014-0.15	0.067-0.23	0.0071-0.12	N.D0.14	0.0080-0.069	N.D0.23	0.048	0.061	0.13	0.052	0.027	0.029	0.061
n-Heneicosane	2 ¹⁷	ng/m ³	96 E	0.0076	0.014-0.13	05.0-120.0	0.10-0.47	17.0-9600.0	0.0089-0.29	0.013-0.063	0.0089-0.47	0.068	660.0	17.0	0.17	0.050	0.034	860.0
n-Docosane n-Tricosane	27	ng/m	110	0/00/0	0.010-0.24	0.029-0.72	0.44-1 9	14:0-'U.N 0.056-0.73	0.041-17	0.063-0.25	0.041-1 Q	21.0	02.0	0.40	0.37	0.73	0.13	0.20
n-Tetracosane	5° 5	ng/m ³	130	1200.0	0.085-0.66	0.011-1.7	0.75-2.5	0.042-1.5	N.D3.7	0.068-0.62	ND3.7	0.37	0.50	1.5	0.55	0.46	0.33	0.66
n-Pentacosane	ů č	ng/m ³	120	0.010	0.35-1.0	0.13-2.1	1.1-3.2	0.46-1.8	0.21-6.2	0.30-1.2	0.13-6.2	0.68	1.0	2.0	1.0	0.96	0.64	1.1
n-Hexacosane	C_{26}	ng/m ³	110	0.0097	0.41-1.2	0.29-2.3	0.9-3.2	0.62-2.0	0.33-6.4	0.61-1.4	0.29-6.4	0.81	12	1.8	1.0	1.1	0.92	1.2
n-Heptacosane	C_{27}	ng/m ³	110	0.0061	0.40-2.1	0.37-2.8	0.63-3.7	0.90-1.9	0.70-8.1	0.95-2.1	0.37-8.1	1.2	1.5	1.9	1.3	1.7	1.2	1.5
n-Octacosane	C_{28}	ng/m^3	100	0.015	0.42-3.5	0.40-2.2	0.61-3.0	0.55-1.7	0.44-6.9	0.42-2.5	0.40-6.9	2.3	1.2	1.7	0.91	1.5	1.2	1.4
n-Nonacosane	C ₂₉	ng/m^3	100	0.010	0.51-2.4	0.57-4.8	0.73-5.9	1.2-3.2	0.60-6.9	0.83-2.4	0.51-6.9	1.4	2.3	3.0	1.7	2.0	1.6	2.1
n-Triacontane	C ₃₀	ng/m ³	100	0.010	0.33-1.4	0.34-2.6	0.40-2.5	0.47-1.2	0.24-4.8	0.47-1.4	0.24-4.8	0.82	1.3	1.3	0.67	1.1	0.85	1.0
n-Hentriacontane	C ₃₁	ng/m ³	97	0.013	0.68-1.8	0.74-6.5	0.56-5.5	0.76-1.9	0.57-4.6	0.90-2.5	0.56-6.5	1.1	2.7	2.6	1.2	1.7	1.7	1.9
n-Dotriacontane	C32	ng/m²	93	0.021	0.29-0.64	0.27-1.8	0.21-1.5	0.21-0.58	0.13-2.2	0.22-0.73	0.13-2.2	0.43	0.80	0.74	0.36	0.53	0.48	0.57
n-Tritriacontane	C_{33}	°m/gn	92	0.029	0.31-0.62	0.45-3.5	0.24-2.2	0.26-0.85	0.23-2.2	0.36-1.3	0.23-3.5	0.43	1.3	1.0	0.47	69.0	0.83	0.82
n-Tetratriacontane	ບັ້ນ	ng/m²	92 5	0.036	0.15-0.23	0.14-0.86	0.084-0.61	0.079-0.26	0.045-1.2	0.11-0.31	0.045-1.2	0.19	0.38	0.33	0.17	0.24	0.21	0.26
n-rentatriacontane	ະນີ	ng/m	76	0.000	77.0-71.0	711-61-0	0.081-0.82	47-0-280-0	1.1-/ 20.0	0.15-0.41	7.1-/20.0	/1.0	0.44	0.40	CT-0	07.0	07.0	67.0
n-Hexatriacontane	ະິ	ng/m	/6	0.070	61.0-960.0	05.0-51.0	0.080-0.48	91.0-2/0.0	0.005-0.85	02.0-080.0	0.00-0010	0.14	87.0	010	0.13	17.0	81.0	07.0
n-Arptatriacontane	3	ng/m	06 90	2/0.0	0.0/3-013	N D -0.41	ND-0.37	51.0UN	ND-0.50	N.D0.15	0.0U.N 0.5 0U.N	<i>C9</i> 00	170	61.0	560.0	110	21.0	11.0
n-Nonatriacontane	۳ ۲	ng/m ³	Q 10	0.006	010-01V	11-0-01N	ND-0.22	2000-01N	N D -0 52	CL-0-CL N	ND-05	700.0	01.0	014	0000	111.0	0.065	71.0
n-Tetracontane	ຄິບ	ng/m ³	100	0.10	N.D0.12	N.D0.30	N.D0.30	N.D0.12	N.D0.45	N.D0.11	ND-0.45	0.063	0.13	0.14	0.062	0.083	0.059	0.096
Σ n-Alkanes ^{*2)}	f.	ng/m ³			4.8-16	5.5-32	8.0-39	7.0-18	4.3-60	8.4-17	4.3-60	11	16	21	11	13	11	14
Zn-Alkanes/PM _{2.5}		%			0.084-0.21	0.080-0.29	0.10-0.26	0.064-0.11	0.049-0.43	0.10-0.19	0.049-0.43	0.15	0.15	0.18	0.089	0.14	0.15	0.14
Zn-Alkanes/OC		%			0.59-1.6	0.57-1.2	0.60-1.1	0.37-0.91	0.34-1.9	0.58-1.1	0.34 - 1.9	1.1	0.83	0.88	0.61	0.93	0.80	0.84
$\Sigma C_{odd}^{*3)}$		ng/m ³			2.8-8.6	3.2-21	4.1-24	4.6-9.6	2.7-32	4.6-10	2.7-32	5.5	10	12	6.5	7.8	6.6	8.6
$\Sigma C_{even}^{*4)}$		ng/m ³			2.0-7.3	2.2-11	3.8-15	2.4-8.2	1.6-28	3.4-6.7	1.6-28	5.4	6.2	8.5	4.2	5.5	4.4	5.8
PAEs																		
			;															
Di-n-propyl phthalate	e DIPP	ng/m	91	0.0037	N.D0.030	N.D0.073	N.D0.11	N.D0.11	N.D0.098	N.D0.0048	N.D0.11	0.010	0.020	0.034	0.049	0.0098	0.0023	0.024
Diisobutyl phthalate	DIBP	ng/m^3	77	0.0075	0.027-0.21	N.D0.32	0.038-0.40	N.D0.22	N.D0.083	N.D0.032	N.D0.40	0.12	0.076	0.26	0.068	0.022	0.012	0.097
Di-n-pentyl phthalate	DPP	ng/m^3	85	0.0072	N.D0.083	N.D0.020	N.D0.018	N.D0.047	0.0076-0.24	0.0084-0.025	N.D0.24	0.017	0.0072	0.0092	0.0076	0.038	0.013	0.015
Di-n-hexyl phthalate	DHP	ng/m ³	62	0.024	N.DN.D.	N.DN.D.	N.D0.082	N.D0.058	N.D0.26	N.DN.D.	N.D0.26	N.D.	N.D.	0.039	0.020	0.073	N.D.	0.031
Butul henzul nhthelete	RRD	na /m ³	73	1000	160-0200	010-010	0.035-0.25	0.035-0.36	5 1-6600	010-2200	5 1-660 0	010	030	010	013	0.37	0.050.0	0.10
יישנע ערבער איז		111/811	C /	170.0	17:0-6000	10.0-01.0	07-00-0000	00.0-00.00	0.17-220.0	61.0-220.0	C'1-770'0	01-0	0000	01.0	CT-0	100	0000	61.0
ΣPAEs ^{*5)} Υdate /dm		ng/m ³			0.12-0.36	0.12-0.97	0.23-0.62	0.084-0.52	0.070-1.8	0.049-0.24	0.049-1.8	0.26	0.41	0.44	0.27	0.51	0.090	0.36
ΣPAEs/OC		%			0.013-0.044	0.0071-0.055	0.0087-0.038	0.0049-0.039		0.0038-0.020	0.0038-0.20	0.028	0.025	0.023	0.016	0.047	0.0068	0.025
All measured values have been munded to no more than three significant figures	have heen roi	unded to r	i more than i	three signi	ficant figures													
^{*1)} N.D. : Not detected (below LOD)	tiave been to	DD)			ucant ngures.	-	(- - -	(- - -	-	- - -								
$\sum_{i=1}^{2} \text{Zn-Mixanes} = C_{17} + C_{18} + C_{21} + C_{21} + C_{23} + C_{23} + C_{24} + C_{25} + C_{26} + C_{27} + C_{29} + C_{29} + C_{30} + C_{31} + C_{32} + C_{33} + C_{34} + C_{35} + C_{36} + C_{37} + C_{39} + C_{40} + $	$C_{16} + C_{18} + C_{19}$	$^{+}C_{20}^{+}+C_{23$	$C_{21} + C_{22} + C_{23} + C$	3 + C2 + 1 + C3 + 1 + C3 - +	$C_{25} + C_{26} + C_{27} + C$	$+C_{28}+C_{29}+$	$C_{30} + C_{31} + C_{32}$	+ C ₃₃ + C ₃₄ + C	$_{35} + C_{36} + C_{37} +$	C ₃₈ + C ₃₉ + C ₄₀								
^{*4)} $\Sigma Ceven = C_{18} +$	$C_{20} + C_{22} + C_{22} + C_{22}$	$C_{24} + C_{26} + C_{26}$	$+ \tilde{C}_{28} + \tilde{C}_{30} + \tilde{C}_{30}$	$C_{32} + C_{34}$	+ č ₃₆ + č ₃₈ + c	(F)												
$\sim \Sigma PAES = DIPP -$	+ DIBP + DP	r+DHP	+ BBP															

${ m AJAE}$ Asian Journal of Atmospheric Environment, Vol. 12, No. 3, 274-288, 2018

Compounds	Target ion	Qualifier ion	Internal standard	Compounds	Target ion	Qualifier ion	Internal standard
PAHs				n-Alkanes			
Fl	166	165	Ant-d ₁₀	C ₁₇	57	71	C ₂₄ -d ₅₀
Phe	178	176	Ant-d ₁₀	C ₁₈	57	71	C24-d50
Ant	178	176	Ant-d ₁₀	C ₁₉	57	71	C24-d50
Fluor	202	200	Py-d ₁₀	C ₂₀	57	71	C24-d50
Ру	202	200	Py-d ₁₀	C ₂₁	57	71	$C_{24}-d_{50}$
BcP	228	227	BaP-d ₁₂	C ₂₂	57	71	C24-d50
BaA	228	226	BaP-d ₁₂	C ₂₃	57	71	C24-d50
Chry	228	226	BaP-d ₁₂	C ₂₄	57	71	$C_{24}-d_{50}$
BbF	252	250	BaP-d ₁₂	C ₂₅	57	71	C24-d50
7,12DaA	256	241	BaP-d ₁₂	C ₂₆	57	71	$C_{24}-d_{50}$
BjF	252	250	BaP-d ₁₂	C ₂₇	57	71	C24-d50
BkF	252	250	BaP-d ₁₂	C ₂₈	57	71	C24-d50
BeP	252	250	BaP-d ₁₂	C ₂₉	57	71	C24-d50
BaP	252	250	BaP-d ₁₂	C ₃₀	57	71	C24-d50
3MC	268	267	BaP-d ₁₂	C ₃₁	57	71	C24-d50
IP	276	277	BghiP-d ₁₂	C ₃₂	57	71	$C_{24}-d_{50}$
DBahA	278	276	BghiP-d ₁₂	C ₃₃	57	71	C24-d50
BghiP	276	277	BghiP-d ₁₂	C ₃₄	71	85	C24-d50
DBalP	302	300	BghiP-d ₁₂	C ₃₅	57	71	C24-d50
DBaiP	302	303	BghiP-d ₁₂	C ₃₆	57	71	$C_{24}-d_{50}$
DBahP	302	303	BghiP-d ₁₂	C ₃₇	57	71	$C_{24}-d_{50}$
				C ₃₈	57	71	C24-d50
				C ₃₉	57	71	C24-d50
				C ₄₀	57	71	C24-d50
				PAEs			
				DIPP	149	209	DEP-d ₄
				DIBP	149	223	DEP-d ₄
				DPP	149	237	DBP-d ₄
				DHP	149	251	DEHA-d ₈
				BBP	149	206	BBP-d ₄

 Table 4. Monitored target and qualifier ions, and internal standards used in SIM mode of GC/MS analysis.

quadruple temperature to 230°C and 150°C, respectively; and mass spectrum peaks were obtained by electron ionization mode at electron energy of 70 eV with a selected ion monitoring (SIM) mode. Monitored target and qualifier ions, and internal standards used in SIM mode is listed in Table 4.

The individual organic compounds and IS substances were determined by comparing retention times and mass spectrum peaks with those of authentic standards. The five-point calibration curves were plotted based on the IS method for individual compounds and all of the compounds showed good linearity with the Pearson's correlation coefficients of R > 0.95.

A recovery test (n = 4) was performed to validate the pretreatment method. Known amounts of individual organic compounds were spiked to the blank Q-filter and then prepared and handled by exactly the same pro88-110%, 78-130% and 73-91%, respectively (Tables 2 and 3). In addition to the organic compounds described in Tables 2 and 3, we examined naphthalene (NaP), acenaphthene (Ace) and acenaphthylene (Acy) in PAHs, n-dodecane (C_{12}), n-tridecane (C_{13}), n-tetradecane (C_{14}), n-pentadecane (C_{15}), and n-hexadecane (C_{16}) in n-alkanes and diethyl phthalate (DEP), dibutyl phthalate (DBP) and dicyclohexyl phthalate (DCHP) in PAEs; however, the recovery percentages of those compounds were not acceptable. Therefore, these were eliminated from the analyte candidates in this study. The unacceptable recovery percentages for these compounds may have been due to vaporization loss during the evaporation process (NaP, Ace, Acy, and C_{12} - C_{16}) and a high level of background contaminations (DEP,

cedures as those used for the PM_{2.5} samples. The aver-

age recovery for PAHs, n-alkanes and PAEs were

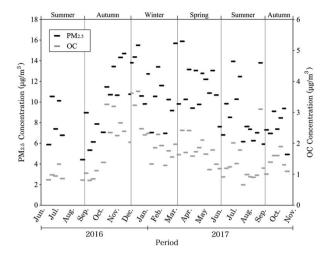
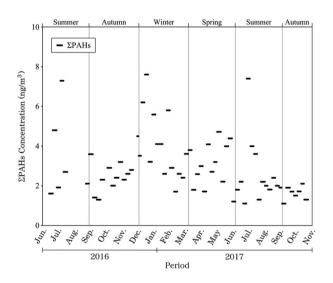
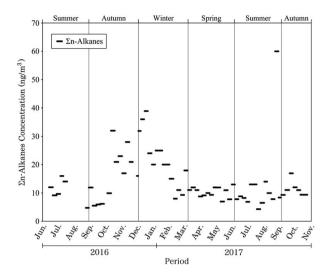



Fig. 2. Temporal variations of PM_{2.5} and OC mass concentrations.

Fig. 3. Temporal variation of ΣPAHs concentration.


DBP, and DCHP).

The limit of detection (LOD) for the individual organic compounds is provided in Tables 2 and 3. It was calculated using the standard deviation of standard solution values (n=7) multiplied by 3. Measurement data below the LOD were replaced with the value of LOD/2 for the calculations in this study.

3. RESULTS AND DISCUSSION

3. 1 Temporal Variations of PM_{2.5} Mass Concentration and OC

A summary of average concentrations of $PM_{2.5}$, OC

Fig. 4. Temporal variation of \sum n-alkanes concentration.

and $OC/PM_{2.5}$ and their ranges in each season are shown in Table 2. These observations are also plotted in Fig. 2 to reveal the temporal variation of PM_{2.5} and OC results. During the study period, PM2 5 and OC had higher concentrations from October 2016 (autumn) to May 2017 (spring) compared with other periods. This implies that PM25 and OC vary seasonally. PM25 and OC showed similar variation patterns over time, and their Pearson's correlation coefficient (R) was 0.80. The overall average value of OC/PM_{2.5} was 17%, which is in good agreement with the value of 19.7% from our previous publication (n = 373) based on data obtained at the same study site (Ichikawa et al., 2015). These results indicate that OC is one of the major chemical components that contributes to PM_{2.5} mass concentration. Identifying the different proportions of organic compounds could help to identify OC source.

3.2 Temporal Variations of Non-Polar Organic Compounds

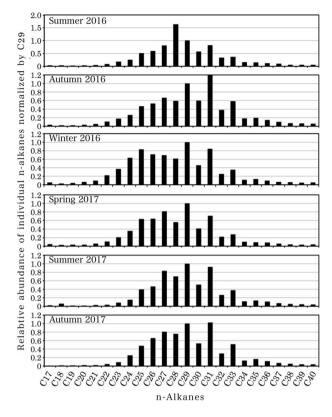
3.2.1 PAHs

PAHs are derived exclusively from the incomplete combustion and pyrolysis of organic materials contained in fossil fuels, coal fuels, lubricant oils, biomass, etc., and are ubiquitous environmental contaminants (Alves, 2008; Park *et al.*, 2006; Simoneit, 2002). There are studies indicating or suggesting the linkage between PAH properties and human health problems such as cancer (IARC, 2013, 2010).

Measurement values of individual PAHs in each sea-

son are shown in Table 2. The summed concentration of 21 species of PAHs is expressed as \sum PAHs. Fig. 3 shows temporal variations of \sum PAHs obtained through the long time series analysis. Winter 2016 showed the highest average \sum PAH concentration (4.0 ng/m³) during the study period and other studies conducted in Japan support our results (Suzuki et al., 2015; Kume et al., 2007; Kakimoto et al., 2002). There were a few samples in early summer (July) and early winter (December-January) showing an elevated level of \sum PAHs; however, most of the samples were below 4 ng/m^3 during the study period and the seasonal variation was little. Kume et al. (2007) have analyzed 21 species of PAHs in $PM_{2.5}$ from February 2001 to January 2002 in Shizuoka, Japan, and their result did not show strong seasonal variations, implying similarity to our result. This result suggests that the emission sources, which are not influenced by the seasons, are the dominant inputs for \sum PAHs within the source areas of the sampling site. The overall mean concentration of \sum PAHs was 2.9 ng/m³, which accounts for 0.030% and 0.19% of PM_{2.5} and OC, respectively. Also, PM_{2.5} and OC have positive correlation with \sum PAHs with the Pearson correlation coefficient (*R*) of 0.57 and 0.42, respectively. Our result is approximately one to two orders of magnitude lower than those observed in China (Wang et al., 2016, 2015). Although the individual amounts of organic compounds and their percentages accounting for PM_{2.5} and OC are small, they could be used as molecular markers for source apportionment, which will be discussed later.

As is evident from Table 2, the lighter weight PAHs $(\sum 3$ -rings = Fl + Phe + Ant) were much lower than that of the heavier weight PAHs ($\sum 4$ -rings = Fluor + $Py + BcP + BaA + Chry + 7,12DaA; \sum 5$ -rings = BbF + BjF + BkF + BeP + BaP + 3MC + DBahA; $\sum 6$ -rings = IP + BghiP + DBalP + DBaiP + DBahP) throughout the year. This is probably because the 3-ring PAHs have relatively higher vapor pressures compared with the higher weight PAHs and tend to partition in the gas phase. The 4-ring PAHs can exist in both gas and particulate phases, whereas the 5-ring and 6-ring PAHs are mainly condensed/adsorbed onto particle phases (Zhang *et al.*, 2016). Among the 4, 5, and 6-ring PAHs, 5-ring PAHs were found to be dominant throughout the year. In summer and autumn, average values of 6-ring PAHs were higher than those of 4-ring PAHs. However, the opposite results were obtained in spring and winter. These results could be attributed to the

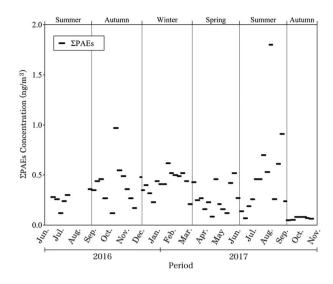

atmospheric temperature (summer > autumn > spring > winter, Table 2), since 4-ring PAHs have lower vapor pressures than 6-ring PAHs.

The highest average concentrations measured in each season among all the PAHs were as follows; BbF and IP in summer 2016, IP in autumn 2016, Fluor in winter 2016, Fluor in spring 2017, IP in summer 2017, and IP in autumn 2017. Although WHO has not drafted a guideline for BaP, it is classified as carcinogenic to humans (Group 1) by the IARC (2012), and is probably the most studied PAH. BaP concentrations were above the LOD for all the samples, but no BaP values exceeded 1 ng/m³ which is an annual mean value for the protection of human health as set out in the Directive 2004/107/EC (EU, 2004).

3.2.2 n-Alkanes

In an urban environment, n-alkanes are emitted from a large variety of sources, including the incomplete combustion of fossil fuels, lubricant oils, biomass burning, and biogenic sources such as wind erosion of the vascular plant waxes and direct suspension of pollen microorganisms (Yadav *et al.*, 2013; Alves *et al.*, 2009; Alves, 2008; Simoneit, 2002; Oros *et al.*, 1999; Rogge *et al.*, 1993a, 1993b, 1993c).

Measurement values of n-alkane homologues in each season are shown in Table 3. The sum of C_{17} - C_{40} n-alkane concentrations is expressed as \sum n-alkanes. Fig. 4 describes the temporal variation of \sum n-alkanes during the study period and the relative abundances of individual n-alkanes normalized by C29, which is one of the most abundant n-alkanes, are presented in Fig. 5 to visually confirm the distribution profile in each season. Winter 2016 showed the higher average \sum n-alkanes concentration (21 ng/m^3) than the other seasons. A few samples in late autumn of 2016 (October-November) and early winter of 2016 (December-January) showed relatively elevated \sum n-alkanes concentration; however, most of the samples had concentrations below 20 ng/m^3 (overall average of 14 ng/m^3) during the study period and the seasonal variation was little. This result suggests that the emission sources, which are not influenced by the seasons, are the dominant inputs for \sum n-alkanes within the source areas of the sampling site. The highest \sum n-alkanes concentration was observed in late summer of 2017, when all of the n-alkane homologues appeared at high concentrations. The overall mean concentration of \sum n-alkanes accounted for 0.14% and 0.84% of


Fig. 5. Relative abundances of individual n-alkanes normalized by C_{29} in each season.

 $PM_{2.5}$ and OC, respectively. Also, $PM_{2.5}$ and OC have positive correlation with \sum n-alkanes with the Pearson correlation coefficient (*R*) of 0.57 and 0.80, respectively.

3.2.3 PAEs

PAEs are widely manufactured as plasticizers to make plastic materials flexible, and also in building materials, food, drinking water, soil, medical devices, cosmetics, children's toys, and other products (Wang *et al.*, 2017; Yao *et al.*, 2016; Chou and Wright, 2006). Several epidemiological studies have demonstrated that human exposure to PAEs can induce adverse effects, and PAEs are suspected to be endocrine disruptors, which has stimulated public concern (Okamoto *et al.*, 2011; Chou and Wright, 2006; Duty *et al.*, 2005, 2003). To our knowledge, there is no previous publication involving the measurement of PAEs in PM_{2.5} collected from the ambient atmosphere of Japan.

Measurement values of PAEs in each season are shown in Table 3. The summed concentration of 5 species of PAEs is expressed as \sum PAEs. Fig. 6 presents the temporal variation of \sum PAEs during the study period.

Fig. 6. Temporal variation of Σ PAEs concentration.

Average \sum PAEs was found to be higher (0.51 ng/m³) in summer 2017 than in other seasons; however, average \sum PAEs in summer 2016 (0.26 ng/m³) was about half the summer 2017 value, so there was no clear seasonal pattern. One sample in late summer of 2017 showed a relatively high level of $\sum PAEs$ (1.8 ng/m³); however, most of the obtained data were below 1 ng/ m³ during the study period and thus no clear seasonal variation was observed. The reason is uncertain but the \sum PAEs were extremely low in autumn 2017. The overall mean concentration of \sum PAEs was 0.36 ng/ m³, which was one and two orders of magnitude lower than \sum PAHs and \sum n-alkanes, respectively. Also, PM_{2.5} and OC did not indicate correlation with \sum PAEs. Therefore, the target PAEs were not substantially emitted within the source area of the sampling site; however, PAEs those were not measured in this study might be contained in high concentrations in PM_{2.5}, so further research should target these nondetected compounds.

3.3 Identification of Possible Sources

3.3.1 Diagnostic Ratios of PAHs

The diagnostic ratios of PAHs are a useful tool to identify possible sources and have been developed and applied by many environmental researchers (Wang *et al.*, 2017, 2016; Hayakawa *et al.*, 2016; Zhang *et al.*, 2016; Mikuška *et al.*, 2015; Alves *et al.*, 2009; Alves, 2008; Park *et al.*, 2006; Brandenberger *et al.*, 2005; Yunker *et al.*, 2002; Simcik *et al.*, 1999; Khalili *et al.*,

${ m AJAE}$ Asian Journal of Atmospheric Environment, Vol. 12, No. 3, 274-288, 2018

Emission		Diagnostic	c ratios			
sources	BeP/(BeP+BaP)	BaA/ (BaA+Chr)	IP/ (IP + BghiP)	Fluor/ (Flour + Py)	BghiP/ BaP	References
Local emission	Index of the aging of particles. Value around 0.5 indicates freshly emitted particles.					Wang et al., 2015; Shen et al., 2013; Alves et al., 2009
Gasoline		0.17-0.38	0.042-0.22	0.37-0.63	0.34-3.3	Rogge <i>et al.</i> , 1993a; Simick <i>et al.</i> , 1999; Khalili <i>et al.</i> , 1995; Li and Kamens, 1993
Diesel		0.45-0.64	0.19-0.70	0.20-0.93	0.36-2.2	Yunker <i>et al.</i> , 2002; Simick <i>et al.</i> , 1999; Khalili <i>et al.</i> , 1995; Rogge <i>et al.</i> , 1993a; Li and Kamens, 1993
Coal			0.35-0.62	0.48-0.85	0.15-1.1	Yunker et al., 2002; Simick et al., 1999
Wood burning		0.36-0.43	0.49-0.77	0.41-0.67	0.64	Yunker <i>et al.</i> , 2002; Khalili <i>et al.</i> , 1995; Li and Kamens, 1993
Coke oven		0.34-0.41	0.61	0.90	0.13-0.20	Hayakawa <i>et al.,</i> 2016; Simick <i>et al.,</i> 1999; Khalili <i>et al.,</i> 1995
Incinerators					1.7-7.1	Simick et al., 1999
Road dust			0.51	0.42	0.91	Yunker et al., 2002; Rogge et al., 1993b
Tire ware				0.17		Rogge et al., 1993b
Brake				0.39	3.5	Rogge et al., 1993b
		Range (Av	verage)			
This study	0.38-0.58 (0.46)	0.29-0.71 (0.43)	0.042-0.56 (0.51)	0.50-0.57 (0.54)	0.52-1.7 (1.1)	

Table 5. Comparison of PAHs dia	gnostic ratios from thi	is study with those re	ported in previous studies.
I	0		

1995; Li and Kamens, 1993; Rogge *et al.*, 1993a, 1993b). The compounds involved in each ratio have the same or similar molecular weight, so it may be assumed that they have similar physicochemical properties. Diagnostic ratios vary during different stages of phase transfer and under environmental degradation. In this study, we calculated diagnostic ratios of BeP/ (BeP + BaP), BaA/(BaA + Chr), IP/(IP + BghiP), Fluor/(Fluor + Py), and BghiP/BaP from the measured PAHs shown in Table 2.

Most fresh exhaust emissions typically contain almost the same amount of BeP and BaP. However, BaP more easily degraded than BeP by photochemical reactions in the ambient atmosphere. The atmospheric lifetime of BaP is estimated as ten times shorter than that of BeP (Kalberer *et al.*, 2002). Therefore, the increment of BeP/(BeP + BaP) can be used as in indicator of the degree of photochemical degradation (i.e., aging) of compounds in the atmospheric environment (Wang *et al.*, 2015; Shen *et al.*, 2013; Alves *et al.*, 2009). The seasonal variation of calculated BeP/(BeP + BaP) in this study ranged from 0.38-0.58. Freshly released BeP/ (BeP+BaP) should have a ratio close to 0.50 (Mikuška *et al.*, 2015; Park *et al.*, 2006), suggesting that most of the PM_{2.5} containing BaP and BeP was emitted from

Table 6. CPI and C_{wax} obtained from the measurement results of individual n-alkanes.

Year	C.		C	PI	C _{wa}	x (%)
rear	Season	n	Range	Average	Range	Average
	Summer	6	0.73-1.4	1.1	4.3-17	9.0
2016	Autumn	12	1.1-2.0	1.6	12-34	23
	Winter	13	1.1-1.6	1.4	9.7-26	19
2017	Spring	13	0.94-3.2	1.7	8.4-53	25
	Summer	13	1.2-1.9	1.6	8.9-32	24
	Autumn	8	0.95-2.0	1.5	7.7-35	22
	Total	65	0.73-3.2	1.5	4.3-53	22

local or nearby regional sources throughout the study period.

Table 5 presents five different types of developed diagnostic ratios from previous studies and includes BeP/(BeP+BaP), BaA/(BaA+Chr), IP/(IP+BghiP), Fluor/(Fluor+Py), and BghiP/BaP (Hayakawa *et al.*, 2016; Wang *et al.*, 2015; Shen *et al.*, 2013; Alves *et al.*, 2009; Yunker *et al.*, 2002; Simcik *et al.*, 1999; Khalili *et al.*, 1995; Li and Kamens, 1993; Rogge *et al.*, 1993a, 1993b) and those obtained in this study. From the comparison of the diagnostic ratios shown in Table 5, most of the diagnostic ratios calculated were

within the range of gasoline, diesel, coal and wood burning emissions. The emissions from gasoline and diesel emissions from vehicles, and coal emissions from industrial sources are not influenced by the seasons, which supports the assumption mentioned above in Section 3.2.1. Therefore, influences of vehicle and industrial emission sources nearby sampling site could be the possible anthropogenic sources of measured PAHs in this study. Kume *et al.* (2007) have analyzed 21 species of PAHs in suspended particles at urban sites of Shizuoka, Japan, within the area of vehicle and industrial emission sources nearby. Their annual means ratios of IP/(IP + BghiP) and BghiP/BaP were 0.51 and 1.28, respectively, which were in good agreement with those obtained in this study.

Moreover, careful consideration of PAHs usage data should be taken in to account when attempting to identify anthropogenic PAHs sources because PAHs can be emitted from various source types. Therefore, other molecular markers and/or tracers should be gathered for more accurate source apportionment.

3.3.2 Historical Distribution, CPI and C_{wax} of n-Alkanes

Table 3 and Fig. 5 indicate that C_{23} - C_{33} were the main homologues contributing to the \sum n-alkanes. Previous research has shown that carbon number with a strong predominance of odd carbon number indicates a significant contribution from biogenic contributors (Rogge *et al.*, 1993c), whose abundances of odd carbon number higher than 24 are approximately one magnitude higher than those of even carbon number. Whereas n-alkanes released from fossil fuel sources do not show such predominant tendency (Alves *et al.*, 2009; Simoneit *et al.*, 1991). Fig. 5 shows that odd-numbered carbon homologues were not dominant during the study period. Therefore, contributions arising from anthropogenic inputs might have been higher than biogenic inputs at the study site.

For the further interpretation of obtained data associated with n-alkanes, we used the carbon preference index (CPI) and contribution of plant wax to n-alkanes (C_{wax}) to assess the variability of sources, and they are listed in Table 6. The CPI can be used to distinguish biogenic and anthropogenic inputs. It is defined as the sum of the concentrations of the odd carbon number n-alkanes ($\sum C_{odd}$) divided by the sum of the concentrations of the even carbon number n-alkanes ($\sum C_{even}$), which was calculated as follows:

$$CPI = \frac{\sum C_{odd}}{\sum C_{even}} = \frac{\sum (C_{17} \text{ to } C_{39})}{\sum (C_{18} \text{ to } C_{40})}$$
(1)

Plant wax n-alkanes exhibit a strong odd carbon number predominance and thus increase the CPI value (Park *et al.*, 2006). Conversely, anthropogenic inputs such as fossil fuels reduce the CPI value. The CPI typical values in the urban environment range from 1.1 to 2.0, while a CPI higher than 2.0 has a stronger biogenic influence (Alves *et al.*, 2009). In the present study, the CPI values during the study period were in the range 0.73-3.2 with an average of 1.5, as shown in Table 6. A CPI value above 2.0 was observed just in one sample in spring 2017 (CPI = 3.2, for 2-10 May), suggesting that most of the measured n-alkanes during the study period were anthropogenic in origin.

Another methodology to analyze the contribution of plant wax sources to n-alkanes can be expressed through C_{wax} (Wang *et al.*, 2015; Yadav *et al.*, 2013; Alves, 2008; Park *et al.*, 2006; Simoneit *et al.*, 1991). C_{wax} gives the percentage concentration input of wax n-alkanes from biogenic sources in sample. The C_{wax} is calculated as follows:

$$C_{wax} = \frac{\sum \left\{ C_n - \frac{(C_{n-1} + C_{n+1})}{2} \right\}}{\sum n \cdot Alkanes} \times 100$$
(2)

where n is the odd number of analyzed n-alkanes. Measured C_n values below the LOD were replaced with the value of LOD/2, and the negative values of $\{C_n - (C_{n-1})\}$ $+C_{n+1})/2$ were determined as zero. Table 6 shows that the percentages of C_{wax} were in the range of 4.3-53% with an average of 22%. The higher percentage values indicate greater contributions from biogenic sources (Wang et al., 2015). The highest C_{wax} value of 53% was calculated from the same sample as CPI = 3.2, which could possibly mean that the contribution of biogenic sources was larger than sample during the period of 2-10 May 2017. Comprehensive evaluation including the historical distributions of n-alkanes homologues, CPI, and C_{wax}, indicates that the observed n-alkanes may largely originate from anthropogenic sources for most of the samples in this study. Further identification of the emission sources of n-alkanes in PM_{2.5} will be conducted in future research.

4. SUMMARY AND CONCLUSIONS

A long time series (approximately 17 months) of quantitative data of non-polar organic compounds constituting PM_{2.5} was created from samples collected at Ichihara, one of the largest industrial areas in Japan. Sample collection and analysis took place continuously from June 2016 to October 2017. The target non-polar organic compounds were 21 species of PAHs, 24 species of n-alkanes, and 5 species of PAHs, and these were simultaneously measured using GC/MS. The results indicate that anthropogenic sources were the dominant inputs for the most PAHs and n-alkanes throughout the study period. Identification of the emission sources of individual organic compounds in PM_{2.5} will be conducted in future research. To our knowledge, this paper describes the first attempt to measure such a large number of different nonpolar organic compounds in PM_{2.5} from the ambient atmosphere of Japan to create a long time series. The findings will provide valuable data and information to environmental researchers. The main findings are as follows:

(1) The average concentrations of \sum PAHs, \sum n-alkanes, and \sum PAEs in each season remained nearly level (except for a few high \sum PAHs in early winter and \sum n-alkanes in late autumn and early winter), and no strong seasonal variations were observed throughout the study period. These results suggest that the emission sources, which are not influenced by the seasons, are the dominant inputs for the target organic compounds.

(2) The contributions of \sum PAHs, \sum n-alkanes, and \sum PAEs to the PM_{2.5} mass concentration were each less than 1%.

(3) The target PAEs were not substantially emitted within the source area of the sampling site.

(4) All of the calculated BeP/(BeP + BaP) ratios were close to 0.50, which indicates that $PM_{2.5}$ containing BaP and BeP were emitted from local or nearby regional anthropogenic sources throughout the study period.

(5) From the analysis of diagnostic ratios, gasoline, diesel and coal emissions could be possible anthropogenic sources of measured PAHs in this study.

(6) The distributions of n-alkane homologues and calculated results of CPI and C_{wax} , indicate that n-alkanes at the study site may largely originate from anthropogenic sources. Further identification of the

emission sources of n-alkanes in $PM_{2.5}$ will be conducted in future research.

REFERENCES

- Ahmed, M., Guo, X., Zhao, X.M. (2016) Determination and analysis of trace metals and surfactant in air particulate matter during biomass burning haze episode in Malaysia. Atmospheric Environment 141, 219-229.
- Alves, C.A. (2008) Characterisation of solvent extractable organic constituents in atmospheric particulate matter: an overview. Anais da Academia Brasileira de Ciências 80, 21-82.
- Alves, C.A., Vicente, A., Evtyugina, M., Pio, C.A., Hoffer, A., Kiss, G., Decesari, S., Hillamo, R., Swietlicki, E. (2009) Characterisation of Hydrocarbons in Atmospheric Aerosols from Different European Sites. International Journal of Environmental and Ecological Engineering 3, 263-269.
- Alves, N.O., Brito, J., Caumo, S., Arana, A., Hacon, S.S., Artaxo, P., Hillamo, P., Teinilä, K., Medeiros, S.R.B., Vasconcellos, P.C. (2015) Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment. Atmospheric Environment 120, 277-285.
- Brandenberger, S., Mohr, M., Grob, K., Neukomb, H.P. (2005) Contribution of unburned lubricating oil and diesel fuel to particulate emission from passenger cars. Atmospheric Environment 39, 6985-6994.
- Chou, K., Wright, R.O. (2006) Phthalates in food and medical devices. Journal of Medical Toxicology 2, 126-135.
- Chow, J.C., Watson, J.G., Pritchett, L.C., Pierson, W.R., Frazier, C.A., Purcell, R.G. (1993) The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. air quality studies. Atmospheric Environment 27, 1185-1201.
- Chow, J.C., Watson, J.G., Crow, D., Lowenthal, D.H., Merrifield, T.Y.A. (2001) Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Science and Technology 34, 23-34.
- Duty, S.M., Silva, M.J., Barr, D.B., Brock, J.W., Ryan, L., Chen, Z., Herrick, R.F., Christiani, D.C., Hauser, R. (2003) Phthalate exposure and human semen parameters. Epidemiology 14, 269-277.
- Duty, S.M., Calafat, A.M., Silva, M.J., Ryan, L., Hauser, R. (2005) Phthalate exposure and reproductive hormones in adult men. Human Reproduction 20, 604-610.
- EU (2004) Directive 2004/107/EC of the European parliament and of the council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. http://eur-lex.europa.eu/ LexUriServ/LexUriServ.do?uri=OJ:L:2005:023:0003:001 6:EN:PDF. (Accessed on February 5, 2018)
- Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., Gon, H.D., Facchini, M.C., Fowler, D., Koren, I., Langford, B., Lohmann, U., Nemitz, E., Pandis, S., Riipinen, I., Rudich, Y., Schaap, M., Slowik, J.G., Spracklen, D.V., Vignati, E., Wild,

Measurements of 50 Non-polar Organic Compounds in $PM_{2.5}$

M., Williams, M., Gilardoni, S. (2015) Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics 15, 8217-8299.

- Hayakawa, K., Tang, N., Morisaki, H., Toriba, A., Akutagawa, T., Sakai, S. (2016) Atmospheric polycyclic and nitropolycyclic aromatic hydrocarbons in an iron-manufacturing city. Asian Journal of Atmospheric Environment 10, 90-98.
- He, L.Y., Hu, M., Huang, X.F., Yu, B.D., Zhang, Y.H., Liu, D.Q. (2004) Measurement of emissions of fine particulate organic matter from Chinese cooking. Atmospheric Environment 38, 6557-6564.
- IARC (2010) IARC monographs on the evaluation of carcinogenic risks to humans. Volume 92. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures.
- IARC (2012) IARC monographs on evaluation of carcinogenic risks to humans. Chemical agents and related occupations. Volume 100F. A review of human carcinogens.
- Ichikawa, Y., Watanabe, T., Horimoto, Y., Ishii, K., Naito, S. (2017) Organic components of PM_{2.5} observed in Chiba Prefecture during the fiscal years 2014-2016. Journal of Environmental Laboratories Association 42, 60-67. (written in Japanese with English abstract, figures and tables).
- Ichikawa, Y., Naito, S., Ishii, K., Oohashi, H. (2015) Seasonal variation of $PM_{2.5}$ components observed in an industrial area of Chiba Prefecture, Japan. Asian Journal of Atmospheric Environment 9, 66-77.
- IPCC (2013) Climate change 2013. The physical science basis. Summary for policymakers, technical summary and frequently asked questions. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, United Kingdom and New York.
- Jacob, D.J. (1999) Introduction to atmospheric chemistry. Princeton University Press, New Jersey, pp. 148-154.
- Kakimoto, H., Matsumoto, Y., Sakai, S., Kanoh, F., Arashidani, K., Tang, N., Akutsu, K., Nakajima, A., Awata, Y., Toriba, A., Kizu, R., Hayakawa, K. (2002) Comparison of atmospheric polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in an industrialized city (Kitakyushu) and two commercial cities (Sapporo and Tokyo). Journal of Health Science 48, 370-375.
- Kalberer, M., Henne, S., Prevot, A.S.H., Steinbacher, M. (2004) Vertical transport and degradation of polycyclic aromatic hydrocarbons in an Alpine Valley. Atmospheric Environment 38, 6447-6456.
- Kawamura, K., Bikkina, S. (2016) A review of dicarboxylic acids and related compounds in atmospheric aerosols: molecular distributions, sources and transformation. Atmospheric Research 170, 140-160.
- Khalili, N.R., Scheff, P.A., Holsen, T.M. (1995) PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment 29, 533-542.
- Kume, K., Ohura, T., Noda, T., Amagai, T., Fusaya, M. (2007) Seasonal and spatial trends of suspended-particle associated polycyclic aromatic hydrocarbons in urban Shizuoka, Japan. Journal of Hazardous Materials 144, 513-521.

- Li, C.K., Kamens, R.M. (1993) The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling. Atmospheric Environment 27A, 523-532.
- Li, X., Chen, M., Le, H.P., Wang, F., Guo, Z., Iinuma, Y., Chen, J., Herrmann, H. (2016) Atmospheric outflow of PM_{2.5} saccharides from megacity Shanghai to East China Sea: Impact of biological and biomass burning sources. Atmospheric Environment 143, 1-14.
- Mikuška, P., Křůmal, K., Večeřa, Z. (2015) Characterization of organic compounds in the PM_F aerosols in winter in an industrial urban area. Atmospheric Environment 105, 97-108.
- Mikuška, P., Kubátková, N., Křůmal, K., Večeřa, Z. (2017) Seasonal variability of monosaccharide anhydrides, resin acids, methoxyphenols and saccharides in $PM_{2.5}$ in Brno, the Czech Republic. Atmospheric Pollution Research 8, 576-586.
- Okamoto, Y., Ueda, K., Kojima, N. (2011) Potential risks of phthalate esters: acquisition of endocrine-disrupting activity during environmental and metabolic processing. Journal of Health Science 57, 497-503.
- Oros, D.R., Standley, L.J., Chen, X., Simoneit, B.R.T. (1999) Epicuticular wax compositions of predominant conifers of Western North America. Zeitschrift für Naturforschung C 54, 17-24.
- Park, S.S., Bae, M.S., Schauer, J.J., Kim, Y.J., Cho, S.Y., Kim, S.J. (2006) Molecular composition of PM_{2.5} organic aerosol measured at an urban site of Korea during the ACE-Asia campaign. Atmospheric Environment 40, 4182-4198.
- Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R.T. (1993a) Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavyduty diesel trucks. Environmental Science and Technology 27, 636-651.
- Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R.T. (1993b) Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environmental Science and Technology 27, 1892-1904.
- Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R.T. (1993c) Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants. Environmental Science and Technology 27, 2700-2711.
- Schwartz, J., Neas, L.M. (2000) Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiology 11, 6-10.
- Shen, G., Tao, S., Wei, S., Zhang, Y., Wang, R., Wang, B., Li, W., Shen, H., Huang, Y., Chen, Y., Chen, H., Yang, Y., Wang, W., Wang, X., Liu, W., Staci, L.M. Simonich, S.L.M. (2012) Emissions of Parent, Nitro, and Oxygenated Polycyclic Aromatic Hydrocarbons from Residential Wood Combustion in Rural China. Environmental Science and Technology 46, 8123-8130.
- Simcik, M.F., Eisenreich, S.J., Lioy, P.J. (1999) Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmospheric Environment 33, 5071-5078.

- Simoneit, B.R.T., Sheng, G., Chen, X., Fu, J., Zhang, J., Xu, Y. (1991) Molecular marker study of extractable organic matter in aerosols from urban areas of China. Atmospheric Environment 25A, 2111-2129.
- Simoneit, B.R.T., Kobayashi, M., Mochida M., Kawamura, K., Lee, M., Lim, H.J. Turpin, B.J., Komazaki, Y. (2004) Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign. Journal of Geophysical Research 109, D19S10.
- Simoneit, B.R.T. (2002) Biomass burning a review of organic tracers for smoke from incomplete combustion. Applied Geochemistry 17, 129-162.
- Simoneit, B.R.T., Sheng, G., Chen, X., Fu, J., Zhang, J., Xu, Y. (1991) Molecular marker study of extractable organic matter in aerosols from urban areas of China. Atmospheric Environment 25A, 2111-2129.
- Suzuki, G., Morikawa, T., Kashiwakura, K., Tang, N., Toriba, A., Hayakawa, K. (2015) Variation of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in airborne particulates collected in Japanese capital area. Journal of Japan Society for Atmospheric Environment 50, 117-122. (written in Japanese with English abstract, figures and tables)
- Ueda, K. (2011) The health effects of fine particulate matter: Evidence among Japanese populations and trends in epidemiological studies. Journal of Japan Society for Atmospheric Environment 46, A7-A13. (in Japanese)
- Wang, J., Ho, S.S., Cao, J., Huang, R., Zhou, J., Zhao, Y., Xu, H., Liu, S., Wang, G., Shen, Z., Han, Y. (2015) Characteristics and major sources of carbonaceous aerosols in PM_{2.5} from Sanya, China. Science of The Total Environment 530-531, 110-119.
- Wang, J., Ho, S.S., Ma, S., Cao, J., Dai, W., Liu, S., Shen, Z., Huang, R., Wang, G., Han, Y. (2016) Characterization of PM_{2.5} in Guangzhou, China: uses of organic markers for supporting source apportionment. Science of The Total Environment 550, 961-971.

- Wang, J., Guinot, B., Dong, Z., Li, X., Xu, H., Xiao, S., Ho, S.S.H., Liu, S., Cao, J. (2017) PM_{2.5}-bound polycyclic aromatic hydrocarbons (PAHs), oxygenated-PAHs and phthalate esters (PAEs) inside and outside middle school classrooms in Xi'an, China: concentration, characteristics and health risk assessment. Aerosol and Air Quality Research 17, 1811-1824.
- WHO (2013) Review of evidence on health aspects of air pollution - RVIHAAP Project. World Health Organization regional office for Europe, Copenhagen.
- Yao, H.Y., Han, Y., Gao, H., Huang, K., Ge, X., Xu, Y.Y., Xu, Y.Q., Jin, Z.X., Sheng, J., Yan, S.Q., Zhu, P., Hao, J.H., Tao, F.B. (2016) Maternal phthalate exposure during the first trimester and serum thyroid hormones in pregnant women and their newborns. Chemosphere 157, 42-48.
- Yadav, S., Tandon, A., Attri, A.K. (2013) Monthly and seasonal variations in aerosol associated n-alkane profiles in relation to meteorological parameters in New Delhi, India. Aerosol and Air Quality Research 13, 287-300.
- Yang, F., Kawamura, K., Chen, J., Ho, K., Lee, S., Gao, Y., Cui, L., Wang, T., Fu, P. (2016) Anthropogenic and biogenic organic compounds in summertime fine aerosols (PM_{2.5}) in Beijing, China. Atmospheric Environment 124, 166-175.
- Yunkera, M.B., Macdonald, R.W., Vingarzan, R., Mitchell, R.H., Goyette, D., Sylvestre, S. (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry 33, 489-515.
- Zhang, M., Xie, J., Wang, Z., Zhao, L., Zhang, H., Li, M. (2016) Determination and source identification of priority polycyclic aromatic hydrocarbons in PM_{2.5} in Taiyuan, China. Atmospheric Research 178-179, 401-414.
- Zhang, Y., Obrist, D., Zielinska, B., Gertler, A. (2013) Particulate emissions from different types of biomass burning. Atmospheric Environment 72, 27-35.