Logical Relations for a Manifest Contract Calculus

Taro Sekiyama
Atsushi Igarashi

Kyoto University

Manifest Contract Calculus [1]

- A typed lambda calculus with (higher-order) software contracts
- hybrid checking of software contracts
- Static type system: refinement type $\{x: T \mid e\}$
e.g. $\{x:$ int $\mid 0<x\}$
- Dynamic checking: cast $\left\langle T_{1} \Rightarrow T_{2}\right\rangle^{\ell}$

$$
\text { e.g. }\langle\text { int } \Rightarrow\{x: \text { int } \mid x<0\}\rangle^{\ell}
$$

[1] Knowles and Flanagan, 2010

Programming in Manifest Contract Calculus

div : int $\rightarrow\{x:$ int $\mid 0 \neq x\} \rightarrow$ int
div "abc" $2(*$ Compiler error $*)$
div $60 \quad(*$ Compiler error $*)$
(* Compiler doesn't know that y is non-zero $*$)
($\lambda(y$:int $) \cdot \operatorname{div} 6 y)$

Programming in Manifest Contract Calculus

div : int $\rightarrow\{x:$ int $\mid 0 \neq x\} \rightarrow$ int
div "abc" $2(*$ Compiler error *)
div $60 \quad(*$ Compiler error $*)$
(* Compiler inserts a cast $*$)
(fun y : int. div $6\left(\langle\text { int } \Rightarrow\{x: \text { int } \mid 0 \neq x\}\rangle^{\ell} y\right)$)

Previous Work: Upcast Elimination

Upcast Elimination [1,2]

An upcast and an identity function are contextually equivalent

An upcast is a cast from a type to its supertype

- $\langle\{x: \text { int } \mid 0<x\} \Rightarrow \text { int }\rangle^{\ell}$
- $\langle\{x \text { :int } \mid \text { is_square } x\} \Rightarrow\{x \text { :int } \mid 0<x\}\rangle^{\ell}$

Upcast elimination is useful for optimization
[1] Knowles and Flanagan, 2010
[2] Belo et al., 2011

Previous Work: Correctness of Proofs

Previous work

- tried to prove upcast elimination by using logical relations
- didn't really prove soundness of the logical relations w.r.t contextual equivalence

	$\lambda_{\mathrm{H}}^{[1]}$	$\mathrm{F}_{\mathrm{H}}{ }^{[2]}$
$\left\langle T_{1} \Rightarrow T_{2}\right\rangle^{\ell} \simeq$ fun x.x	proved	proved
$\simeq \subseteq \approx$	flawed	not proved
$\left\langle T_{1} \Rightarrow T_{2}\right\rangle^{\ell} \approx$ fun x.x	not proved	not proved

\approx : contextual equivalence \simeq : logical relation [1] Knowles and Flanagan, 2010 [2], Belo et al., 2011

Logical Relations for
 a Manifest Contract Calculus, Fixed

Taro Sekiyama

Atsushi Igarashi

Kyoto University

This Work

This work

- fixes the flaws of previous work
- introduces $\mathrm{F}_{\mathrm{H}}^{\mathrm{fix}}$
- a polymorphic manifest contract calculus with fixed-point operator
- non-termination is only effect in $\mathrm{F}_{\mathrm{H}}^{\mathrm{fix}}$

	λ_{H}	F_{H}	$\mathrm{F}_{\mathrm{H}}^{\text {fix }}$
Subsumption rule	\checkmark	\times	\times
Polymorphic types	\times	\checkmark	\checkmark
Fixed-point operator	\times	\times	\checkmark

Contribution

- Semi-typed contextual equivalence
- A sound logical relation w.r.t semi-typed contextual equivalence
- Proof of upcast elimination by using the logical relation above
- We believe correctness of our proof :-)

	λ_{H}	F_{H}	$\mathrm{F}_{\mathrm{H}}^{\mathrm{fix}}$
$\left\langle T_{1} \Rightarrow T_{2}\right\rangle^{\ell} \simeq$ fun x.x	proved	proved	proved
$\simeq \subseteq \approx$	flawed	not proved	d
$\left\langle T_{1} \Rightarrow T_{2}\right\rangle^{\ell} \approx$ fun $\mathrm{x} . \mathrm{x}$	not proved	not proved	proved

Contents

Contents

Overview of $\mathrm{F}_{\mathrm{H}}^{\mathrm{fix}}$

$\mathrm{F}_{\mathrm{H}}^{\mathrm{fix}}$ is a typed lambda calculus with

- polymorphic types,
- refinement types $\{x: T \mid e\}$,
- dependent function types $x: T_{1} \rightarrow T_{2}$,
- casts $\left\langle T_{1} \Rightarrow T_{2}\right\rangle^{\ell}$, and
- fixed-point operator (recursive functions)

	λ_{H}	F_{H}	$\mathrm{F}_{\mathrm{H}}^{\mathrm{fix}}$
Subsumption rule	\checkmark	\times	\times
Polymorphic types	\times	\checkmark	\checkmark
Recursive functions	\times	\times	\checkmark

Types

Refinement types: $\{x: T \mid e\}$

- denote a set of values which
- are in T
- satisfy the contract (boolean expression) e
- e.g. $\{x$:int $\mid 0<x\}=\{1,2,3, \ldots\}$

Dependent function types: $x: T_{1} \rightarrow T_{2}$

- denote a set of functions which
- accept values v of T_{1}
- return values of $[v / x] T_{2}$
- e.g. x :int $\rightarrow\{y:$ int $\mid x<y\}$

Dynamic Checking: Cast

Casts: $\left\langle T_{1} \Rightarrow T_{2}\right\rangle^{\ell}$

- accept values v of T_{1}
- check whether v can behave as T_{2}
- If the checking fails, the cast is blamed with label ℓ
- e.g. $\langle\text { int } \Rightarrow\{x: \text { int } \mid 0<x\}\rangle^{\ell}$
$\langle\text { int } \Rightarrow\{x: \text { int } \mid 0<x\}\rangle^{\ell} 0 \rightsquigarrow^{*} \Uparrow \ell$
$\langle\text { int } \Rightarrow\{x: \text { int } \mid 0<x\}\rangle^{\ell} 2 \rightsquigarrow * 2$

Digression: Pitfall of A-Normal Form

- At first, we gave A-normal form as syntax
- following [3] which uses A-normal form to simplify the definition and the proof
- e $::=v_{1} v_{2}$
<<no parses (char 7): let $\mathrm{x}=* * *$ e1
...
- It is difficult to prove even type soundness
- to require substitution of terms
- A-normal form is not closed under substitution of terms

$$
\left\ulcorner\vdash e_{1}: T_{1} \quad\left\ulcorner, x: T_{1} \vdash e_{2}: T_{2}\right.\right.
$$

<<no parses (char 12): G |- let $\mathrm{x}^{-* * *}$ e1 in

Contents

Review: (Typed) Contextual Equivalence

$e_{1} \approx_{\text {typed }} e_{2}: T$

- e_{1} and e_{2} have the same observable result under any contexts
- which are well-typed and accept any terms of T
- e_{1} and e_{2} are typed at the same type T
$(\lambda(x: \mathrm{int}) .0) \approx_{\text {typed }}(\lambda(x: \mathrm{int}) . x * 0):$ int \rightarrow int
$(\lambda(x:$ int $) .0) \not \ddot{y}_{\text {typed }}(\lambda(x:$ int $) \cdot x+2):$ int \rightarrow int
$(\lambda(x:$ int $) .0) \not \nsim t y p e d ~(\lambda(x$:bool $) .0):$ int \rightarrow int
- Upcast elimination doesn't hold in typed contextual equivalence
- An upcast and an identity function may have different types
- Note lack of a subsumption rule

$$
\begin{array}{c|c|c}
\left\langle T_{1} \Rightarrow T_{2}\right\rangle^{\ell} & \lambda\left(x: T_{1}\right) \cdot x & \lambda\left(x: T_{2}\right) \cdot x \\
\hline T_{1} \rightarrow T_{2} & T_{1} \rightarrow T_{1} & T_{2} \rightarrow T_{2}
\end{array}
$$

- We must relax typed contextual equivalence

Semi-Typed Contextual Equivalence

$e_{1} \approx e_{2}: T$

- e_{1} and e_{2} have the same observable result under any well-typed contexts
- Only e_{1} is typed at T
- e_{2} can even be ill-typed
$(\lambda(x:$ int $) \cdot 0) \approx(\lambda(x:$ int $) \cdot x * 0):$ int \rightarrow int
$(\lambda(x:$ int $) \cdot 0) \not \approx(\lambda(x:$ int $) \cdot x+2):$ int \rightarrow int
$(\lambda(x:$ int $) .0) \approx(\lambda(x$:bool $) .0):$ int \rightarrow int

Formal Definition

Definition

Semi-typed contextual equivalence \approx is the largest set satisfying the following:
(1) If $\Gamma \vdash e_{1} \approx e_{2}: T$, then $\Gamma \vdash e_{1}: T$
(2) If $\emptyset \vdash e_{1} \approx e_{2}: T$, then e_{1} and e_{2} have the same observable result
(3) Reflexivity, Transitivity, (Typed) Symmetry
(4) Compatibility
(5) Substitutivity

Compatibility and Substitutivity Rules

Choose typed terms for substitution on types

- so that the type after the substitution is well-formed
E.g.

Compatibility: term application

$$
\frac{\Gamma \vdash e_{11} \approx e_{21}:\left(x: T_{1} \rightarrow T_{2}\right) \quad \Gamma \vdash e_{12} \approx e_{22}: T_{1}}{\Gamma \vdash e_{11} e_{12} \approx e_{21} e_{22}: T_{2}\left[e_{12} / x\right]}
$$

Substitutivity: value substitution

$$
\frac{\Gamma, x: T_{1}, \Gamma^{\prime} \vdash e_{1} \approx e_{2}: T_{2} \quad \Gamma \vdash v_{1} \approx v_{2}: T_{1}}{\Gamma, \Gamma^{\prime}\left[v_{1} / x\right] \vdash e_{1}\left[v_{1} / x\right] \approx e_{2}\left[v_{2} / x\right]: T_{2}\left[v_{1} / x\right]}
$$

Contents

Overview of Logical Relation

$e_{1} \simeq e_{2}: T$

- \simeq is defined by using
- basic ideas of the logical relation for $\mathrm{F}_{\mathrm{H}}[2]$
- TT-closure[3]
- A method to give a logical relation to a lambda calculus with recursive functions
- Only e_{1} is typed
- similarly to semi-typed contextual equivalence
[2] Belo et al., 2011
[3] Pitts, 2005

How to Define Logical Relation by

(1) Define value relations for base types
bool: $\{($ true,true $),($ false,false $)\}$ int: $\{\ldots,(-1,-1),(0,0),(1,1), \ldots\}$

How to Define Logical Relation by

(3) Define value relations for base types
(2) Define term relations for base types by operation TT

- TT expands value relations to term relations
bool : $\{($ true, not false),(true $\& \&$ true, true)...$\}$

$$
\text { int: }\{(1+1,2),(0 * 3,0+0), \ldots\}
$$

Value relation $\xlongequal{\square}$ Term relation

How to Define Logical Relation by

(1) Define value relations for base types
(2) Define term relations for base types by operation TT
(3) Define value relations for complex types

$$
\text { int } \rightarrow \text { int }:\{(\text { succ, fun } x . x+1), \ldots\}
$$

How to Define Logical Relation by

(1) Define value relations for base types
(2) Define term relations for base types by operation TT
(3) Define value relations for complex types
(9) Define term relations for complex types by operation TT

How to Define Logical Relation by

(1) Define value relations for base types
(2) Define term relations for base types by operation TT
(3) Define value relations for complex types
(9) Define term relations for complex types by operation TT

Relations for Closed Terms

- Value relation: $T(\theta, \delta)^{\mathrm{val}}$
- Term relation: $T(\theta, \delta)^{\mathrm{tm}}$

Here,

- θ is a valuation for type variables in T
- $\theta=\left\{\alpha \mapsto\left(r, T_{1}, T_{2}\right), \ldots\right\}$
r is a term relation and an interpretation of α
- Notation: $\theta_{i}=\left\{\left(\alpha \mapsto T_{i}\right), \ldots\right\}$
- δ is a valuation for variables in T
- $\delta=\left\{x \mapsto\left(v_{1}, v_{2}\right), \ldots\right\}$
- Notation: $\delta_{i}=\left\{\left(x \mapsto v_{i}\right), \ldots\right\}$

Value/Term Relation: Base Types

Base type: B
Value Relation
$\left(v_{1}, v_{2}\right) \in B(\theta, \delta)^{\text {val }}$ iff
$v_{1}=v_{2}$ and v_{1} is a constant of B
Term Relation
$B(\theta, \delta)^{\mathrm{tm}}=\left(B(\theta, \delta)^{\mathrm{val}}\right)^{\mathrm{T} \mathrm{\top}}$

Value/Term Relation:

Dependent Function Types

Value Relation

$\left(v_{1}, v_{2}\right) \in\left(x: T_{1} \rightarrow T_{2}\right)(\theta, \delta)^{\text {val }}$ iff
for any $\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \in T_{1}(\theta, \delta)^{\mathrm{tm}}$,

$$
\left(v_{1} v_{1}^{\prime}, v_{2} v_{2}^{\prime}\right) \in T_{2}\left(\theta, \delta\left\{x \mapsto v_{1}^{\prime}, v_{2}^{\prime}\right\}\right)^{\mathrm{tm}}
$$

Term Relation

$$
\left(x: T_{1} \rightarrow T_{2}\right)(\theta, \delta)^{\mathrm{tm}}=\left(\left(x: T_{1} \rightarrow T_{2}\right)(\theta, \delta)^{\mathrm{val}}\right)^{\top \top}
$$

Value/Term Relation: Refinement Types

Value Relation

$\left(v_{1}, v_{2}\right) \in\{x: T \mid e\}(\theta, \delta)^{\text {val }}$ iff

- $\left(v_{1}, v_{2}\right) \in T(\theta, \delta)^{\mathrm{tm}}$
- $\theta_{1}\left(\delta_{1}\left(\left[v_{1} / x\right] e\right)\right) \rightsquigarrow^{*}$ true
- $\theta_{2}\left(\delta_{2}\left(\left[v_{2} / x\right] e\right)\right) \rightsquigarrow^{*}$ true

Term Relation

$$
\{x: T \mid e\}(\theta, \delta)^{\mathrm{tm}}=\left(\{x: T \mid e\}(\theta, \delta)^{\mathrm{val}}\right)^{\mathrm{T} T}
$$

Logical Relation for Open Terms

Definition (Logical Relation for Open Terms)
$\Gamma \vdash e_{1} \simeq e_{2}: T$ iff
(1) $\Gamma \vdash e_{1}: T$
(2) $\left(\theta_{1}\left(\delta_{1}\left(e_{1}\right)\right), \theta_{2}\left(\delta_{2}\left(e_{2}\right)\right)\right) \in T(\theta, \delta)^{\mathrm{tm}}$ where $\Gamma \vdash \theta ; \delta$

- e_{1} and e_{2} are related for well-formed substitution θ and δ

Properties of Logical Relation

Theorem (Soundness)
If $\Gamma \vdash e_{1} \simeq e_{2}: T$, then $\Gamma \vdash e_{1} \approx e_{2}: T$

- Prove that \simeq satisfies the properties defining \approx

> Theorem (Completeness w.r.t Typed Terms) If $\Gamma \vdash e_{1} \approx e_{2}: T$ and $\Gamma \vdash e_{2}: T$, then $\Gamma \vdash e_{1} \simeq e_{2}: T$

- An orthodox method doesn't go through

Soundness: Overview of Proof

We must prove that for soundness
the logical relation satisfies

- reflexivity, transitivity, typed symmetry
- compatibility
- substitutivity

Note that

- it suffices to prove only compatibility and substitutivity in [3]
- all the properties are proved in this work
[3] Pitts, 2005

Contents

Upcast Elimination

Upcast Elimination

An upcast and an identity function are contextually equivalent

Lemma

If $\Gamma \vdash T_{1}<: T_{2}$, then
$\Gamma \vdash\left\langle T_{1} \Rightarrow T_{2}\right\rangle^{\ell} \simeq\left(\lambda\left(x: T_{1}\right) \cdot x\right): T_{1} \rightarrow T_{2}$
Corollary
If $\Gamma \vdash T_{1}<: T_{2}$, then
$\Gamma \vdash\left\langle T_{1} \Rightarrow T_{2}\right\rangle^{\ell} \approx\left(\lambda\left(x: T_{1}\right) \cdot x\right): T_{1} \rightarrow T_{2}$

Contents

Conclusion

- A sound logical relation w.r.t semi-typed contextual equivalence
- Proof of upcast elimination

Technically,

- TT-closure works in manifest contract calculus with non-termination
- The proofs of the properties are troublesome
- "Semi-typedness" doesn't complicate the proof of soundness
- affects the proof of completeness

Future Work

- Unrestricted completeness
- removal of "typedness" assumption
- Correctness of other optimizations
- Effects other than non-termination

