CPS Transformation with Affine Types for Implicit Polymorphism

Taro Sekiyama

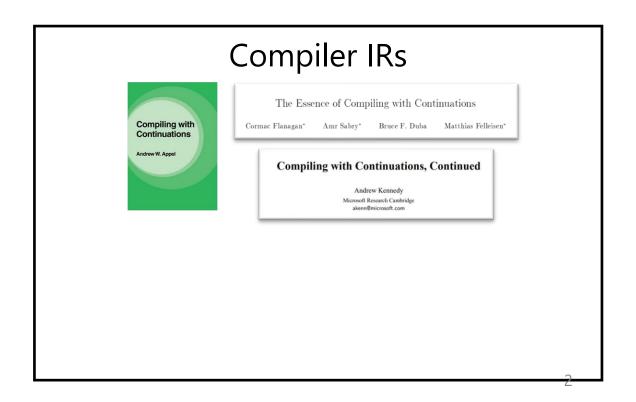
National Institute of Informatics

CPS transformation

Exposing control flow via explicit access to continuations $[\![\lambda f.42 + (f \ 0)]\!] = \lambda f.\lambda k.f \ 0 \ (\lambda x.k \ (42 + x))$

■Applications

Semantics of control operators



CPS transformation with type preservation

□ Exposing control flow via explicit access to continuations

$$\llbracket \lambda f. 42 + (f 0) : \tau \rrbracket = \lambda f. \lambda k. f 0 (\lambda x. k (42 + x)) : \llbracket \tau \rrbracket$$

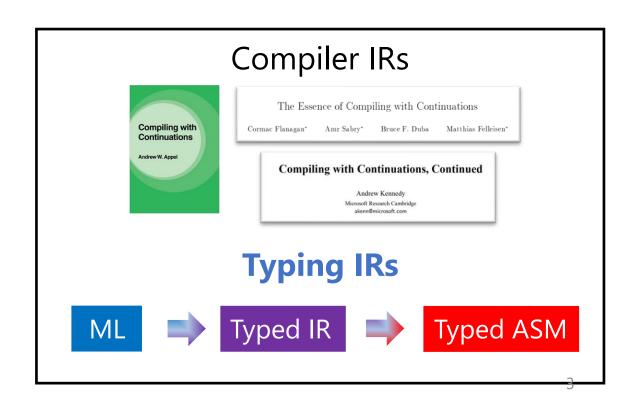
■ Applications

Semantics of control operators

Fine-grained typing of control operators

$$\Gamma; \alpha \vdash e : \tau; \beta$$

$$\frac{\Gamma, x: \tau \rightarrow \bot \vdash e : \bot}{\Gamma \vdash C \lambda x. e : \tau}$$



CPS transformation for polymorphism

Explicit polymorphism ($\Lambda \alpha$. e is a value)

Explicit Polymorphism and CPS Conversion

Robert Harper Mark Lillibridge
October, 1992
CMU-CS-92-210

Abstract

We study the typing properties of CPS conversion for an extension of F_{ω} with control operators. Two classes of evaluation strategies are considered, each with call-by-name and call-by-value variants. Under the "standard" strategies, constructor abstractions are values, and constructor applications can lead to non-trivial control effects. In contrast, the "ML-like" strategies evaluate beneath constructor abstractions, reflecting the usual interpretation of programs in languages based on implicit polymorphism. Three continuation passing style sub-languages are considered

CPS transformation for polymorph

$$\frac{e_1 \mapsto e_2}{\Lambda \alpha. e_1 \mapsto \Lambda \alpha. e_2}$$

Implicit polymorphism (the body of $\Lambda \alpha$. e can be evaluated)

Polymorphic Type Assignment and CPS Conversion*

ROBERT HARPER[†]

MARK LILLIBRIDGE[‡]

School of Computer Science Carnegie Mellon University (rwh@cs.cmu.edu)

(mdl@cs.cmu.edu)

We obtain CPS transforms for the call-by-value interpretation, *provided that the polymorphic let is restricted to values*.

transform. This typing property may be extended to Scheme-like continuation-passing primitives, from which the soundness of these extensions follows. We study the extension of these results to the Damas-Milner polymorphic type assignment system under both the call-by-value and call-by-name interpretations. We obtain CPS transforms for the call-by-value interpretation, provided that the polymorphic let is restricted to values. and for the call-by-name interpretation with no restrictions. We prove that there is no call-by-value CPS transform for the full Damas-Milner language that validates the Meyer-Wand typing property and is equivalent to the standard call-by-value transform up to operational equivalence.

Goal of this work

Long-term goal

Obtaining type-preserving CPS transformation for implicit polymorphism without value restriction

Short-term goal

Obtaining type-preserving CPS transformation for the implicit version of System F

Note: support for effects with other restriction (e.g. relaxed value restriction) is left open

Review: CPS transformation

$$[\![\lambda x. e]\!] = \lambda k. k \lambda x. [\![e]\!]$$
$$[\![x]\!] = \lambda k. k x$$
$$[\![e_1 e_2]\!] = \lambda k. [\![e_1]\!] (\lambda x. [\![e_2]\!] (\lambda y. x y k))$$

Factorizing CPS transformation [Danvy'92]

1. Naming intermediate results of computation

$$e_1 e_2 \implies \det x = e_1 e_2 \operatorname{in} x$$

2. Sequencing computation by lifting redexes

$$x (\text{let } y = e_1 \text{ in } e_2) \implies \text{let } y = e_1 \text{ in } x e_2$$

3. Making continuations explicit

Factorizing CPS transformation [Danvy'92]

1. Naming intermediate results of computation

$$e_1 e_2 \implies \det x = e_1 e_2 \operatorname{in} x$$

•• Sequencing computation by lifting redexes

$$x (\text{let } y = e_1 \text{ in } e_2) \implies \text{let } y = e_1 \text{ in } x e_2$$

3. Making continuations explicit

Redex lifting as source-level reduction [Sabry+'92]

$$E[(\lambda x: \tau. e_1) e_2] \mapsto (\lambda x: \tau. E[e_1]) e_2$$
(if $x \notin fv(E) \land E \neq \Box$)

This rule conflicts with implicit polymorphism due to the existence of evaluation contexts like $\Lambda \alpha$. \Box

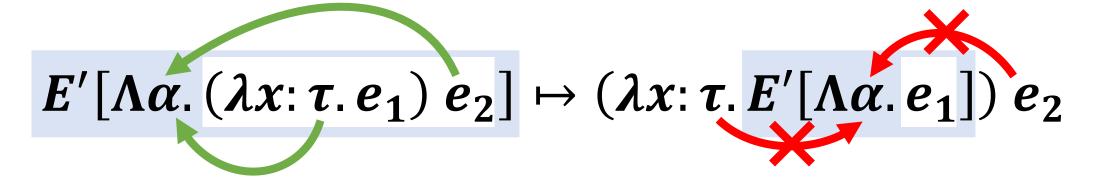
Redex lifting as source-level reduction [Sabry+'92]

$$E[(\lambda x: \tau. e_1) \ e_2] \mapsto (\lambda x: \tau. E[e_1]) \ e_2$$
 (if $x \notin fv(E) \land E \neq \Box$)

Replacing by $E'[\Lambda \alpha. \Box]$

This rule conflicts with implicit polymorphism due to the existence of evaluation contexts like $\Lambda \alpha$. \Box

Redex lifting in implicit polymorphism



Problem: the reduction "intrudes" the scope of α , invaliding the references to α in τ and e_2

 $\Lambda \alpha$ must be *lowered* to generalize α in e_1

 $\Lambda \alpha$ must be *lifted* to bind α in τ and e_2

Key idea of our solution

Decomposing $\Lambda \alpha$ into more atomic constructors

Restrictions $\nu\alpha$. e

only bind α (not generalize)

$$\frac{\Gamma, \alpha \vdash e : \tau}{\Gamma \vdash \nu \alpha. e : \tau} \quad a \notin ftv(\tau)$$

Open type abstractions $\Lambda^{\circ}\langle \alpha, e \rangle$

only generalize α (not bind)

$$\frac{\Gamma \vdash e : \tau \quad \alpha \in \Gamma}{\Gamma \vdash \Lambda^{\circ} \langle \alpha. e \rangle : \forall \alpha. \tau}$$

Relationship to type abstraction: $\Lambda \alpha$. $e \equiv \nu \alpha$. $\Lambda^{\circ} \langle \alpha, e \rangle$

Remark: These typing rules don't imply type safety and need refinement as shown later

Examples

Restrictions $v\alpha$. e

$$\Gamma, \alpha \vdash e : \tau$$

$$\Gamma \vdash \nu \alpha. e : \tau$$

Open type abstractions $\Lambda^{\circ}\langle \alpha, e \rangle$

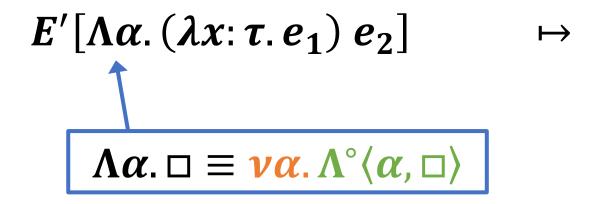
$$\Gamma \vdash e : \tau \quad \alpha \in \Gamma$$

$$\Gamma \vdash \Lambda^{\circ}\langle \alpha.e \rangle : \forall \alpha.\tau$$

$$\vdash \nu\alpha. \Lambda^{\circ}\langle\alpha, \lambda x: \alpha. x\rangle: \forall \alpha. \alpha \rightarrow \alpha$$

$$\forall \quad \Lambda^{\circ} \langle \alpha, \lambda x : \alpha, x \rangle : \forall \alpha, \alpha \rightarrow \alpha$$

$$\alpha, x: \alpha \to \alpha \vdash \Lambda^{\circ}(\alpha, x) : \forall \alpha. \alpha \to \alpha$$



$$E'[\nu\alpha.\Lambda^{\circ}\langle\alpha,(\lambda x:\tau.e_{1})e_{2}\rangle] \mapsto \Lambda\alpha.\square \equiv \nu\alpha.\Lambda^{\circ}\langle\alpha,\square\rangle$$

$$E'[\nu\alpha.\Lambda^{\circ}\langle\alpha,(\lambda x;\tau.e_1)e_2\rangle] \mapsto \nu\alpha.E'[\Lambda^{\circ}\langle\alpha,(\lambda x;\tau.e_1)e_2\rangle]$$
 ($\nu\alpha$ is lifted)

$$E'[\nu\alpha.\Lambda^{\circ}\langle\alpha,(\lambda x:\tau.e_{1})\;e_{2}\rangle]\mapsto \nu\alpha.E'[\Lambda^{\circ}\langle\alpha,(\lambda x:\tau.e_{1})\;e_{2}\rangle]$$
 ($\nu\alpha$ is lifted) $\mapsto \nu\alpha.(\lambda x:\tau.E'[\Lambda^{\circ}\langle\alpha,e_{1}\rangle])\;e_{2})$ (the redex is lifted)

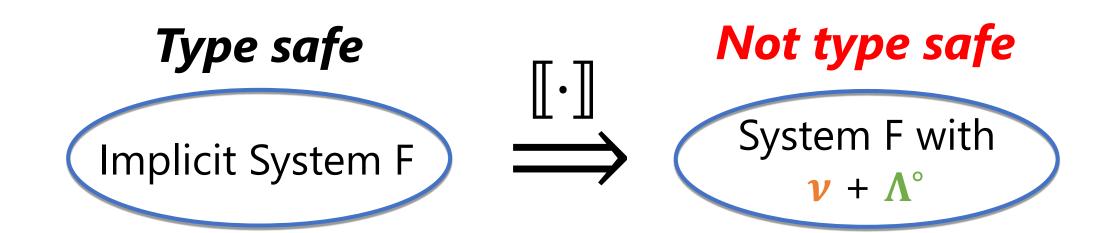
$$E'[vlpha, \Lambda^{\circ}\langle lpha, (\lambda x : au. e_1) \ e_2
angle] \mapsto vlpha. E'[\Lambda^{\circ}\langle lpha, (\lambda x : au. e_1) \ e_2
angle]$$
 ($vlpha$ is lifted)
$$\mapsto vlpha. (\lambda x : au. E'[\Lambda^{\circ}\langle lpha, e_1
angle]] \ e_2)$$
 (the redex is lifted) Requirements for typing Generalize $lpha$ in e_1 Bind $lpha$ in au and e_2

By lowering $\Lambda^{\circ}\langle \alpha, \Box \rangle$

How solved?

By lifting $\nu\alpha$

What we have got



Unsafety by re-generalization

```
Let M \equiv \nu\alpha. \Lambda^{\circ}\langle\alpha,\lambda x:\alpha. \Lambda^{\circ}\langle\alpha,\lambda y:\alpha.x\rangle\rangle

\vdash M: \forall \alpha.\alpha \rightarrow \forall \alpha.\alpha \rightarrow \alpha

So \vdash (M \text{ bool true}) \text{ int } 0: \text{int}
```

But (*M* bool true) int $0 \mapsto^* true$

Restrictions $v\alpha$. e

 $\frac{\Gamma, \alpha \vdash e : \tau}{\Gamma \vdash \nu \alpha, e : \tau}$

Open type abstractions $\Lambda^{\circ}\langle \alpha, e \rangle$

 $\frac{\Gamma \vdash e : \tau \quad \alpha \in \Gamma}{\Gamma \vdash \Lambda^{\circ} \langle \alpha. e \rangle : \forall \alpha. \tau}$

Unsafety by re-generalization

Let $M \equiv \nu \alpha . \Lambda^{\circ} \langle \alpha, \lambda x : \alpha . \Lambda^{\circ} \langle \alpha, \lambda y : \alpha . x \rangle \rangle$

Cause: The same type variable may be generalized multiple times

Solution: Using linear / affine typing

Restrictions $\nu\alpha$. e

 $\frac{\Gamma, \alpha \vdash e : \tau}{\Gamma \vdash \nu \alpha, e : \tau}$

Open type abstractions $\Lambda^{\circ}\langle \alpha, e \rangle$

 $\frac{\Gamma \vdash e : \tau \quad \alpha \in \Gamma}{\Gamma \vdash \Lambda^{\circ} \langle \alpha. e \rangle : \forall \alpha. \tau}$

Type-safe CPS target language Λ^{open}

Polymorphic affine lambda calculus

+ restrictions + open type abstractions

Syntax

```
Types A,B::=\alpha \mid \forall \alpha.A \mid A \multimap B \mid !A \mid \text{int} \mid ...
Terms M::=x \mid c \mid \lambda x.M \mid M_1 M_2 \mid \Lambda \alpha.M \mid MA \mid
!M \mid \text{let} \, !x = M_1 \text{ in } M_2 \mid \nu a.M \mid \Lambda^{\circ} \langle \alpha,M \rangle
```

Semantics (excerpt)

$$\frac{M_1 \mapsto M_2}{\Lambda^{\circ}\langle \alpha, M_1 \rangle \mapsto \Lambda^{\circ}\langle \alpha, M_2 \rangle} \qquad \Lambda^{\circ}\langle \alpha, V \rangle \mapsto \Lambda \alpha. V$$

Type system

 π must be **1** or **0**, expressing if α can be generalized or not

Uses
$$\pi ::= 0 \mid 1 \mid \omega$$

Typing contexts $\Gamma ::= \emptyset \mid \Gamma, x :^{\pi} A \mid \Gamma, \alpha^{\pi}$

$$\frac{\Gamma, \alpha^{1} \vdash M : A \quad \alpha \notin ftv(A)}{\Gamma \vdash \nu \alpha. M : A} \qquad \frac{\Gamma_{1}, \alpha^{0}, \Gamma_{2} \vdash M : ! A}{\Gamma_{1}, \alpha^{1}, \Gamma_{2} \vdash \Lambda^{\circ} \langle \alpha. M \rangle : ! \forall \alpha. A}$$

CPS transformation [[·]], a bit formally

Mapping from typing derivations in implicit System F to Λ^{open}

$$\left[\!\left[\frac{\Theta, \alpha \vdash e : \tau}{\Theta \vdash e : \forall \alpha . \tau}\right]\!\right] = \lambda k : \left[\!\left[\forall \alpha . \tau\right]\!\right] . \nu \alpha . \left[\!\left[\Theta, \alpha \vdash e : \tau\right]\!\right] (\lambda x : \left[\!\left[\tau\right]\!\right] . k \Lambda^{\circ} \langle \alpha, x \rangle)$$

Type preservation

Given a derivation D of $\Theta \vdash e : \tau$ in implicit System F,

 $\llbracket \mathbf{\Theta} \rrbracket \vdash \llbracket \mathbf{D} \rrbracket : \llbracket \boldsymbol{ au} \rrbracket$ is derivable in $\boldsymbol{\Lambda}^{\mathrm{open}}$

Other topics covered in the paper

- ☐ Meaning preservation of the CPS transformation
 - ➤ via Plotkin's CPS transformation
- \square Parametricity of Λ^{open}
 - ➤by a step-indexed Kripke logical relation

Future directions

- □Addressing control operators (w/ and w/o value restriction)
 - Sketched for deep effect handlers in row effect typing by [Hillerström et al., FSCD'17]
 - ➤ What about:
 - ➤Other forms of effect handlers (e.g., shallow and lexically scoped handlers)?
 - ➤Other effect typing (e.g., contextual polymorphism)?
- □ Extending to other binding constructs under which evaluation proceeds
 - ➤ E.g., staged computation

Conclusion

Type-preserving CPS transformation is challenging for implicit polymorphism without the value restriction

- □Addressed implicit System F
 - ➤ by a new CPS target language with restrictions, open type abstractions, and affine types
- □What about effectful languages like OCaml?