CPS Transformation with Affine
Types for Implicit Polymorphism

Taro Sekiyama
National Institute of Informatics

Will be presented at ICFP 2021

CPS transformation

dExposing control flow via explicit access to continuations
[Af. 42+ (f0)] =Af.2k.f0(Ax.k (42 +x))

JApplications

Semantics of control operators

[C Ax.e] = Ak.[Ax.e](Ay.Ak' . ky) (Az.z)
[shift Ax.e] = Ak. [Ax.e] (Ay. Ak k' (k y)) (Az.2)
[reset e] = Ak.k ([e] (Ax.x))

Compiling with
Continuations
Andrew W. Appel

Compiler IRs

The Essence of Compiling with Continuations

Compiling with Continuations, Continued

CPS transformation with type preservation

dExposing control flow via explicit access to continuations
[Af-42+ (f0): 7] = Af.2k.f O (Ax.k (42 + x)) : [7]

JApplications

Semantics of control operators Compiler IRs

The Essence of Compiling with Continuations

[C Ax.e] = Ak.[Ax.e](Ay.Ak' . ky) (Az.z)
[shift Ax. e] = Ak. [Ax.e] (Ay.Ak'.k'(k y)) (Az.2)
[reset e] = Ak.k ([e] (Ax.x))

Compiling with Continuations, Continued

akenn@microsoft.com

Fine-grained typing of .
control operators Typing IRs

Fatke:rp I'xxtolre:l = [T » NSy

''FCAx.e: T

CPS transformation for polymorphism
Explicit polymorphism (Aa. e is a value)

Explicit Polymorphism and CPS Conversion

Robert Harper Mark Lillibridge
October, 1992
CMU-CS5-92-210

Abstract

We study the typing properties of CPS conversion for an extension of F, with control opera-
tors. Two classes of evaluation strategies are considered, each with call-by-name and call-by-value
variants. Under the “standard” strategies, constructor abstractions are values, and constructor
applications can lead to non-trivial control effects. In contrast, the “ML-like” strategies evalu-
ate beneath constructor abstractions, reflecting the usual interpretation of programs in languages

}1}1.R(—‘('I nn iTI']T\H{"H. T]()IUTTH\T'T\I’]'}‘QTTI I-Iﬂ'l'l'l‘l’—‘t’—‘ (‘f‘lTlf.i'llTl'fl.fi(\Tl T\'A..‘«'.‘-‘.'iTID‘ Qt.\.’l(—‘ =1 I\-I}].TIO"I'I}IQ‘(—".‘«' arTe {'f\TlH’I('I[—‘T‘(—‘('I

CPS transformation for polymorph __¢é~ ¢

Aa.eq » Aa.e,
polymorphism (the body of Aa. e can be evaluated)

Polymorphic Type Assignment and CPS Conversion-

ROBERT HARPERT (rwh@cs.cmu.edu)

MARK LILLIBRIDGE} (mdl@cs.cmu.edu)

School of Computer Science
Carnegie Mellon University

— T

MAIEY O ATNOE O eI

We obtain CPS transforms for the call-by-value interpretation,
provided that the polymorphic let is restricted to values.

transform. This typing property may be extended to Scheme-hke continuation-passing
primitives, from which the soundness of these extensions follows. We study the extension
of these results to the Damas-Milner polymorphic type assignment system under both
the call-by-value and call-by-name interpretations. We obtain CPS transforms for the
call-by-value interpretation, provided that the polymorphic let is restricted to values.
and for the call-by-name interpretation with no restrictions. We prove that there is
no call-by-value CPS transform for the full Damas-Milner language that validates the
Meyer-Wand typing property and is equivalent to the standard call-by-value transform
up to operational equivalence.

Goal of this work

Long-term goal

Obtaining type-preserving CPS transformation for
implicit polymorphism without value restriction

Short-term goal

Obtaining type-preserving CPS transformation for
the implicit version of System F

Note: support for effects with other restriction (e.g. relaxed value restriction) is
left open

Review: CPS transformation

[Ax.e] = Ak. k Ax. [e]
[x] = Ak. k x

le1 e2] = Ak.[e1] (Ax.[e;] (Ay.x y k))

Factorizing CPS transformation [Danvy'92]

1. Naming intermediate results of computation

eje, = letx=eje,inx
2. Sequencing computation by lifting redexes
x(lety=e;ine;) = lety=e;inxe,

3. Making continuations explicit

Factorizing CPS transformation [Danvy'92]

1. Naming intermediate results of computation

eje, = letx=eje,inx
@ Sequencing computation by lifting redexes
x(lety=e;ine;) = lety=e;inxe,

3. Making continuations explicit

10

Redex lifting as source-level reduction (sabry+92;

E|(Ax:T.eq) e;] » (Ax:T.E|eq]) ey
(if x € fv(E) ANE + 0O)

This rule conflicts with implicit polymorphism
due to the existence of evaluation contexts like Aa. O

Redex lifting as source-level reduction (sabry+92;

E,</1x: T.eq) ey| » (Ax:1.Eleq]) e,

Replacing by E'[Aa. O]

This rule conflicts with implicit polymorphism
due to the existence of evaluation contexts like Aa. O

Redex lifting in implicit polymorphism

N\

E'|Aa. (Ax:T.eq) e;] » (Ax: 1. E'|Aa.e4]) e,

¢

Problem: the reduction “intrudes” the scope of «,
invaliding the references to a in T and e,

Aa must be lowered
to generalize a in e4

VERSUS

Aa must be lifted
to bind ain T and e,

Key idea of our solution

Decomposing Aa into more atomic constructors

only bind a (not generalize)

only generalize a (not bind)

Natle:t I'He: 1t aerl
a ¢ ftv(r)
I' - T I' - Va. T
Relationship to type abstraction: Aa. e = e

Remark: These typing rules don’t imply type safety and need refinement

as shown later

Restrictions va. e Open type

abstractions A’(q, e)
Examp|eS Natre:t I'Fe: T a€eTl
F'-va.e:t '-A(ax.e):Va.t

Fva. N (o Ax:a.x) :Va.a > «

AN o Ax:a.x):Va.a - a

a,x:axa->atr N x) Va.a - «a

15

Redex lifting with decomposed type abstraction

E'|Aa.(Ax:T.eq) es] -

|

Aa.O0 =

Redex lifting with decomposed type abstraction

E'lva. A (a,(Ax:T.eq) ep)] »

|

‘ Aa.O0 = AN{a,0) ‘

Redex lifting with decomposed type abstraction

E'| (Ax:T.eq) ey)] » E'| (Ax:T.eq) ey)]
(va is lifted)

Redex lifting with decomposed type abstraction

E'| (Ax:T.eq) ey)] » E'| (Ax:T.eq) ey)]
(va is lifted)

- (Ax:T. E'| eq1)]) el)
(the redex is lifted)

Redex lifting with decomposed type abstraction

E'| (Ax:T.eq) ey)] » E'| (Ax:T.eq) ey)]
(va is lifted)

- (Ax:T. E'| eq1)]) el)
(the redex is lifted)

Requirements

p : Generalize a in eq Bind a in T and e,
or typing

How solved? By lowering O By lifting

What we have got

Type safe

@icit System)

[]
—

Not type safe

System F with
v+ A

21

Unsafety by re-generalization

Let M = Ax: a. Ay:a.x

FM:Va.a->Va.a - «a
SO + (M bool true) int 0 : int

But (M bool true) int 0 »* true

Nalke:t I'Fe:1t a€erl
I' + T I' + :vVa.t

Unsafety by re-generalization

Let M = v Ao, Ax: . A (o, Ay . X))

Cause: The same type variable may be
generalized multiple times

Solution: Using linear / affine typing

o Open type
Restrictions va. e abstractions A°(q, e)
ate:t Frre:t acl

F'rva.e:t '-A(ax.e):Va.t

23

Type-safe CPS target language A°P€"

Polymorphic lambda calculus
+ +
Syntax
Types A,B ::= a|Va.A| | A]int] ...

Terms M ::= x|c|Ax.M| M{M, |Ac. M | M A |
| |

Semantics (excerpt)
Ml - MZ

Ao My) o Aamy eV e Aed

Type system
Tt must be 1 or 0, expressing
if @ can be generalized or not

Usesm :=0|1| w]

Typing contexts T =@ |T,x:"A|T,a”™

Nalt-M:A a¢ftv(A) I, a’,T, - M:' A
I+ A I, al,T; : IVa. A

25

CPS transformation [[-], a bit formally

Mapping from typing derivations in implicit System F to A°P¢"

" Q,ake:T]
Ore:Va.rt

= Ak: [Va.t].va. [0,a e :] (Ax: [T]. k A" (ax, x)

FO x:7€0®
[OFx : 7] = Aa.Ak.k!x [

[O,x:t1+Fe:

FO
ty=(c)] = Aa.dkk[c: ty~ (o)
R yis fresh

C_VAR

C_ConsT

C A
[OF ixe: 1 —] =AMk (Aylet!x=yinR) —

[Ore : 1y >)] =R [OWe : 1] = R, xis fresh
- C Arp
[OFe e : n] = Aa.Ak.Rya (AN.Ry a (Ay.let!z=xinzyak))
[©,fFre: 1] =R
[©Fe: Vpr] = Aa.AkvB. Ra (Ax.k XS, x))
[OFre: V=R O r n
[OFe: n[n/fl] = Aark.Ra (Axlet!y = xink!(y[n1]v))

C_TABs

C _TArpr

26

Type preservation

Given a derivation D of @ + e : T in implicit System F,
[0] + [D] : [z] is derivable in A°Pen

Other topics covered in the paper

dMeaning preservation of the CPS transformation
»>via Plotkin's CPS transformation

dParametricity of A°P¢"
»>by a step-indexed Kripke logical relation

Future directions

JAddressing control operators (w/ and w/o value restriction)

»Sketched for deep effect handlers in row effect typing by
[Hillerstrom et al., FSCD'17]

»What about:
»Other forms of effect handlers (e.g., shallow and lexically scoped handlers)?
»Other effect typing (e.g., contextual polymorphism)?

UExtending to other binding constructs under which evaluation
proceeds

»>E.g., staged computation

29

Conclusion

Type-preserving CPS transformation is challenging
for implicit polymorphism without the value restriction

JAddressed implicit System F

»by a new CPS target language with
restrictions, open type abstractions, and affine types

dWhat about effectful languages like OCaml?

