
CPS Transformation with Affine
Types for Implicit Polymorphism

Taro Sekiyama

National Institute of Informatics

Will be presented at ICFP 2021
1

CPS transformation

❑Exposing control flow via explicit access to continuations

𝝀𝒇. 𝟒𝟐 + 𝒇 𝟎 ∶ 𝝉:= 𝝀𝒇. 𝝀𝒌. 𝒇 𝟎 𝝀𝒙. 𝒌 𝟒𝟐 + 𝒙 ∶ 𝝉 :

❑Applications

Semantics of control operators Compiler IRs

𝓒 𝝀𝒙. 𝒆 = 𝝀𝒌. 𝝀𝒙. 𝒆 𝝀𝒚. 𝝀𝒌′. 𝒌 𝒚 (𝝀𝒛. 𝒛)

𝐬𝐡𝐢𝐟𝐭 𝝀𝒙. 𝒆 = 𝝀𝒌. 𝝀𝒙. 𝒆 𝝀𝒚. 𝝀𝒌′. 𝒌′ 𝒌 𝒚 (𝝀𝒛. 𝒛)

𝐫𝐞𝐬𝐞𝐭 𝒆 = 𝝀𝒌. 𝒌 (𝒆 𝝀𝒙. 𝒙)

2

CPS transformation with type preservation

❑Exposing control flow via explicit access to continuations

𝝀𝒇. 𝟒𝟐 + 𝒇 𝟎 ∶ 𝝉 := 𝝀𝒇. 𝝀𝒌. 𝒇 𝟎 𝝀𝒙. 𝒌 𝟒𝟐 + 𝒙 ∶ 𝝉 :

❑Applications

Fine-grained typing of

control operators Typing IRs

𝚪;𝜶 ⊢ 𝒆 ∶ 𝝉; 𝜷
𝚪, 𝐱: 𝝉 →⊥ ⊢ 𝒆 ∶⊥

𝚪 ⊢ 𝓒 𝝀𝒙. 𝒆 ∶ 𝝉
ML Typed IR Typed ASM

Semantics of control operators Compiler IRs

𝓒 𝝀𝒙. 𝒆 = 𝝀𝒌. 𝝀𝒙. 𝒆 𝝀𝒚. 𝝀𝒌′. 𝒌 𝒚 (𝝀𝒛. 𝒛)

𝐬𝐡𝐢𝐟𝐭 𝝀𝒙. 𝒆 = 𝝀𝒌. 𝝀𝒙. 𝒆 𝝀𝒚. 𝝀𝒌′. 𝒌′ 𝒌 𝒚 (𝝀𝒛. 𝒛)

𝐫𝐞𝐬𝐞𝐭 𝒆 = 𝝀𝒌. 𝒌 (𝒆 𝝀𝒙. 𝒙)

3

Explicit polymorphism (𝚲𝜶. 𝒆 is a value)

CPS transformation for polymorphism

4

Implicit polymorphism (the body of 𝚲𝜶. 𝒆 can be evaluated)

CPS transformation for polymorphism𝒆𝟏 ↦ 𝒆𝟐
𝜦𝜶. 𝒆𝟏 ↦ 𝜦𝜶. 𝒆𝟐

We obtain CPS transforms for the call-by-value interpretation,

provided that the polymorphic let is restricted to values.“
“

5

Goal of this work

Long-term goal

Obtaining type-preserving CPS transformation for
implicit polymorphism without value restriction

Short-term goal

Obtaining type-preserving CPS transformation for
the implicit version of System F

Note: support for effects with other restriction (e.g. relaxed value restriction) is
left open

6

Review: CPS transformation

𝝀𝒙. 𝒆 = 𝝀𝒌. 𝒌 𝝀𝒙. 𝒆

𝒙 = 𝝀𝒌. 𝒌 𝒙

𝒆𝟏 𝒆𝟐 = 𝝀𝒌. 𝒆𝟏 (𝝀𝒙. 𝒆𝟐 𝝀𝒚. 𝒙 𝒚 𝒌)

7

Factorizing CPS transformation [Danvy’92]

1. Naming intermediate results of computation

2. Sequencing computation by lifting redexes

3. Making continuations explicit

𝒆𝟏 𝒆𝟐 ⟹ 𝐥𝐞𝐭 𝒙 = 𝒆𝟏 𝒆𝟐 𝐢𝐧 𝒙

𝒙 (𝐥𝐞𝐭 𝒚 = 𝒆𝟏 𝐢𝐧 𝒆𝟐) ⟹ 𝐥𝐞𝐭 𝒚 = 𝒆𝟏 𝐢𝐧 𝒙 𝒆𝟐

9

Factorizing CPS transformation [Danvy’92]

1. Naming intermediate results of computation

2. Sequencing computation by lifting redexes

3. Making continuations explicit

𝒆𝟏 𝒆𝟐 ⟹ 𝐥𝐞𝐭 𝒙 = 𝒆𝟏 𝒆𝟐 𝐢𝐧 𝒙

𝒙 (𝐥𝐞𝐭 𝒚 = 𝒆𝟏 𝐢𝐧 𝒆𝟐) ⟹ 𝐥𝐞𝐭 𝒚 = 𝒆𝟏 𝐢𝐧 𝒙 𝒆𝟐

10

Redex lifting as source-level reduction [Sabry+’92]

This rule conflicts with implicit polymorphism
due to the existence of evaluation contexts like 𝚲𝜶. □

(if 𝒙 ∉ 𝒇𝒗 𝑬 ∧ 𝑬 ≠ □)

𝑬 𝝀𝒙: 𝝉. 𝒆𝟏 𝒆𝟐 ↦ 𝝀𝒙: 𝝉. 𝑬 𝒆𝟏 𝒆𝟐

11

Replacing by 𝑬′ 𝚲𝜶. □

This rule conflicts with implicit polymorphism
due to the existence of evaluation contexts like 𝚲𝜶. □

(if 𝒙 ∉ 𝒇𝒗 𝑬 ∧ 𝑬 ≠ □)

𝑬 𝝀𝒙: 𝝉. 𝒆𝟏 𝒆𝟐 ↦ 𝝀𝒙: 𝝉. 𝑬 𝒆𝟏 𝒆𝟐

Redex lifting as source-level reduction [Sabry+’92]

12

Redex lifting in implicit polymorphism

𝑬′ 𝚲𝜶. 𝝀𝒙: 𝝉. 𝒆𝟏 𝒆𝟐 ↦ 𝝀𝒙: 𝝉. 𝑬′ 𝚲𝜶. 𝒆𝟏 𝒆𝟐

Problem: the reduction “intrudes” the scope of 𝜶,
invaliding the references to 𝜶 in 𝝉 and 𝒆𝟐

𝚲𝛂 must be lowered

to generalize 𝜶 in 𝒆𝟏

𝚲𝛂 must be lifted

to bind 𝛂 in 𝝉 and 𝒆𝟐
VERSUS

13

Key idea of our solution

Decomposing 𝚲𝜶 into more atomic constructors

Restrictions 𝝂𝜶. 𝒆
only bind 𝜶 (not generalize)

Open type abstractions 𝚲∘⟨𝜶, 𝒆⟩
only generalize 𝜶 (not bind)

𝚪, 𝜶 ⊢ 𝒆 ∶ 𝝉

𝚪 ⊢ 𝝂𝜶. 𝒆 ∶ 𝝉

𝚪 ⊢ 𝒆 ∶ 𝝉 𝜶 ∈ 𝚪

𝚪 ⊢ 𝚲∘ 𝜶. 𝒆 ∶ ∀𝜶. 𝝉

Remark: These typing rules don’t imply type safety and need refinement

as shown later

Relationship to type abstraction: 𝚲𝜶. 𝒆 ≡ 𝝂𝜶. 𝚲∘ 𝜶, 𝒆

𝒂 ∉ 𝒇𝒕𝒗(𝝉)

14

Examples

⊢ 𝝂𝜶. 𝚲∘ 𝜶, 𝝀𝒙: 𝜶. 𝒙 ∶ ∀𝜶. 𝜶 → 𝜶

⊬ 𝚲∘ 𝜶, 𝝀𝒙: 𝜶. 𝒙 ∶ ∀𝜶. 𝜶 → 𝜶

𝜶, 𝒙: 𝜶 → 𝜶 ⊢ 𝚲∘ 𝜶, 𝒙 ∶ ∀𝜶. 𝜶 → 𝜶

Restrictions 𝝂𝜶. 𝒆
Open type

abstractions 𝚲∘⟨𝜶, 𝒆⟩
𝚪, 𝜶 ⊢ 𝒆 ∶ 𝝉

𝚪 ⊢ 𝝂𝜶. 𝒆 ∶ 𝝉

𝚪 ⊢ 𝒆 ∶ 𝝉 𝜶 ∈ 𝚪

𝚪 ⊢ 𝚲∘ 𝜶. 𝒆 ∶ ∀𝜶. 𝝉

15

Redex lifting with decomposed type abstraction

𝑬′ 𝚲𝜶. 𝝀𝒙: 𝝉. 𝒆𝟏 𝒆𝟐 ↦

𝚲𝜶. □ ≡ 𝝂𝜶. 𝚲∘ 𝜶, □

16

Redex lifting with decomposed type abstraction

𝑬′ 𝝂𝜶. 𝚲∘⟨𝜶, 𝝀𝒙: 𝝉. 𝒆𝟏 𝒆𝟐⟩ ↦ 𝝂𝜶. 𝝀𝒙: 𝝉. 𝑬′ 𝚲∘ 𝜶, 𝒆𝟏 𝒆𝟐)

𝚲𝜶. □ ≡ 𝝂𝜶. 𝚲∘ 𝜶, □

17

Redex lifting with decomposed type abstraction

𝑬′ 𝝂𝜶. 𝚲∘⟨𝜶, 𝝀𝒙: 𝝉. 𝒆𝟏 𝒆𝟐⟩ ↦ 𝝂𝜶. 𝑬′ 𝚲∘⟨𝜶, 𝝀𝒙: 𝝉. 𝒆𝟏 𝒆𝟐⟩

(𝝂𝜶 is lifted)

18

Redex lifting with decomposed type abstraction

𝑬′ 𝝂𝜶. 𝚲∘⟨𝜶, 𝝀𝒙: 𝝉. 𝒆𝟏 𝒆𝟐⟩ ↦ 𝝂𝜶. 𝑬′ 𝚲∘⟨𝜶, 𝝀𝒙: 𝝉. 𝒆𝟏 𝒆𝟐⟩

↦ 𝝂𝜶. 𝝀𝒙: 𝝉. 𝑬′ 𝚲∘ 𝜶, 𝒆𝟏 𝒆𝟐)

(𝝂𝜶 is lifted)

(the redex is lifted)

19

Redex lifting with decomposed type abstraction

𝑬′ 𝝂𝜶. 𝚲∘⟨𝜶, 𝝀𝒙: 𝝉. 𝒆𝟏 𝒆𝟐⟩ ↦ 𝝂𝜶. 𝑬′ 𝚲∘⟨𝜶, 𝝀𝒙: 𝝉. 𝒆𝟏 𝒆𝟐⟩

(𝝂𝜶 is lifted)

Requirements

for typing
Generalize 𝛂 in 𝒆𝟏 Bind 𝛂 in 𝝉 and 𝒆𝟐

How solved? By lowering 𝚲∘⟨𝜶, □⟩ By lifting 𝝂𝜶

↦ 𝝂𝜶. 𝝀𝒙: 𝝉. 𝑬′ 𝚲∘ 𝜶, 𝒆𝟏 𝒆𝟐)

(the redex is lifted)

20

What we have got

Implicit System F
System F with

𝝂 + 𝚲∘

⋅
Type safe

⟹
Not type safe

21

Unsafety by re-generalization

Let 𝑴 ≡ 𝝂𝜶.𝚲∘ 𝜶, 𝝀𝒙: 𝜶. 𝚲∘ 𝜶, 𝝀𝒚: 𝜶. 𝒙

⊢ 𝑴 ∶ ∀𝜶. 𝜶 → ∀𝜶.𝜶 → 𝜶

Restrictions 𝝂𝜶. 𝒆
Open type

abstractions 𝚲∘⟨𝜶, 𝒆⟩
𝚪, 𝜶 ⊢ 𝒆 ∶ 𝝉

𝚪 ⊢ 𝝂𝜶. 𝒆 ∶ 𝝉

𝚪 ⊢ 𝒆 ∶ 𝝉 𝜶 ∈ 𝚪

𝚪 ⊢ 𝚲∘ 𝜶. 𝒆 ∶ ∀𝜶. 𝝉

So ⊢ (𝑴 𝐛𝐨𝐨𝐥 𝐭𝐫𝐮𝐞) 𝐢𝐧𝐭 𝟎 ∶ 𝐢𝐧𝐭

But 𝑴 𝐛𝐨𝐨𝐥 𝐭𝐫𝐮𝐞 𝐢𝐧𝐭 𝟎 ↦∗ 𝐭𝐫𝐮𝐞

22

Unsafety by re-generalization

Let 𝑴 ≡ 𝝂𝜶.𝚲∘ 𝜶, 𝝀𝒙: 𝜶. 𝚲∘ 𝜶, 𝝀𝒚: 𝜶. 𝒙

Cause: The same type variable may be

generalized multiple times

Solution: Using linear / affine typing

Restrictions 𝝂𝜶. 𝒆
Open type

abstractions 𝚲∘⟨𝜶, 𝒆⟩
𝚪, 𝜶 ⊢ 𝒆 ∶ 𝝉

𝚪 ⊢ 𝝂𝜶. 𝒆 ∶ 𝝉

𝚪 ⊢ 𝒆 ∶ 𝝉 𝜶 ∈ 𝚪

𝚪 ⊢ 𝚲∘ 𝜶. 𝒆 ∶ ∀𝜶. 𝝉

23

Type-safe CPS target language 𝚲𝐨𝐩𝐞𝐧

Types 𝑨,𝑩 ∷= 𝜶 ∀𝜶.𝑨 𝑨 ⊸𝑩 !𝑨 𝐢𝐧𝐭 |…

Terms 𝑴 ∷= 𝒙 | 𝒄 | 𝝀𝒙.𝑴 | 𝑴𝟏 𝑴𝟐 | 𝚲𝜶.𝑴 | 𝑴 𝑨 |

Polymorphic affine lambda calculus

+ restrictions + open type abstractions

!𝑴 𝐥𝐞𝐭 ! 𝒙 = 𝑴𝟏 𝐢𝐧 𝑴𝟐 𝝂𝒂.𝑴 | 𝚲∘⟨𝜶,𝑴⟩

Syntax

Semantics (excerpt)

𝚲∘ 𝜶, 𝑽 ↦ 𝚲𝜶. 𝑽
𝑴𝟏 ↦ 𝑴𝟐

𝚲∘ 𝜶,𝑴𝟏 ↦ 𝚲∘ 𝜶,𝑴𝟐

24

Type system

Uses 𝝅 ∷= 𝟎 𝟏 𝝎

Typing contexts 𝚪 ∷= ∅ 𝚪, 𝒙 :𝝅 𝑨 𝚪, 𝜶𝝅

𝝅 must be 𝟏 or 𝟎, expressing

if 𝜶 can be generalized or not

𝚪, 𝜶𝟏 ⊢ 𝑴 ∶ 𝑨 𝜶 ∉ 𝐟𝐭𝐯(𝑨)

𝚪 ⊢ 𝝂𝜶.𝑴 ∶ 𝑨

𝚪𝟏, 𝜶
𝟎, 𝚪𝟐 ⊢ 𝑴: ! 𝑨

𝚪𝟏, 𝜶
𝟏, 𝚪𝟐 ⊢ 𝚲∘ 𝜶.𝑴 ∶ !∀𝜶. 𝑨

25

CPS transformation ⋅ , a bit formally

Mapping from typing derivations in implicit System F to 𝚲𝐨𝐩𝐞𝐧

𝚯 ⊢ 𝒆 ∶ ∀𝜶. 𝝉

𝚯, 𝜶 ⊢ 𝒆 ∶ 𝝉ۤ
ۤ

= 𝝀𝒌: ∀𝜶. 𝝉 . 𝝂𝜶. 𝚯, 𝜶 ⊢ 𝒆 ∶ 𝝉 (𝝀𝒙: 𝝉 . 𝒌 𝚲∘ 𝜶, 𝒙)

26

Type preservation

Given a derivation 𝑫 of 𝚯 ⊢ 𝒆 ∶ 𝝉 in implicit System F,

𝚯 ⊢ 𝑫 ∶ 𝝉 is derivable in 𝚲𝐨𝐩𝐞𝐧

27

Other topics covered in the paper

❑Meaning preservation of the CPS transformation

➢via Plotkin’s CPS transformation

❑Parametricity of 𝚲𝐨𝐩𝐞𝐧

➢by a step-indexed Kripke logical relation

28

Future directions

❑Addressing control operators (w/ and w/o value restriction)

➢Sketched for deep effect handlers in row effect typing by
[Hillerström et al., FSCD’17]

➢What about:

➢Other forms of effect handlers (e.g., shallow and lexically scoped handlers)?

➢Other effect typing (e.g., contextual polymorphism)?

❑Extending to other binding constructs under which evaluation
proceeds

➢E.g., staged computation

29

Conclusion

❑Addressed implicit System F

➢by a new CPS target language with
restrictions, open type abstractions, and affine types

❑What about effectful languages like OCaml?

Type-preserving CPS transformation is challenging

for implicit polymorphism without the value restriction

30

