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Accidents caused by software bugs 

♦ Therac-25 radiation therapy

◊ Involved six accidents of radiation overdoses

♦ Ariane 5 rocket

◊ Resulted in the launch failure and
a loss > $370 million

♦ Heartbleed (an OpenSSL vulnerability)

◊ Major servers (Apache, nginx, etc.) 
on the internet were vulnerable

♦ Others: List of software bugs (Wikipedia)
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Program verification

Methodology to assure correctness of programs 
by mathematical reasoning

Program 𝑷

Specification 𝝍

int P(int n) {
int x = n, y = 0;
while (x != 0) {
y = y + x;
x = x - 1; }
return y; }

OK

Program 𝑷 has been proven

to work as specified by 𝝍

Verification tool
∀n ∈ ℕ. P n = σi=0

n i
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Program verification

Methodology to assure correctness of programs 
by mathematical reasoning

Program 𝑷

Specification 𝝍

∀n ∈ ℕ. P n = σi=0
n i

NG

Verification tool

A counterexample that witnesses 

𝑷 doesn’t work as specified by 𝝍
int P(int n) {
int x = n, y = 0;
while (x != 0) {
y = y + x;
x = x - 1; }
return y; }
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Difference from software testing

Program verification Software testing

♦ Logical Specification

♦ Assuring correctness for any input

♦ Executable Specification

♦ Assuring correctness for given inputs

assert (P(1) == 1);
assert (P(2) == 3);
assert (P(5) == 15);

Input Correctness Assured

1 ✓

2 ✓

3 ✓

Input Correctness Assured

1 ✓

2 ✓

3 

∀n ∈ ℕ. P n = σi=0
n i
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Verification of real-world software

♦ SLAM: a research project to verify Windows device drivers

♦ Infer: a verification tool for Java, C, and C++ code

◊ Used to verify Facebook’s Android / iOS apps

♦ CPAcheker: a verification tool for C

◊ Used to verify control software of airplanes and a space station

♦ Astree: a verification tool for C

◊ Used to verify Linux device drivers
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Let’s try verification!

in Hoare Logic
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Example: sum from 1 to n

Specification

Program

int P(int n) {
int x = n, y = 0;
while (x != 0) {
y = y + x;
x = x - 1; 
}
return y; 
}

}

Proving “y = σ𝑖=0
n 𝑖“ holds after 

exiting from the loops (★)

★

Goal

What holds during the loops?

Question

?

∀n ∈ ℕ. P n = σi=0
n i
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Example: sum from 1 to n

Specification

Program

int P(int n) {
int x = n, y = 0;
while (x != 0) {
y = y + x;
x = x - 1; 
}
return y; 
}

x y

Before the loop n 0

After the 1st loop n-1 n

After the 2nd loop n-2 n + n-1

After the 3rd loop n-3 n + n-1 + n-2

… …

After the nth loop 0 n + n–1 + n-2 + … + 1

int P(int n) {
int x = n, y = 0;
while (x != 0) {
y = y + x;
x = x - 1; 
}
return y; 
}

∀n ∈ ℕ. P n = σi=0
n i
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Example: sum from 1 to n

Specification

Program

✓
The final loop exits with x = 0, so

𝜙 0, 𝑦 ≡ σ𝑖=0
0 𝑖 + 𝑦 = σ𝑖=0

𝑛 𝑖 ∧ (0 ≥ 0)

holds 

Proof of the goal

Goal

int P(int n) {
int x = n, y = 0;
while (x != 0) {
y = y + x;
x = x - 1; 
}
return y; 
}
★

}
Loop invariant

𝜙 𝑥, 𝑦 ≡ σ𝑖=0
x 𝑖 + 𝑦 = σ𝑖=0

𝑛 𝑖 ∧ (𝑥 ≥ 0)

Answer

∀n ∈ ℕ. P n = σi=0
n i

Proving “y = σ𝑖=0
n 𝑖“ holds after 

exiting from the loops (★)
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Challenge in automating verification

Finding loop invariants

♦ It is an undecidable problem in general

♦ (Incomplete) approaches to invariant synthesis

◊ Learning-based approaches

◊ Template-based approaches

◊ Fixing the shape of invariants and searching for parameters that
satisfy constraints on invariants
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Learning framework for invariant synthesis

Interleaving learning and checking of invariant candidates

Logical constraint 𝑪
on loop invariants 

Invariant candidate 𝜙

Teacher

𝜙 is an 

invariant

Learner

OK

No candidate

NG

Counterexample 𝒄 to 𝜙

(𝜙(𝒄) doesn’t satisfy 𝑪)
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Learning framework for invariant synthesis

Interleaving learning and checking of invariant candidates

Logical constraint 𝑪
on loop invariants 

Invariant candidate 𝜙

Teacher

𝜙 is an 

invariant

Implemented by 

SAT/SMT solvers

Learner

OK

No candidate

NG

Machine Learning!

Counterexample 𝒄 to 𝜙

(𝜙(𝒄) doesn’t satisfy 𝑪)
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Invariant learning

Goal: To find a loop invariant 𝜙

Given:

A set 𝓔 of counterexamples to candidates, categorized into:

♦ Positive examples: 𝒄 s.t. 𝜙(𝒄) must be true

♦ Negative examples: 𝒄 s.t. 𝜙(𝒄) must be false

♦ Implication constraints: (𝒄, 𝒅) s.t. 𝜙(𝒄) ⟹ 𝜙(𝒅)

In P, ∀𝑛 ≥ 0. 𝜙 𝑥 ≔ 𝑛, 𝑦 ≔ 0, 𝑛 must be true as invariants must hold before entering the loops

int P(int n) {
int x = n, y = 0;
while (x != 0) {
y = y + x;
x = x - 1; }

return y; }

In P, 𝜙 𝑥 ≔ 0, 𝑦 ≔ 10, 𝑛 ≔ 2 must be false as y = Σ𝑖=0
𝑛 𝑖 must hold after exiting the loops

∀n ∈ ℕ. P n = σi=0
n i

ProgramSpecification
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ML-based approaches to invariant learning

♦ ML to lean invariants

◊ Learning invariants as decision trees
[Krishna, Puhrsch & Wies, arXiv’15; Garg, Neider, Madhusudan & Roth, POPL’16] 

◊ Learning by deep reinforcement learning
[Si, Dai, Raghothaman, Naik & Song, NeurIPS’18]

◊ Encoding constraints into neural networks
[Ryan, Wong, Yao, Gu & Jana, ICLR’20 & PLDI’20]

♦ ML to aid symbolic reasoning

◊ Speeding up symbolic approaches with 
reinforcement learning
[Tsukada, Unno, Sekiyama & Suenaga, arXiv’21]
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Learning invariants as decision trees

Example set 𝓔

Decision tree

learning

Decision tree

Converting to 

logical formula

Invariant candidate

𝑝1

𝑝2 𝑝3

+− −+

𝑝1 ⟹¬𝑝2 ∧ (¬𝑝1 ⟹ 𝑝3)
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Learning invariants as decision trees

Example set 𝓔

Decision tree

learning

Decision tree

Converting to 

logical formula

Invariant candidate

Challenge: poor scalability of 

decision tree learning in

the number of parameters 𝒂, 𝒄

𝑝1

𝑝2 𝑝3

+− −+

𝑝1 ⟹¬𝑝2 ∧ (¬𝑝1 ⟹ 𝑝3)

Nodes are predicates over program variables

E.g., for integer-manipulating programs,

every node 𝒑𝒊 is an inequation 𝒂 ⋅ 𝒙 ≥ 𝒄

♦𝒙 are program variables of integers

♦𝒂, 𝒄 are parameters to be optimized

Optimizing 𝒂, 𝒄
in each node
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Solution to scalability

Example set 𝓔

Decision tree

learning

Decision tree

Converting to 

logical formula

Invariant candidate

𝑝1

𝑝2 𝑝3

+− −+

𝑝1 ⟹¬𝑝2 ∧ (¬𝑝1 ⟹ 𝑝3)Set of predicates 𝒑𝒊

♦ Pre-synthesizing predicates used as nodes

Selecting nodes from 

given predicates
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Solution to scalability

Example set 𝓔

Decision tree

learning

Decision tree

Converting to 

logical formula

Invariant candidate

𝑝1

𝑝2 𝑝3

+− −+

𝑝1 ⟹¬𝑝2 ∧ (¬𝑝1 ⟹ 𝑝3)Set of predicates 𝒑𝒊

♦ Pre-synthesizing predicates used as nodes

?
Selecting nodes from 

given predicates
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Neural synthesis of predicates over integers

𝑥1 + 𝑥2 + 9 > 0,
4𝑥1 − 𝑥2 > 0,
…

Training

Synthesis from 

the weights 𝑎𝑖
in the NN

𝑥1 𝑥2 label

4 3 -

5 3 +

6 3 -

… … …

Example set 𝓔

[Kobayashi, Sekiyama, Sato & Unno, SAS’21]

... ...

...

Predicates used 

in DT learning

𝑎11

𝑎𝑛2
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Predicate synthesis from NNs
Idea: Designing a NN that encodes invariants and 

represents predicate parameters Ԧ𝑎, 𝑐 as weights

Assumption: Formulas are logical combinations of 𝑎 ⋅ 𝑥 + 𝑐 > 0

... ...

...

𝑥1

𝑥𝑛

𝑦1

𝑦8

𝑦𝑖 = 𝜎 𝑎𝑖 ⋅ 𝑥 + 𝑐𝑖 , so

𝑦𝑖 ≃ 1 ⟺ 𝑎𝑖 ⋅ 𝑥 + 𝑐𝑖 > 0
𝑦𝑖 ≃ 0 ⟺ 𝑎𝑖 ⋅ 𝑥 + 𝑐𝑖 < 0

if |𝑎𝑖 ⋅ 𝑥 + 𝑐𝑖| ≫ 0

Intended to recognize

logical combinations

(e.g., (p1 ∨ 𝑝2) ∧ (𝑝3 ∨ 𝑝4))

𝜎 : sigmoid function

0

1

Grouping the ratios 

𝑎𝑖1 ∶ 𝑎𝑖2 ∶ 𝑐𝑖

2𝑥1 + 3𝑥2 + 9 > 0,
4𝑥1 + 1𝑥2 + 0 > 0

𝑦1
𝑦2

𝑦8

...
𝑜𝑖𝑎𝑖1 𝑎𝑖2 𝑐𝑖

Feedforward NN with 2 hidden layers

2 ∶ 3 ∶ 9

4 ∶ 1 ∶ 0

𝑦𝑖 ≈ 𝑝𝑖

𝑎11

𝑎82

Decision tree learning with 

synthesized predicates to 

generate invariant candidates

33



Experiments

♦ Predicate synthesis works well on linear invariants

♦ Quadratic invariants can be supported by preprocessing
inputs to the NN

Positive

Negative
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ML-based approaches to invariant learning

♦ ML to lean invariants

◊ Learning invariants as decision trees
[Krishna, Puhrsch & Wies, arXiv’15; Garg, Neider, Madhusudan & Roth, POPL’16] 

◊ Learning by deep reinforcement learning
[Si, Dai, Raghothaman, Naik & Song, NeurIPS’18]

◊ Encoding constraints into neural networks
[Ryan, Wong, Yao, Gu & Jana, ICLR’20 & PLDI’20]

♦ ML to aid symbolic reasoning

◊ Speeding up symbolic approaches with 
reinforcement learning
[Tsukada, Unno, Sekiyama & Suenaga, arXiv’21]
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Template-based symbolic invariant synthesis

Invariant learner

Teacher

Constraint 𝑪 Example set 𝑬

Synthesizing candidate 𝜙 by 

instantiating parameters in 𝑻

Invariant template 𝑻 (parameterized over 

# of Boolean combinators, bounds of Ԧ𝑎, 𝑐, etc.)

Extending 𝑻
by a heuristic

¬∃𝝓
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Counterexample 𝒄
to the candidate 𝜙

OK
Invariant candidate 

𝜙



Template-based symbolic invariant synthesis

Invariant learner

Teacher

Counterexample 𝒄
to the candidate 𝜙

OK

Constraint 𝑪 Example set 𝑬

Synthesizing candidate 𝜙 by 

instantiating parameters in 𝑻

Invariant template 𝑻 (parameterized over 

# of Boolean combinators, bounds of Ԧ𝑎, 𝑐, etc.)
Invariant candidate 

𝜙

Extending 𝑻
by a heuristic

¬∃𝝓
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♦Challenge: finding effective heuristics for template extension

♦Approach: applying reinforcement learning to optimize

heuristic strategies



Reinforcement learning

Learning strategies of agent’s actions to maximize total 
rewards obtained from environments

Agent Action

State & Reward

Environment
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Applying to heuristic learning

Goal: learning template extension strategies to minimize 
the total time spent by invariant synthesis

Extending 

template 𝑻

Action

State & Reward

Teacher

Invariant learner

Agent Environment

Synthesizing 

candidate 𝜙 from 𝑻
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Applying to heuristic learning

Goal: learning template extension strategies to minimize 
the total time spent by invariant synthesis

Extending 

template 𝑻

Action

State & Reward

Teacher

Invariant learner

Agent Environment

Synthesizing 

candidate 𝜙 from 𝑻

Human-engineered features of 

template 𝑻 and example set 𝑬
ー1 × (Time spent on verification)

Decides which part of 𝑇 is enlarged
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♦ Implemented on a verifier PCSat [Unno+, AAAI’20&CAV’21]

♦ Effective heuristics can be learned!

Experiments

Tool # of solved test problems (total # = 171)

PCSat w/ Advantage Actor-Critic 154 (90.05%)

PCSat w/ Monte Carlo 155 (90.06%)

LoopInvGen 92 (53.80%)

CVC4 111 (64.91%)

Eldarica 131 (76.61%)

PCSat w/ the hand-tuned heuristic 144 (84.21%)

HoIce 149 (87.13%)

Spacer 165 (96.49%)

Ours: PCSat with 

learned heuristics

Baseline
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Conclusion



Findings

Applying ML to verification is possible but hard

♦ Program verification is deductive,
while ML is inductive

♦ Program verification addresses hard constraints, 
while some of ML techs target only soft constraints

♦ Needing a means to interpret / explain ML models logically

◊ E.g., converting decision trees to logical formulas, 
extracting predicates from weights in a neural net

♦ Available are only small datasets (of the sizes from 10 to 1000)
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“Softer” program verification

is more suitable to use ML? 



Conclusion

♦ A main bottleneck of automating verification is 
invariant synthesis

♦ Data-driven invariant synthesis is emerging!

♦ Collaboration b/w ML and verification is promising 
and challenging

Software 

verification

Machine

learning

?
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