論文

査読有り
2013年

3次元スカラー波動問題に対する陰的Runge-Kutta法を用いた演算子積分時間領域高速多重極境界要素法

土木学会論文集A2(応用力学)
  • 丸山 泰蔵
  • ,
  • 斎藤 隆泰
  • ,
  • 廣瀬 壮一

69
2
開始ページ
I_175
終了ページ
I_185
記述言語
日本語
掲載種別
DOI
10.2208/jscejam.69.I_175
出版者・発行元
公益社団法人 土木学会

This paper presents an implicit Runge-Kutta (IRK) based convolution quadrature time-domain fast multipole boundary element method (CQ-FMBEM). Application of a convolution quadrature method (CQM) to a time-domain boundary element method (BEM), which is called CQ-BEM, can improve numerical stability of time-stepping procedure. In recent researches, the IRK based CQ-BEM showed better performance than the conventional linear multistep based one regarding accuracy. However, the IRK based CQ-BEM requires more computational time and memory. Therefore, in this paper, the fast multipole method (FMM) is applied to the IRK based CQ-BEM for 3-D scalar wave propagation problems. The formulation of the IRK based CQ-BEM and the application of the FMM are described. The accuracy and computational efficiency of the proposal method are compared with the linear multistep based CQ-FMBEM by solving some numerical examples.

リンク情報
DOI
https://doi.org/10.2208/jscejam.69.I_175
CiNii Articles
http://ci.nii.ac.jp/naid/130004557344

エクスポート
BibTeX RIS