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Abstract
On-farm experimentation (OFE) is increasing worldwide. Appropriate OFE procedures 
may differ depending on the characteristics and circumstances surrounding farms, such 
as climate, field conditions, farm size, degree of agricultural digitalization, and a farmer’s 
socioeconomic background. This study aims to guide the future development of OFE in 
Japanese grain farming by examining the experimental setup, data analysis, and farmers’ 
activities within their socioeconomic and institutional communication and learning net-
works. The results of this typical OFE case study, which estimates a field’s economically-
optimal fertilizer variable-rate application map for winter wheat production, are reported. 
The outcomes of the case study, which are intended to guide the direction of OFE devel-
opment in Japan, were used as reference materials for a survey taken while interviewing 
farmers who had never been involved in OFE. Farmers’ answers showed that the economic 
return of site-specific management depends on farm and field size and exhibits econo-
mies of scale. A very high share of the profit increases provided by OFE data came from 
improvements in field-specific uniform rate management, not from within-field site-spe-
cific management. The interviews revealed that farmers open to OFE are more interested 
in increasing rice crop quality to earn price premiums than in increasing yield. Increased 
engagement with farmers in conducting OFEs could play a key role not only in generat-
ing data to guide farmers’ input management but also in fostering farmer collaboration to 
develop marketing strategies. This study is the first to propose future orientations of OFE 
research that target typical moderately-sized Japanese grain farms.

Keywords Field-specific yield · random forest · Rice · Variable-rate application · Wheat · 
Yield monitor

Introduction

On-farm experimentation (OFE) is an innovative process in which farmers and professional 
researchers collaborate to improve farm management by generating data from agronomic 
experiments on farmers’ own fields (Lacoste et  al., 2022). Typically, farmers implement 
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field-scale agronomic trials designed by researchers who also analyze the generated data 
to develop improved input management strategies. In an iterative process over time, tak-
ing a transdisciplinary approach to data analysis can generate useful management insights. 
Although OFE originates from agricultural sciences, the other two disciplinary domains, 
social sciences and data sciences, are essential to understand and answer farmers’ ques-
tions. New business models developed by researchers in the social sciences contribute to 
farmers’ engagement in OFE, knowledge transfer, and value creation. Research from data 
sciences provides more robust and reliable analytical outcomes for farmers or data manage-
ment systems, which benefit farmers’ digital footprint and business. Overlapping different 
disciplinary domains support continuous communication among a variety of OFE com-
munity members, such as farmers, scientists, and other stakeholders. Thus, OFE projects 
evolve over time as transdisciplinary work that continuously addresses multiple objectives.

On-farm precision experimentation (OFPE) is a type of OFE that can be of special inter-
est to large-scale farms aiming to improve site-specific crop input management (Bullock 
et al., 2019). OFPE can generate site-specific knowledge about crop yield response within 
a field, which is key to optimizing prescription maps for variable-rate application (VRA). 
OFPE uses as-applied input data and yield monitoring data to estimate spatially-dependent 
relationships between crop yield and input application strategies. Geographically weighted 
regression (GWR) is a popular statistical tool used to analyze OFPE data. GWR estimates 
local regression parameters using a distance-decay kernel (Evans et  al., 2020; Trevisan 
et al., 2021). In another approach, machine learning techniques, such as random forest (RF) 
(Krause et al., 2020) and convolutional neural networks (Barbosa et al., 2020), have proven 
suitable when data on spatially-dependent field characteristics (e.g., soil properties, eleva-
tion, and satellite imagery) are available.

Development-oriented agronomists have been collaborating with smallholders in Africa 
to conduct a type of OFE that is predominantly focused on the impacts of new technol-
ogies or nutrient management practices; they have been employing strategies to manage 
mineral fertilizer, composts, manure, crop residues, pests, weeds, and tillage (Kool et al., 
2020). Similar research has been conducted in northern China (Jiang et al., 2021; Zhang 
et al., 2016). Smallholder OFE is important because frequently the differences in environ-
ments (i.e., soil fertility, resource availability) between research stations and farmers’ fields 
limit the inferences that can be drawn from research station experiments about real-farm 
management. Moreover, resource constraints and OFE logistics limit the number of experi-
ments that studies can include. More than half of the studies reviewed by Kool et al. (2020) 
were conducted in fewer than ten locations (fields), while only 3% were conducted in one 
hundred to one thousand locations (Kool et al., 2020). Finally, data analytical guidelines 
for smallholder farmers have not been well documented in textbooks, which typically put 
more emphasis on the social dimension of small-farm research (Kool et al., 2020).

Although significant benefits are anticipated from the outcomes of OFE irrespective 
of the farming scale from smallholders to large-scale farmers, little research has been 
reported regarding OFE for small- to moderate-scale farms (e.g., 0.3–1 ha fields) (Tanaka 
et al., 2021), which are common in Asian countries in which paddy fields are a primary 
land use; these countries include China, Korea, and Japan. These farms face special chal-
lenges due to unique social conditions, some of which are especially prevalent in Japan. 
For example, the high rates of aging and retirement among Japanese farmers have led to 
increased abandonment of arable land and foreshadow similar upcoming events in Asian 
countries in which similar demographic changes are imminent. Japanese family-owned 
and family-operated smallholder farms are currently rationalizing production processes via 
consolidation into moderate-scale farms managed by producers’ cooperatives and farming 
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companies (Ministry of Agriculture, 2016). While to a degree farms have increased their 
adoption of “smart farming” technologies (de Bourgogne, 2021), local farmers and agri-
cultural extension workers continue to question whether the benefits of precision agri-
culture technology can offset the high investment costs. Analysis of OFE-generated data 
could answer this question, but few OFEs are being conducted in Japan and nearby coun-
tries. Given the uniqueness of the East Asian agricultural background and development, 
appropriate OFE directions, including data collection, experimental design, data analytics, 
extension, and knowledge transfer, should be explored.

The objectives of this study were, via interviews, to examine the benefits and difficul-
ties encountered by Japanese grain farmers associated with establishing, monitoring and 
interpreting OFEs. For this purpose, OFPE was conducted via collaborations with Japanese 
farmers. RF regression was used to model the crop yield response to fertilizer application 
rates, and sensitivity analysis was performed to evaluate a field’s site-specific economi-
cally-optimal fertilizer strategy for wheat production. Second, using these outcomes, inter-
views were conducted with farmers who had and farmers who had not been involved in 
OFE to examine the benefits and difficulties associated with OFE.

Materials and methods

Recruitment and interview process

To better understand Japanese grain farmers’ views on the benefits of and difficulties in 
running OFEs, both farmers who had and farmers who had not been involved in OFEs 
were interviewed using the case studies of OFEs as reference material (Fig.  1). Specifi-
cally, each OFE procedure (e.g., experimental design) and results (e.g., figures and tables 
in this study and other sources) were presented to the farmers to enhance their understand-
ing. Strip trials examining the yield effects of basal fertilization rates reported by Tanaka 

Fig. 1  Interview process flow chart
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et al. (2021) were used as one of the reference materials. In strip trials, long strips are laid 
out side-by-side in a field, and each strip receives different rates of fertilizer application. 
The treatment of strips can be implemented without VRA technology if farmers are manu-
ally capable of adjusting the rates with their own field equipment. The outcome of statisti-
cal analysis on strip trials provides information as to whether farmers should increase or 
decrease their conventional rate to enhance economic return. Another case study used as 
reference material involved OFPE, which uses precision agriculture technology to gener-
ate large amounts of crop input application and yield response data that can be used to 
estimate spatially-variant optimal input application rates and thus improve agronomic deci-
sion making. OFPE was conducted in 2019–2020 in cooperation with the Japanese farming 
company Fukue-eino, which owns the required VRA and yield monitoring equipment. The 
farmers who participated in the OFPE were interviewed, and a question was asked whether 
the experiment’s results would change their fertilization decisions in the upcoming year. 
The experimental design and data analysis of the OFPE case study are described in more 
detail in the next section.

With the help of the Gifu Prefectural government, nine organizations were also identi-
fied and interviewed; they included cooperatives or farming companies, which had not pre-
viously run OFEs. Agricultural producers’ cooperatives are typical management entities in 
Japan. Their decisions are based on the principle of one person, one vote, and meaningful 
changes in investments or policies require strong consensus. The results of the interviews 
reinforced the importance of understanding how Japanese grain farmers act within the 
social context of agricultural producers’ cooperatives. Each interview started with diverse 
discussions about crop management practices and was ultimately developed in the direc-
tion of farmer recruitment for further OFE research. These methods facilitated a conversa-
tion with farmers by offering evidence from the personal experience of a real and repre-
sentative Japanese farm, rather than a less personalized discussion in terms of objectified 
scientific results. All interviews were conducted in person, and answers were recorded via 
notetaking. The primary question asked in the interview process was whether the inter-
viewee was willing to conduct OFEs. Interviewees answering no were asked to describe 
the obstacles that kept them from running OFEs. Interviewees answering yes were then 
asked what their motivations were to run OFEs and what types of OFEs they were willing 
to perform. Three types of OFEs, including strip trials, OFPEs, and field-specific trials, 
were presented as options within the question. Strip trials do not always need VRA tech-
nology, which provides information on the optimal uniform rate for each field. OFPEs need 
a more complicated experimental design (e.g., checkerboard) that should be implemented 
with VRA technology, as the aim of the OFPEs is to optimize site-specific crop manage-
ment. Field-specific trials have different application rate treatments for each field to assess 
the optimal uniform rate for each farmer or region. Field-specific trials offer a hypothetical 
experimental design and data analytical approach that might be suitable for Japanese farm-
ers, who are already often managing dozens or hundreds of small-scale fields. Further-
more, all interviewees were asked if they had access to a yield monitor. Throughout the 
whole interview process, unintended, specific comments made by farmers that related to 
how OFE frameworks could be elaborated were summarized as key remarks.

OFPE experimental design and data collection

To evaluate the effect of different fertilizer application rates on wheat yield, a split-plot 
agronomic field trial design was implemented at two locations (Experiments 1 and 2) in 
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Gifu, Japan (35°11’N, 136°39’E), in 2019–2020. Figure  2 illustrates Experiment 1’s 
design. Just before seeding (early November), a slow-release basal fertilizer (NPK 25–6–4) 
was broadcast at rates of 270, 360, 450, and 540 kg  ha−1. Then, before the booting stage 
(early March), a top-dressing fertilizer (NPK 17–0–17) was applied at rates of 222, 296, 
370, and 444 kg  ha−1. The rates were decided according to a discussion with the farmer, 
whose conventional rate was 450 and 370 kg  ha−1 for basal and top-dressing application, 
respectively. A variable-rate fertilizer broadcaster with an 18-m working width (Axis 40.2, 
Kuhn, France) was used. Yield data were collected using a combine harvester with a yield 
monitor sensor (WRH1200, Kubota, Japan). Although the combine had a 2.6-m header 
width, yield values within the 5-m square grids were provided after data preprocessing 
based on the calculation procedures of the manufacturer. Thus, yield values aggregated in 
square grids were used, and the grids on the boundaries between treatment plots and head-
lands were excluded from further data analysis. After removing the data from a buffer zone 
around the field’s perimeter, the total data observations were 970 and 428 for Experiments 
1 and 2, respectively.

Soil properties were used as covariates to enhance model performance in the yield 
response assessment. Before basal fertilizer application in Experiments 1 and 2, a total 
of 52 and 39 surficial soil samples (0–150  mm) were collected at intervals of approxi-
mately 30  m. At each location, three randomly-located partial soil samples weighing 
approximately 0.5 kg each were collected within one square meter and mixed to produce 
one composite sample. Soil samples were air-dried and sieved through a 2.0-mm mesh 
before chemical analysis. Soil pH, electrical conductivity (EC), total carbon (TC) content, 

Fig. 2  Experimental design for Experiment 1. Different colors represent the different fertilizer application 
rates. Gray represents the data points touching the treatment borders or headlands that were not used for 
data analysis
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mineralizable N, available phosphorus (P), cation exchange capacity (CEC), exchange-
able calcium (Ca), exchangeable magnesium (Mg) and exchangeable potassium (K) were 
measured. Total C was determined using a CN analyzer (Sumigraph NC-TR22, Sumitomo 
Chemical Co., Tokyo, Japan). Mineralizable N was determined according to the Inoko’s 
(1986) method. Soils were anaerobically incubated at 30 °C for four weeks, and inorganic 
N was extracted with a 2 M KCl solution. The concentrations of  NH4

+ and  NO3
− in the 

extracts were then determined using the indophenol method (Keeney & Nelson, 2015) and 
the Cataldo method (Cataldo et  al., 1975). Mineralizable N was calculated by balancing 
the inorganic N  (NH4

+ and  NO3
−) before and after anaerobic incubation. Available P was 

measured by the Truog method (Truog, 1930). Cation exchange capacity was measured 
by saturating the soil with a neutral 1 mol  L−1 ammonium acetate solution, washing with 
80% ethanol to remove soluble  NH4

+, and extracting exchangeable  NH4
+ with 2 mol  L−1 

KCl. The concentrations of Ca, Mg, and K were determined by inductively-coupled plasma 
atomic emission spectroscopy (ICP‒AES, ULTIMA 2, HORIBA, Japan).

Data analysis

To model the site-specific yield response to fertilizer, RF regression models were created 
using the Python module ‘scikit-learn’ (version 1.0.2) (Pedregosa et al., 2011). The mod-
els treated the application rates of basal and top-dressing fertilizers and soil properties as 
covariates. The units of the data analysis were created by averaging raw spatial data val-
ues in 5-m square grids. Soil properties were originally point data; thus, soil properties 
were spatially interpolated using empirical best linear unbiased prediction (E-BLUP) at 
the scale of a 5-m square grid. E-BLUP is equivalent to universal kriging. Predicted values 
from the BLUP were back-transformed if the distribution of the observations was highly 
skewed, and the Box–Cox transformation (Box & Cox, 1964) was applied for semivari-
ogram parameter estimation. For semivariogram parameter estimation, the Matérn covari-
ance function (Webster & Oliver, 2007) and the restricted maximum likelihood estimator 
were used. For spatial interpolation, the ‘geoR’ package (Ribeiro & Diggle, 2001) imple-
mented in R version 3.6.2 (R Development Core Team, 2019) was used.

Hyperparameters were determined by fivefold cross-validation repeated three times 
using a training dataset, and then the best RF models were retrained with an optimal hyper-
parameter using the training dataset. For each fold, a grid search was performed to opti-
mize the n_estimators hyperparameter, which took on values of 100, 500, 1000, 1500, and 
2000. For the test dataset, model prediction accuracies were evaluated by root mean square 
error (RMSE).

Site-specific EORs were calculated by treating the predicted yield values from the best 
RF model as deterministic outcomes. The site-specific expected net revenue ($  ha−1) was 
defined as

where p = $1.16  kg−1 (136.8 JPY  kg−1) is the price of wheat grain, yi is the wheat grain yield 
predicted by the RF model at location i, wBF = $1.58  kg−1 (187.0 JPY  kg−1) is the basal fer-
tilizer price, BFi is the basal fertilizer application rate at location i, wTF = $0.60  kg−1 (71.2 
JPY  kg−1) is the top-dressing fertilizer price, and TFi is the top-dressing fertilizer appli-
cation rate at location i. To evaluate the economically-optimal application rates, fertilizer 
application rates were optimized by running the best RF model at intervals of 1 kg   ha−1 
while keeping the other covariate values of soil properties unchanged. To evaluate the 

(1)Δri = p × yi−wBF × BFi−wTF × TFi
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net revenue for each experimental site, four scenarios were assumed, including the farm-
ers’ conventional rates (basal fertilizer rate: 450  kg   ha−1, top-dressing fertilizer rate: 
370 kg  ha−1), the crop advisory recommendation rates (basal fertilizer rate: 420 kg  ha−1, 
top-dressing fertilizer rate: 330 kg  ha−1), the optimal VRA rates, and optimal rates under 
uniform management. To assess the feasibility of VRA from the perspective of economies 
of scale, the total areas that generate sufficient revenue to offset the investment cost in VRA 
were estimated as follows:

where wVRA is the investment cost in VRA technology, rVRA is the net revenue under the 
scenario of the optimal VRA rate, and rUM is the net revenue under optimal uniform man-
agement. The calculations assumed a lifetime of six years for VRA technology and resulted 
in an annual VRA fixed cost of $5,932. These assumptions were based on local enterprise 
budgets.

Results and discussion

Analytical results: a case study of wheat

The relationships between the observed and predicted yields of the RF models for the train-
ing and test datasets are shown in Fig. 3. For Experiment 1, the RMSE values were 0.15 
and 0.39 t  ha−1 for the training and test datasets, respectively. For Experiment 2, the RMSE 
values were 0.17 and 0.43 t  ha−1. The RF model performed poorly in the test dataset at 
both sites, which indicated an overfitting issue, even though parameter tuning was con-
ducted with an independently-trained dataset.

Sensitivity analyses were conducted to examine the robustness of the RF models’ esti-
mations of expected net revenues in each of the four scenarios. The results in Table 1 indi-
cate that the lowest net revenues were generated from the farmer’s conventional application 
rate, and in comparison to the optimal uniform rate strategies, led to losses of $266  ha−1 
in Experiment 1 and $789  ha−1 in Experiment 2. When the farmers followed the optimal 
variable-rate strategy instead of the optimal uniform rate strategy, they received relatively 
small additional gains in net revenue of $120 and $59   ha−1. Thus, optimizing the uni-
form rate might significantly improve farmers’ profits, although equipment for VRA was 
unavailable.

The spatial patterns of economically-optimal fertilizer application rates showed little 
spatial autocorrelation (Fig. 4). Excluding the case of basal fertilizer in Experiment 2, in 
most parts of the fields, site-specific economically-optimal fertilizer application rates were 
lower than rates recommended by the farm’s and crop advisory service.

Comparison to results from previous research

Previous studies that used crop simulation models for corn demonstrated that the use of 
VRA increased net revenues by approximately $16  ha−1 in Iowa, USA (Paz et al., 1999), 
by $13  ha−1 in northwest Italy (Basso et al., 2016), and by $18.21–29.57  ha−1 in Colorado, 
USA (Koch et al., 2004). Due to the differences in grain and fertilizer prices and the degree 
of spatial yield variations that can be adjusted by VRA, the expected improvement in net 

(2)A = wVRA∕
(

rVRA−rUM
)

,
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revenues due to VRA is not directly comparable to our results. However, in this study, a 
case in which high profits can be expected simply from optimizing uniform fertilizer appli-
cation rates ($266–789   ha−1), and the additional net revenue generated by moving from 
this point to optimizing VRA rates is positive but small ($59–120   ha−1) (Table 1). This 
study also provided some evidence of a large gap in net revenues between optimal VRA 
or uniform rates and the rates recommended to farmers in commercial markets or producer 
cooperatives. Further research is needed to assess the framework for optimizing machine 
learning models and the selection of environmental variables to improve site-specific pre-
diction accuracy and model explainability.

The farmer’s response

The results from Experiment 1 indicated a large net revenue loss from increasing applica-
tion rates for both basal and top-dressing fertilizer in Experiment 1 (Table 1). In the fol-
lowing season, the farm decided to apply fertilizer at its advisory service’s recommended 
rates of 420 kg  ha−1 of basal fertilizer and 330 kg  ha−1 of top-dressing, thus choosing not to 
reduce application rates to the 316 kg  ha−1 of basal fertilizer and 192 kg  ha−1 of top-dress-
ing indicated by Experiment 1’s data. Farmers feared the potential risk of an unexpected 
decline in crop yield and questioned the reliability of this outcome simulation considering 

Fig. 3  Relationships between the observed and predicted yields of RF models for Experiments 1 and 2. 
Lines represent 1:1 relationships
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the year-to-year variations in crop yield. Furthermore, the net revenue of basal fertilizer 
rates of Experiment 2 supported the farmer’s assumption of a strong crop response to 
inputs that can improve profits by increasing the application rate. This situation indicates 
that multiple-year trials or measurements of model prediction uncertainty that account for 
temporal variations are needed. The combinations of crop simulation models or preplant 
soil tests might be a promising tool to facilitate understanding of temporal variations in 
crop yield (Trevisan et al., 2021).

Practical implications

As noted above, substantially raising net revenues by moving from a crop advisory’s rec-
ommended uniform application rate to an optimal uniform application rate estimated from 
OFPE data. Maine et al. (2010) indicated that more than 196 ha was needed to compensate 
investment cost in VRA technology for site-specific maize production to be profitable in 
South Africa. The results showed that approximately 50–100 ha was needed for the ben-
efits of VRA to surpass its costs (Table 1). Although the two studies’ outcomes cannot be 
directly compared, as the price of grain and fertilizer and the degree of crop responses to 
fertilizer rates are not the same, economies of scale are one of the important factors deter-
mining the benefits of VRA. Given that the average Japanese farm size is 3.2 ha (Minis-
try of Agriculture, 2022) and farms of sizes greater than 50 ha comprised only 0.56% of 
all Japanese agricultural management entities in 2015 (Ministry of Agriculture, 2017), the 
site-specific management recommendation that can be derived from information generated 
from such small-scale OFPEs is unlikely to offset the costs of the technology. Therefore, 

Fig. 4  Spatial distribution of economically-optimal application rates of basal (a) and top-dressing fertilizer 
(b) (kg  ha−1)
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data analytics that can recommend optimal field-specific uniform input management rather 
than site-specific crop yield response enabled by VRA technology might be more appropri-
ate for Japanese fields. That said, generating enough value to pay for the precision agri-
culture technologies needed to implement the trials, namely, VRA technology, might also 
simply be infeasible, based on the information garnered from OFPEs on typical Japanese 
farm fields.

The interview survey revealed that the analytical results of the case study may success-
fully facilitate farmers’ understanding of OFE research and can encourage their engage-
ment in OFE (Table 2). Five of the interviewed farmers answered that they would be will-
ing to conduct OFEs if the profitability of field-specific treatments could be assessed via 
data analysis (Table 2). Digital tools, namely, yield sensors that can quantify within-field 
crop variability, are powerful drivers in the implementation of OFEs in many Western 
countries (Lacoste et  al., 2022). However, considering the small scale of Japanese grain 
farming, further research should be directed toward developing data analytical approaches 
for assessing the treatment effect on field-specific or household-based yield data and effi-
cient digitalization platforms. For instance, a Bayesian approach and web application might 
offer solutions for data analytics and visualization (Laurent et al., 2019, 2021) because they 
can account for the effects of years and sites on yield as random effects, while user-friendly 
web applications enable users to explore the trial effects and economic responses. Such an 
interactive interface is further expected to allow users with different interests to support 
decision-making and education (Laurent et al., 2021). This flexible feature might be more 
welcomed for a variety of small-scale or moderate-scale farms than for large-scale farms. 
From the perspectives of model generality, deep learning techniques may also have great 
potential to model causal relationships affecting crop yield through transfer learning if a 
large dataset is derived from multiple farms, as proposed by Barbosa et al. (2020).

Conducting strip trials that do not require VRA technology is potentially a cost-effective 
method of generating data for the estimation of optimal uniform application rates. How-
ever, a typical Japanese farmer may be unwilling to manually adjust application rates from 
strip to strip across many of a farm’s dozens or hundreds of small-scale fields, and farmers 
are frequently skeptical about how well the outcomes of strip trials on partial fields repre-
sent yield response across entire fields. Furthermore, collecting yield data can be difficult; 
harvesters equipped with yield sensors have become commercially available in Japan over 
the past few years but remain uncommon, and most of the yield sensors manufactured in 
Japan quantify only whole-field grain weight, while yield mapping is a rarely purchased 
optional feature.

One-third of the rice producers (farmers 2, 3, and 5) answered that while they did not 
own a yield sensor, they do have access to either field-level or household-based (i.e., aggre-
gated over multiple fields) yield data during the drying and storage process. This general 
process is used by Japanese farmers because they sometimes need to prove their yield to 
claim payment from their agricultural producers’ cooperatives after using the cooperative’s 
grain drying system. Thus, field-level yield data derived from the yield monitor can be col-
lected from two of the nine farmers, while field-level manually-quantified yield data can be 
collected from three of the nine farmers. This situation implies the feasibility of conduct-
ing only on-farm trials that assign experimental rates that are uniform within the fields but 
variable among them. Since the individual fields are quite small, the resultant data might 
generally resemble data from OFPEs on very large fields, although organizing trials with 
many farmer participants might be challenging.

Surveyed farmers expressed interest in conducting OFEs to study the effects of input 
application strategies on rice quality rather than yield (Remark 1 in Table 3). Rice quality 
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can be measured by the protein content and Mido value (value of shine on the surface 
of boiled rice grains) of brown rice (Hamaker, 1993; SATO et  al., 2003). While yield 
response has been the subject of many previous OFE studies (Kool et al., 2020), quality 
can be of great concern to Japanese farmers; for example, farmer 3 indicated that increas-
ing the quality of the rice crop could double the price received for it. Several interviewees 
reported conducting informal trials to assess the effect of crop management on crop quality 
(Remark 2 in Table 3). However, while their trial designs featured no treatment replications 
and the data generated were not statistically analyzed, these activities indicate the potential 
of conducting successful OFEs through cooperation among farmers and researchers.

These remarks were not direct answers derived from our intentional questions but from 
extended conversations during the interview process.

Farmers’ engagement

Farmers’ engagement with researchers and other farmers in the OFE process is crucial. Repeat-
ing experiments and reviewing outcomes are key (Lacoste et al., 2022), but Japanese produc-
ers may lack the social infrastructure to support this process. Some interviewees expressed 
concern that the successful implementation of OFEs would necessitate logistical coordination 
that would increase the “hidden” cost of experimentation (Remark 3 in Table 3). The inter-
views also found that farmers communicated very little among themselves about crop manage-
ment (Remark 4 in Table 3) but rather primarily received that information in a top-down for-
mat from either private crop advisory or governmental services. Several interviewees claimed 
that farmers’ philosophies and circumstances differed greatly, so information sharing among 
farmers was not useful (Remark 5 in Table 3). Interviewees further emphasized the complex-
ity of making decisions through agricultural producers’ cooperatives (Remark 6 in Table 3). 
Multiple actors are responsible for implementing fertilization for a single cooperative. Thus, 
not only farmer-to-farmer co-learning but also within-management-body co-learning would 
be important to facilitate OFE implementation. These responses indicate the importance of 
building a farmers’ network to drive the implementation of OFE for nonlarge-scale farmers 
who cannot benefit from the outcomes of one-farm OFEs (Schneider et al., 2009); at the very 
least, initially implementing multiple-farm OFEs would require considerable organizational 
investment by researchers. Farmer 5 requested a workshop to deepen the mutual understanding 
between neighboring farmers and scientists.

Another possible benefit of organizing Japanese farmers to conduct OFEs is that doing 
so might facilitate cooperative marketing and increase their product prices; establishing 
common interests might create a new basis for collaboration and social learning (Schnei-
der et  al., 2009). For example, the connections created among farmers during workshop 
discussions regarding OFE outcomes or interactive web applications could encourage new 
marketing collaborations and thus enhance farm income.

Conclusion

OFE research has thus far primarily focused on either large-scale farming with access to 
highly modernized precision agriculture technologies or on smallholder farming in the global 
south. To the best of our knowledge, this study has presented the first discussion about future 
research directions in OFEs on the moderately-sized farms typically engaged in Japanese grain 
production. The results of the OPFE case study and interviews indicated that establishing 



Precision Agriculture 

1 3

experiments and data-analytical approaches that recommend optimal uniform input manage-
ment strategies for Japan’s small fields would be more practical than trying to estimate site-
specific crop yield responses within those fields. Thus, VRA technology will most likely not 
be prioritized for Japanese grain farming. The findings highlighted the importance of study-
ing the effects of management strategies on crop quality in Japan. This study also identified 
scarcity in social communications infrastructure as a key challenge. Both farmer-to-farmer 
co-learning and within-management-body co-learning are important for facilitating the imple-
mentation of OFE due to the difficulties in reaching agreement on crop management strate-
gies, especially within agricultural producers’ cooperatives. Future research will be conducted 
to establish an OFE research framework by setting up OFEs involving multiple middle-scale 
farmers. Analysis of the treatment effects on crop yield and quality need to be gathered from 
data generated from trials run cooperatively with many farmers on multiple fields. Cooperative 
marketing strategies might accompany such cooperative research.
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