2011年6月
THE MODULI SPACE OF TRANSVERSE CALABI-YAU STRUCTURES ON FOLIATED MANIFOLDS
OSAKA JOURNAL OF MATHEMATICS
- 巻
- 48
- 号
- 2
- 開始ページ
- 383
- 終了ページ
- 413
- 記述言語
- 英語
- 掲載種別
- 研究論文(学術雑誌)
- 出版者・発行元
- OSAKA JOURNAL OF MATHEMATICS
In this paper, we develop a moduli theory of transverse structures given by calibrations on foliated manifolds, including transverse Calabi-Yau structures. We show that the moduli space of the transverse structures is a smooth manifold of finite dimension under a cohomological assumption. We also prove a local Torelli type theorem. If the foliation is taut, we can construct a Riemannian metric on the set of transverse Riemannian structures. This metric induces a distance on the moduli space of the transverse structures given by a calibration. As an application, we show the moduli space of transverse Calabi-Yau structures is a Hausdorff and smooth manifold of finite dimension.
Web of Science ® 被引用回数 : 3
Web of Science ® の 関連論文(Related Records®)ビュー
- リンク情報
- ID情報
-
- ISSN : 0030-6126
- Web of Science ID : WOS:000294971200006