論文

査読有り
2014年6月4日

Reduction on reactive pore surfaces as a versatile approach to synthesize monolith-supported metal alloy nanoparticles and their catalytic applications

JOURNAL OF MATERIALS CHEMISTRY A
  • Nirmalya Moitra
  • ,
  • Kazuyoshi Kanamori
  • ,
  • Yumi H. Ikuhara
  • ,
  • Xiang Gao
  • ,
  • Yang Zhu
  • ,
  • George Hasegawa
  • ,
  • Kazuyuki Takeda
  • ,
  • Toyoshi Shimada
  • ,
  • Kazuki Nakanishi

2
31
開始ページ
12535
終了ページ
12544
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1039/c4ta01767f
出版者・発行元
ROYAL SOC CHEMISTRY

Supported metal alloy nanoparticles demonstrate high potential in designing heterogeneous catalysts for organic syntheses, pollution control and fuel cells. However, requirements of high temperature and multistep processes remain standing problems in traditional synthetic strategies. We herein present a low-temperature, single-step, liquid-phase methodology for designing monolith-supported metal alloy nanoparticles with high physicochemical stability and accessibility. Metal ions in aqueous solutions are reduced to form their corresponding metal alloy nanoparticles within hierarchically porous hydrogen silsesquioxane (HSQ, HSiO1.5) monoliths bearing well-defined macro-and mesopores and exhibiting high surface redox activity due to the presence of abundant Si-H groups. Supported bi-, tri- and tetrametallic nanoparticles have been synthesized with controlled compositions and loadings, and characterized in detail by microscopy and spectroscopy techniques. Examination of these supported metal alloy nanoparticles in catalytic reduction of 4-nitrophenol shows high catalytic activities depending on their compositions. Their recyclability and potential application in continuous flow reactors are also demonstrated.

リンク情報
DOI
https://doi.org/10.1039/c4ta01767f
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000339625500051&DestApp=WOS_CPL
ID情報
  • DOI : 10.1039/c4ta01767f
  • ISSN : 2050-7488
  • eISSN : 2050-7496
  • Web of Science ID : WOS:000339625500051

エクスポート
BibTeX RIS