論文

査読有り 国際誌
2020年7月3日

Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial.

Journal of neuroengineering and rehabilitation
  • Shihomi Kawasaki
  • ,
  • Koji Ohata
  • ,
  • Takeshi Yoshida
  • ,
  • Atsushi Yokoyama
  • ,
  • Shigehito Yamada

17
1
開始ページ
87
終了ページ
87
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1186/s12984-020-00712-3

BACKGROUND: Recently, rehabilitation robots are expected to improve the gait of cerebral palsy (CP) children. However, only few previous studies have reported the kinematic and kinetic changes by using wearable exoskeleton robots. The aim of this study was to investigate the change in gait parameters in CP children by training with the wearable robot-assisted gait training. METHODS: 10 spastic CP children with Gross Motor Function Classification Scale levels I-III completed a sham-controlled crossover randomized trial. Robot-assisted gait training (RAGT) and non-assisted gait training (NAGT) were performed on the treadmill with the Honda Walking Assist (HWA) in two different days. To examine the carry-over effect from treadmill walking to overground walking, participants also performed 5.5 m overground-walks without the HWA before and after treadmill training (pre- and post-trial). During treadmill walking, peak of both hip and knee angles were measured. Also, we calculated the limb symmetry of hip range of motion. In addition, gait speed and ground reaction force were measured in overground trials. RESULTS: The maximum hip angle on the limb with fewer hip movements, which was defined as the affected limb, showed a significant interaction between ASSIST (RAGT and NAGT) and TIME (pre- and post-trial) (p < 0.05). Limb symmetry significantly improved after RAGT (p < 0.05), but not in NAGT. Furthermore, the affected limb showed a significant increase in the positive peak of the anterior-posterior ground reaction force during 70-100% of the gait cycle (p < 0.05). However, there was no change in gait speed. CONCLUSION: By assisting the both hip movements with the HWA, maximum hip flexion and extension angle of the affected limb improved. Also, limb symmetry and propulsion force of the affected limb improved. Our results suggest that assisting both hip movements with the HWA might be an effective method for improving gait in CP children. TRIAL REGISTRATION: UMIN-CTR, UMIN000030667. Registered 3 January 2018, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000033737.

リンク情報
DOI
https://doi.org/10.1186/s12984-020-00712-3
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/32620131
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333257
URL
http://europepmc.org/abstract/med/32620131
ID情報
  • DOI : 10.1186/s12984-020-00712-3
  • ORCIDのPut Code : 76868890
  • PubMed ID : 32620131
  • PubMed Central 記事ID : PMC7333257

エクスポート
BibTeX RIS