論文

査読有り 国際誌
2018年4月

Differential response to caloric restriction of retroperitoneal, epididymal, and subcutaneous adipose tissue depots in rats.

Experimental gerontology
  • Takumi Narita
  • ,
  • Masaki Kobayashi
  • ,
  • Kaho Itakura
  • ,
  • Rei Itagawa
  • ,
  • Riho Kabaya
  • ,
  • Yuka Sudo
  • ,
  • Naoyuki Okita
  • ,
  • Yoshikazu Higami

104
開始ページ
127
終了ページ
137
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.exger.2018.01.016

The beneficial actions of caloric restriction (CR) are partially mediated by metabolic remodeling of white adipose tissue (WAT). Recently, we showed that CR enhances de novo fatty acid (FA) biosynthesis and mitochondrial biogenesis, particularly in WAT. Here, to better understand the response of WAT to CR, we compare the effects of CR on three WAT depots in rats: retroperitoneal (rWAT), epididymal (eWAT) and subcutaneous (sWAT). Computed tomography and histological analysis showed that CR reduced the volume and average size of rWAT adipocytes. In all WAT depots, CR markedly upregulated the expression of proteins involved in FA biosynthesis in fed rats. In visceral WAT (rWAT and eWAT), hormone-sensitive lipase (lipolytic form) phosphorylation was increased by CR under fed conditions, and decreased by CR under fasted conditions. Conversely, in sWAT, hormone-sensitive lipase phosphorylation was increased by CR under fasted conditions. CR enhanced the effect of feeding on AKT activity in sWAT (indicative of a positive effect on insulin sensitivity) but not in rWAT or eWAT. These data suggest that CR improves lipid metabolism in an insulin signaling-dependent manner in sWAT only. The effects of CR on adipokine (adiponectin and leptin) expression were also different among rWAT, eWAT and sWAT, and CR reduced the gene expression of M2 macrophage markers in rWAT and sWAT, but not in eWAT. We conclude that CR differentially affects the characteristics of WAT depots in rats, including adipocyte size, lipid metabolism, insulin signaling, adipocytokine profile and macrophage infiltration.

リンク情報
DOI
https://doi.org/10.1016/j.exger.2018.01.016
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/29410017

エクスポート
BibTeX RIS