
Vol.:(0123456789)

International Journal of Precision Engineering and Manufacturing-Green Technology (2023) 10:611–634 
https://doi.org/10.1007/s40684-022-00495-z

1 3

REVIEW

Online ISSN 2198-0810
Print ISSN 2288-6206

Design and Assessment of Phase‑Shifting Algorithms in Optical 
Interferometer

Sungtae Kim1 · Jurim Jeon1 · Yangjin Kim1 · Naohiko Sugita2 · Mamoru Mitsuishi2

Received: 27 August 2022 / Revised: 27 November 2022 / Accepted: 29 November 2022 / Published online: 13 December 2022 
© The Author(s), under exclusive licence to Korean Society for Precision Engineering 2022

Abstract
Silicon wafers and transparent glass plates are major components in the semiconductor industry. In semiconductor devices, 
the surface shape and optical thickness of the wafers and glass plates are the key parameters for the optimal performance of 
the devices. Phase-shifting interferometry has been widely used to achieve precision measurements of these parameters. The 
phase-shifting algorithm significantly affects the interferometric measurement results with phase-shifting interferometry. 
In this review, we introduce the design and assessment of phase-shifting algorithms in the Fizeau interferometer. Section 2 
categorized the phase-shifting algorithms designed by several methods in terms of their error compensation ability. Then, 
the optical setup of the Fizeau interferometer used for surface and thickness measurement is explained in Sect. 3. In addi-
tion, Sect. 4 explained the principle of phase extraction using phase-shifting interferometry and discussed its error sources. 
Moreover, design methods for the phase-shifting algorithm to eliminate error sources are introduced in Sect. 5. Finally, the 
error compensation abilities of designed algorithms are estimated by several methods in Sect. 6.

Keywords Fizeau interferometer · Optical thickness · Phase error · Phase-shifting algorithm · Phase-shifting 
interferometry · Surface shape

1 Introduction

Silicon wafers and transparent glass plates have been widely 
used in semiconductor industries, such as semiconductor 
chips and lithography equipment [1–4]. In semiconductor 
devices, the surface shape and optical thickness of the wafers 
and glass plates affect the manufacturing process and qual-
ity of the devices [5–12]. When the integrated circuits are 
fabricated using lithography, the fine patterns of the glass 
plates are projected onto the wafer using a laser. To enhance 
the reliability of semiconductor devices, the surface shape 
and optical thickness should be profiled and managed with 
nanometer measurement accuracy [13–21].

The surface and thickness measurements of wafers and 
glass plates can be classified into contact and non-contact 
methods. In the contact method, stylus profilometry is 
broadly applied to surface and thickness measurements 
because of its simple operation [22–31]. However, it can 
cause scratches on the surfaces and it is time-consuming 
because the stylus tip should be in direct contact with the 
entire surface of the wafers and glass plates. In contrast, opti-
cal interferometry, a non-contact method, is widely applied 
to precise surface and thickness measurements because of its 
high resolution and nondestructive and fast measurements 
[32–38]. Among optical interferometry methods, white-light 
interferometry is utilized for surface and thickness measure-
ments with nanometer measurement accuracy using the low 
coherence properties of the light source [39–48]. However, 
in this method, the measurement accuracy degrades with 
increasing sample thickness, larger than a few millimeters, 
owing to the nonlinear translation along the optical axis and 
refractive-index dispersion.

Phase-shifting interferometry has been broadly applied to 
surface and thickness measurements to resolve these meas-
urement limitations and achieve nanometer measurement 
accuracy [49–56]. In phase-shifting interferometry [57–66], 
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the phase difference between the reference beam and the 
sample beam is modulated by the phase-shifting technique. 
The interferograms are acquired at the same intervals of 
phase-shifting. Then, the phase distribution is calculated 
using a phase-shifting algorithm [67–76]. Therefore, the 
phase-shifting algorithm can affect the measurement accu-
racy of the phase-shifting interferometry.

This review introduces the design methods and assess-
ment of the phase-shifting algorithm for surface and thick-
ness measurements of wafers and glass plates. Section 2 
describes the categorization of the phase-shifting algorithms 
with respect to the error compensation ability of the phase 
error. Section 3 introduces the optical setup of the Fizeau 
interferometer using a phase-shifting technique for surface 
and thickness measurements. Section 4 describes the theory 
of phase extraction and the error sources in phase-shifting 
interferometry. The design methods of the phase-shifting 
algorithm proposed by several authors are explained in 
Sect. 5. In addition, a performance assessment of the algo-
rithms is introduced. Section 6 presents the evaluation meth-
ods for the suppression abilities of the phase-shifting algo-
rithm regarding the phase error. Finally, the conclusions of 
this study are presented in Sect. 7.

2  Categorization of Phase‑Shifting 
Algorithm

Before explaining the design of the phase-shifting algo-
rithms, we categorize the phase-shifting algorithms. Phase-
shifting algorithms can be categorized according to their 
ability to compensate for error sources, such as harmonics, 
phase-shift errors, and DC errors, describe in Sect. 4. In this 
review, phase-shifting algorithms are classified into seven 
groups. Table 1 shows the categorization of groups accord-
ing to error compensation ability.

Table 2 shows the categorization of the phase-shifting 
algorithms designed using several methods described in 
Sect. 5. In addition, Table 2 shows whether the algorithm 

satisfies the condition of the visibility maximum described 
in Sect. 6. Following sections explain the phase-shifting 
interferometry and design method of the phase-shifting 
algorithms.

3  Fizeau Interferometer with Phase‑Shifting 
Technique

The Fizeau interferometer with a phase-shifting technique 
has been widely used for surface and thickness measure-
ments of wafers and glass plates [57, 65]. Because the 
transmitted and reflected beams in the Fizeau interferom-
eter use the same optical path, this interferometer is resist-
ant to air turbulence. Figure 1a depicts the optical setup 
of the Fizeau interferometer with the phase-shifting tech-
nique, where the diode laser changes the wavelength of the 
laser beam and modulates the phase of the fringe pattern 
without mechanical movement of the sample. Generally, 
the diode laser does not have the preferrable wavelength 
accuracy and long coherence length because the cavity 
length changes significantly due to changes in temperature 
and current flow. However, by setting the front surface of 
the cavity with an external diffraction grating and mirror 
(Littman type), the loss of light other than a specific wave-
length can be increased. Therefore, by adopting the Litt-
man type diode laser, the coherence length can be larger 
than 100 mm when the frequency is 1 MHz.

Moreover, the measured sample and target are deter-
mined according to the arrangement of the reference sur-
face and sample in the Fizeau interferometer, represented 
by the green square in Fig. 1a. Figure 1b depicts the three 
types of optical arrangement of the reference surface and 
sample in the Fizeau interferometer. The surface and thick-
ness of the transparent glass plate can be measured using 
the first arrangement by a Fizeau interferometer because 
the laser beam is transmitted through the glass plate and 
reflected from the front and rear glass plate surfaces and 
the reference surface. The second arrangement was applied 

Table 1  Categorization of 
groups according to error 
compensation ability

Group Compensation for

Harmonics Linear phase-
shift error

Nonlinear
phase-shift error

Coupling error DC error

I A N/A N/A N/A N/A
II A A N/A N/A N/A
III A A A N/A N/A
IV A A N/A A N/A
V A A A A N/A
VI A A A N/A A
VII A A A A A
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to surface measurements of the opaque sample. Because 
the laser beam cannot be transmitted through the opaque 
sample, the transmitted beam is reflected only from the 
front sample and reference surfaces. The third arrangement 
was used for the thickness measurement of the transparent 
glass plate. Because surface information is not required, 
the Fizeau interferometer does not contain the reference 
surface, and the transmitted beam is reflected from the 
front and rear glass plate surfaces.

Figure 1c depicts the raw interferograms acquired by 
the Fizeau interferometer with three configurations. The 
three interferograms correspond to the blank mask, sili-
con wafer, and optical flat. In addition, Fig. 1d depicts the 
calculated phase of the surface and thickness of the wafers 
and glass plates calculated using the interferograms and 

phase-shifting algorithm. Because of the properties of the 
phase-shifting algorithm described in Sect. 4, the range of 
the calculated phase is from  – π to π, and the calculated 
phase contains discontinuities. The unwrapping process 
was used to eliminate discontinuities and obtain the pre-
cise surface and thickness of the wafers and glass plates. 
Figure 1e shows the unwrapped measured results of the 
surface and thickness of the wafers and glass plates deter-
mined by the unwrapping process using the raw phase.

4  Phase Extraction Theory

This section introduces the phase extraction theory of phase-
shifting interferometry. In addition, we discuss the error 
sources occurring in phase-shifting interferometry, which 
degrade the measurement accuracy.

Table 2  Categorization of 
phase-shifting algorithms

Group Phase-shifting algorithm Design method Visibility 
maximum

Refer-
ences

I Synchronous detection Fourier description N/A [77]
Wyant 4-sample Trigonometric function N/A [78]
Wyant 3-sample Trigonometric function N/A [79]

II Schwider and Hariharan 5-sample Averaging theory A [80, 81]
Larkin-Oreb N + 1 Fourier description N/A [82]
Zhu 9-sample Linear equation A [83]

III Schmit and Creath 6-sample Averaging theory N/A [84]
de Groot 7-sample Data-sampling window A [85]
Fang 11-sample Linear equation A [72]

IV Hibino 7-sample Linear equation A [86]
Surrel 2 N – 1 Characteristic polynomial A [87]
Hibino 19-sample Fourier description N/A [88, 89]
Hanayama 2 N – 1 Characteristic polynomial A [90]
Estrada 9-sample Fourier description A [91]
Jeon 11-sample Data-sampling window A [92]

V Hibino 9-sample Linear equation N/A [93]
Zhang 8-sample Averaging theory N/A [94, 95]
de Groot 13-sample Data-sampling window A [96]
Wu 10-sample Averaging theory A [97]
Shi 13-sample Data-sampling window A [70]
Kim 3 N – 2 Characteristic polynomial A [98]
Kumagai 13-sample Data-sampling window A [99]
Yu 13-sample Data-sampling window A [75]
Choque 9-sample Fourier description A [100]
Padilla C(N – 1) – 1 Fourier description A [101]

VI Kim 9-sample Linear equation A [102]
Choque 8-sample Fourier description N/A [103]

VII Kim 13-sample Linear equation A [104]
Bae 19-sample Linear equation A [105]
Kim 15-sample Linear equation A [106]
Kim 4 N – 1 Characteristic polynomial A [107]
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4.1  Phase‑Shifting Interferometry

A simple 2-beam interferometer was considered to conduct 
the surface measurement. Figure 2 depicts the 2-beam inter-
ferometer where L is the air-gap distance between the front 
sample and reference surfaces.

When measuring the front sample surface using the 
2-beam interferometer with the phase-shifting technique, the 
reflected beams from the front sample and reference surfaces 
interfere with one another, generating interference fringe 
patterns. The phase of the fringe pattern corresponds to the 
phase difference between interfering beams. The intensity of 
the interferogram is a function of the phase-shift parameter 
αr and is given by

where S0 is the DC component, and Sm and φm are the 
amplitude and phase of the mth-order harmonics, respec-
tively. Phase φ1 of the fundamental order corresponding to 
the surface shape of the sample was the target phase to be 
calculated.

The M-sample phase-shifting algorithm is used to calcu-
late the target phase and is generally expressed as [77, 108]

where φ* is the calculated phase, and Gr and Hr are the sam-
pling weights of the phase-shifting algorithm.

For example, when the reference phase varying from 0 to 
2π is separated by equal intervals of π/2, and only the funda-
mental order of the harmonics is considered, the intensity of 
the interferogram is a simple sinusoidal function, as depicted 
in Fig. 3, and is given as

where αr = 0, π/2, π, 3π/2 for r = 1, 2, 3, 4. Using Eqs. (2) 
and (3), the target phase is calculated by the trigonometric 
function and given to

(1)Ir = S0 +
∑∞

m=1
Sm cos

[

m�r + �m
]

(2)�∗ = arctan
∑M

r=1 HrIr
∑M

r=1 GrIr

(3)Ir = S0 + S1 cos
(
�r + �1

)

(4)�1 = arctan
I2 − I4

I1 − I3

Fig. 1  a Optical setup of Fizeau interferometer with phase-shifting 
technique; b three types of optical arrangement of the reference sur-
face and sample in the Fizeau interferometer; c raw interferograms 
of the wafers and glass plates acquired by Fizeau interferometer; d 

calculated phase of the surface and thickness of the wafers and glass 
plates calculated by interferograms and phase-shifting algorithm; e 
unwrapped measured results of surface and thickness of the wafers 
and glass plates determined by unwrapping process

Fig. 2  Simple 2-beam interferometer for measurement of the surface 
shape of the sample
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where the sampling weights of the above algorithm are given 
to

This algorithm is the conventional 4-sample phase-shift-
ing algorithm developed by Wyant [78].

4.2  Error Sources of Phase‑Shifting Interferometry

In the measurement of the surface shape of the sample using 
phase-shifting interferometry, the main sources of system-
atic errors in the calculated phase are harmonics, phase-shift 
error, and coupling error between the harmonics and phase-
shift error [109–116]. The phase-shift parameter αr, in the 
phase-shifting technique, should be changed at predetermined 
intervals. However, the actual phase-shift parameter contains 
linear miscalibration and nonlinearities because of environ-
mental vibration [117–119], fluctuation of the intensity [120, 
121], and nonlinear properties of the piezoelectric transducer 
(PZT) of the laser diode [122, 123]. The diode laser of New 
Focus Velocity series has the PZT scanning mode for the inter-
ferometric measurement of surface and reported that there is 
approximately 3% nonlinearity in the PZT behavior [115].

The phase-shift parameter is defined by the ideal phase-
shift parameter α0r and phase-shift error εq owing to these 
effects [93]:

where ε0 is the linear phase-shift error (linear miscalibration), 
εq is the qth-order nonlinear phase-shift error for q = 1, 2, …, 

(5)
Gr = [1, 0,−1, 0]

Hr = [0, 1, 0,−1]

(6)

�r = �0r

[
1 + �0 + �1

�0r

π
+ �2

(�0r
π

)2

+⋯ + �p

(�0r
π

)p
]

p, and α0r = 2π[r – (M + 1)/2]/N, where N is the phase-division 
number and is an integer.

Substituting Eqs. (1) and (6) into Eq. (2), the phase error 
∆φ expanded by the Taylor series is a function of the ampli-
tude of harmonics Sm and the phase-shift error εq (q ≥ 0) [93]:

where m = 2, 3, …, j; q = 0, 1, …, p; and the error terms are 
as follows:

• ο(Sm) is the error from the harmonics. When measuring 
the surface shape of a highly reflective sample, such as 
silicon wafers, the effects of the harmonics increase and 
the observed interferogram consists of combinations of dif-
ferent fringe patterns, which degrades the visibility of the 
observed interferogram [98, 124].

• ο(εq) is the error from the phase-shift error. While calcu-
lating the target phase, the linear phase-shift error causes 
a nonuniform error, and the nonlinear phase-shift error 
causes both DC and nonuniform errors [93, 102]. The DC 
error causes critical errors in the measurement of the abso-
lute optical thickness of the sample, and the nonuniform 
error severely affects the surface measurement [125].

• ο(Smεq) is the error from the coupling error between the 
harmonics and phase-shift error [93, 126]. For nanometer 
measurement accuracy, the coupling error should be com-
pensated for by the phase-shifting algorithm.

For example, ο(ε1) is the first-order nonlinear phase-shift 
error, and ο(S2ε3) is the coupling error between the second-
order harmonics and third-order nonlinearity.

A phase-shifting algorithm to compensate for the above 
phase errors should be used for precise surface and thickness 
measurements of wafers and glass plates.

5  Design Method of Phase‑Shifting 
Algorithm

This section introduces the design methods of phase-shifting 
algorithms proposed by several authors to conduct surface and 
thickness measurements without phase errors. In addition, the 
performance assessment of the designed algorithms is briefly 
explained.

5.1  Averaging Theory Between Subsequent 
Interferograms

Schwider [80, 127] proposed an averaging theory 
using consecutive interferograms with equal phase-
shift intervals to suppress the linear phase-shift error. 
Schmit and Creath [84] proposed an extended averaging 

(7)Δ� = �∗ − �1 = o
(
Sm

)
+ o

(
�q
)
+ o

(
Sm�q

)

Fig. 3  Intensity of the rth interferogram in the 2-beam interferometer. 
(under the condition of S0 = S1 = 1)



616 International Journal of Precision Engineering and Manufacturing-Green Technology (2023) 10:611–634

1 3

theory for better insensitivity to linear phase-shift 
errors.

In averaging theory, the two sets of subsequent M-sample 
interferograms acquired at phase-shift intervals of π/2, where 
the first set of interferograms overlaps with the second set, 
are used. Two types of M-sample phase-shifting algorithms 
were derived using the two sets of interferograms. Then, the 
new (M + 1)-sample phase-shifting algorithm can be derived 
by averaging the two types of M-sample algorithms.

For the better suppression of the linear phase-shifting 
error, Schmit and Creath developed a phase-shifting algo-
rithm using the extended averaging theory. Three sets of 
successive M-sample interferograms with equal phase-shift 
intervals of π/2 were used. Using averaging theory, two types 
of (M + 1)-sample algorithms were derived. Then, the aver-
aging theory is reapplied to two types of (M + 1)-sample 
algorithms to obtain a new (M + 2)-sample phase-shifting 
algorithm.

Schwider developed the 5-sample phase-shifting algo-
rithm by the averaging theory [80, 127], and Creath devel-
oped the 5- and 6-sample algorithms using the extended 
averaging theory [84]. Zhu proposed a 4-sample algorithm 
using overlapping averaging theory [128]. Zhang developed 
the 7-, 8-, and 9-sample algorithms using the averaging the-
ory [94, 95], and Wu developed the 10-sample algorithm 
using the averaging theory [97]. The procedure of the aver-
aging theory is described by Schwider 5-sample algorithm.

When the reference phase changing from 0 to 2π is sepa-
rated by four equal intervals of π/2, five interferograms are 
acquired, and the intensity of the interferogram is identical 
to that in Eq. (3) for αr = 0, π/2, π, 3π/2, and 2π. Using the 
five interferograms, the target phase was calculated using 
two types of 4-sample algorithms:

By applying the averaging theory to two types of 4-sam-
ple algorithms, the Schwider 5-sample algorithm is derived 
as

This 5-sample algorithm was also proposed by Hariharan 
[81].

For performance assessment of the algorithms, 
Schwider measured the glass plate surface using the 
Tyman-Green interferometer [80], Schmit and Creath ana-
lyzed the effects of the linear phase-shift error [84], and 
Zhu carried out a numerical simulation of the phase-shift 
errors [128]. In addition, Zhang conducted a numerical 
simulation of the second-order harmonics and phase-shift 
error and performed 3-D object surface measurements 

(8)�1 = arctan
I2 − I4

I1 − I3
= arctan

I2 − I4

I5 − I3

(9)�1 = arctan
2(I2 − I4)

I1 − 2I3 + I5

using a fringe projection profilometry system [94, 95]. 
Wu performed 3-D object surface measurements using a 
frequency-modulated laser diode interferometric system 
[97].

5.2  Theory of Fourier Description

Larking and Oreb proposed a design method for a phase-
shifting algorithm using the Fourier description of the 
sampling weight to suppress the phase error [82]. Freis-
chlad and Koliopoulos developed a method for visualizing 
a phase-shifting algorithm in the frequency domain using 
the Fourier description of the sampling weights [129].

In the time domain, the sampling functions of the sam-
pling weights are defined as

where δ(α) is the Dirac delta function.
Using Parseval’s equation and Eqs. (10) and (11), the 

M-sample phase-shifting algorithm in Eq.  (2) can be 
expressed as

where ν is the frequency variable, and F1(ν), F2(ν), and 
J(ν) are the Fourier transforms of f1(α), f2(α), and I(α), 
respectively. Because the sampling weights and phase-
shift parameters have the symmetric properties of 
Gr = GM + 1 – r, Hr =  – HM + 1 – r, and αr =  – αM + 1 – r [98], 
the sampling functions in the frequency domains F1(ν) and 
F2(ν) become imaginary and real functions, respectively.

where i is the imaginary unit.
For the design of the phase-shifting algorithm to cal-

culate the target phase with the suppression of the phase 
error, Eqs. (13) and (14) should satisfy the following 
conditions.

(10)f1(�) =
∑M

r=1
Hr�

(

� − �r
)

(11)f2(�) =
∑M

r=1
Gr�

(

� − �r
)

(12)�∗ = arctan
∑M

r=1 HrIr
∑M

r=1 GrIr
= arctan

∫ ∞
−∞ F1(�)J(�)d�

∫ ∞
−∞ F2(�)J(�)d�

(13)F1(�) =

M∑
r=1

Hr exp
(
−i�r�

)
= −i

M∑
r=1

Hr sin
(
�r�

)

(14)F2(�) =

M∑
r=1

Gr exp
(
−i�r�

)
=

M∑
r=1

Gr cos
(
�r�

)
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− To calculate the exact phase of the fundamental fre-
quency, the amplitudes of Eqs. (13) and (14) are identical 
at the fundamental frequencies [82]:

−To suppress the effects of the jth-order harmonics, the 
amplitudes of Eqs. (13) and (14) at harmonic frequencies 
of ν = 2, 3, …, j are zero [86]:

− To eliminate the linear and pth-order nonlinear phase-
shift errors, the (q + 1) th-order derivatives of Eqs. (13) and 
(14) at a fundamental frequency of zero [82, 93]:

− To compensate for the coupling error between the har-
monics and phase-shift error, the (q + 1) th-order derivatives 
of Eqs. (13) and (14) at harmonic frequencies of ν = 2, 3,…, 
j are zero [93]:

Using the theory of Fourier description, Larkin and Oreb 
developed the N + 1 algorithm [82], and Hibino proposed two 
types of 19-sample algorithms [88, 89]. Additionally, by apply-
ing the frequency transfer function to the sampling weights of 
the algorithm [130, 131], Estrada developed a 9-sample algo-
rithm [91], Choque developed a 9-sample algorithm [100], 
and Padilla developed the C(N – 1) – 1 algorithm (where C 
is the power of the frequency transfer function) [101]. The 
procedures for deriving the phase-shifting algorithm using the 
Fourier description are described by the N + 1 algorithm and 
the 19-sample algorithm.

In the case of the N + 1 algorithm (N = 6), which can elimi-
nate the fourth-order harmonics and linear phase-shift error, 
the sampling weights of the N + 1 algorithm can be derived 
using Eqs. (15)–(17). The target phase is calculated using the 
N + 1 algorithm and is defined as

Hibino developed a 19-sample algorithm to compensate 
for the effects of the 10th-order harmonics and phase-shift 
error caused by refractive-index dispersion [88]. Using Eqs. 
(15)–(18), the sampling weights of the 19-sample algorithm 
can be derived as

(15)iF1(�) = F2(�), (� = 1)

(16)F1(�) = F2(�) = 0, (� = 2, 3,… , j)

(17)

d(q+1)iF1(�)

d�(q+1)

|||||�=1
=

d(q+1)F2(�)

d�(q+1)

|||||�=1
, (q = 0, 1,… , p)

(18)
d(q+1)iF1(�)

d�(q+1)

|||||�=2,3,...,j
=

d(q+1)F2(�)

d�(q+1)

|||||�=2,3,...,j
= 0, (q = 0, 1,… , p)

(19)�1 = arctan
−I1 + 3I2 + 3I3 − 3I5 − 3I6 + I7√
3
�
−I1 − I2 + I2 + 2I4 + I5 − I6 − I7

�

where the rest of the sampling weights in Eq. (20) can be 
determined from the symmetric properties of Gr = G20 – r 
and Hr =  – H20 – r.

To understand and evaluate the behaviors of the phase-
shifting algorithm, the algorithm is visualized in the fre-
quency domain using Eqs. (13) and (14) [129]. Figure 4 
represents Eqs. (13) and (14) of the N + 1 algorithm [82] 
and the 19-sample algorithm [88], respectively.

From Fig. 4a, the amplitudes and first-order derivatives of 
Eqs. (13) and (14) match at the fundamental frequency, and 
the amplitudes at the harmonic frequencies of m = 2, 3, and 
4 are zero. Therefore, the N + 1 algorithm can suppress the 
fourth-order harmonics and linear phase-shift error.

(20)

[

Gr
]

M=19 =
[

−1, 1 − 2
√

3,−5,−4
√

3,−7,−1 − 2
√

3, 1, 4
√

3, 12, 8
√

3
]

[

Hr
]

M=19 =
[
√

3 − 1, 1, 1,−2, 1 − 4
√

3,−11,−1 − 7
√

3,−12,−4
√

3, 0
]

Fig. 4  Sampling functions iF1 and F2 of a Larkin and Oreb N + 1 
algorithm for N = 6 [82] and b Hibino 19-sample algorithm [88]
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From Fig. 4b, the amplitudes and first-order derivatives of 
Eqs. (13) and (14) are identical at the fundamental frequen-
cies. Moreover, the amplitudes at the harmonic frequencies of 
m = 2, 3, …, 10 are zero, and that of the sidelobes between the 
harmonic frequencies is minimized. Thus, the 19-sample algo-
rithm can suppress the 10th-order harmonics, linear phase-
shift error, and refractive-index dispersion.

For performance assessment of the algorithms, Larkin 
and Oreb visualized the algorithms using the sampling func-
tions of the sampling weights [82], and Hibino measured the 
surface shape of BK7 using a Fizeau interferometer [88]. 
Furthermore, Choque measured the surface shape of a thin 
aluminum film using a Michelson interference microscope 
[100], and Padilla performed a numerical simulation under 
various experimental conditions [101].

5.3  Theory of Linear Equations

Hibino proposed linear equations to derive an error resistance 
phase-shifting algorithm [86, 93, 132–134]. The linear equa-
tions comprising the sampling weights are the conditions for 
compensating for the phase error.

The phase error in Eq. (7) is rewritten as

To simplify the phase error, the symmetric properties of 
sampling weights and the phase-shift parameter [93] and 
the linear equations for suppressing the jth-order harmonics 
defined by following Eqs. (22) and (23) are used [86]:

where m = 0, 1, 2, …, j and δ is the Kronecker delta func-
tion in the above equation. Using the approximation [(1 + ω)
tanφ] ~ φ + (ω/2)sin2φ, and Eqs. (22) and (23), the phase 
error is defined as [93]
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�
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Gr sin
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Gr sin
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=

M∑
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Hr cos
(
m�0r

)
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Gr cos
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Hr sin
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where the error coefficients in Eq. (24) are expressed as

In Eqs. (25)–(28), the error coefficients Θq and Ωq are 
related to the phase-shift error, and Ξm, q and Ψm, q are asso-
ciated with the coupling error between the harmonics and 
phase-shift error.

Using Eqs. (25) and (26), the first term on the right side 
of Eq. (24) is given by:

where the error coefficients Xq, Yq, and Zq are expressed as

Because the sampling weights and phase-shift parameters 
have symmetric properties, Xq becomes zero when q is an 
even value, and Yq and Zq become zero when q is zero and 
odd values [135].

In Eq. (29), coefficient Yq is the DC error because this 
coefficient is not related to the target phase. In contrast, the 
coefficients Xq and Zq are nonuniform errors because these 
error terms are multiplied by the target phase. The sampling 
weights of the algorithm should satisfy the following linear 
equations to suppress the DC and nonuniform errors caused 
by the phase-shift error:
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where q = 0, 1, 2, …, p.
Furthermore, the second term on the right side of Eq. (24) 

should be zero to suppress the coupling error between the 
harmonics and phase-shift error:

By substituting Eqs. (27) and (28) into Eq. (36), the linear 
equations for suppressing the coupling error are derived as 
follows:

where m = 0, 1, 2, …, j and q = 0, 1, 2, …, p.
Through the linear equations of the sampling weights, 

Hibino developed the 7-, 9-, and 11-sample algorithms [86, 
93], and Sun developed a 36-sample algorithm with a win-
dow function [74]. To suppress the DC error, Kim developed 
the 9- [102] and 13-sample algorithm [104], Bae developed 
the two types of 19-sample algorithms [105] and 11-sam-
ple algorithms [136], and Kim developed the 15-sample 
algorithm [106]. Moreover, Choque proposed a frequency 
transfer function of the phase-shifting algorithm to suppress 
DC error [103].

In addition to the linear equations proposed by Hibino, 
Fang and Zhu derived linear equations for suppressing the 
phase-shift error caused by the 0th-order effect [72, 83]. 

(33)
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(40)
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�
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Hr cosm�0r = 0

Fang developed the 11-sample algorithm [72], and Zhu 
developed the 9-sample algorithm [83].

The procedures for deriving the phase-shifting algorithm 
using linear equations are explained by the Hibino 7-sample 
algorithm and the Kim 9-sample algorithm. To derive the 
7-sample algorithm that can suppress the second-order har-
monics, linear phase-shift error, and coupling error, the sam-
pling weights of the algorithm and the phase-shift parameter 
are set as

Using Eqs. (41) and (42) and linear equations, the sam-
pling weights of the 7-sample algorithm can be obtained, 
and the target phase is calculated by

In the case of the Kim 9-sample algorithm, the sampling 
weights composed of the discrete Fourier transform (DFT) 
term and the window function wr are applied to the linear 
equations [137] and are given by

To suppress the second-order harmonics and DC error 
caused by the first-order nonlinear phase-shift error, the win-
dow function, and phase-shift parameter were set as

Solving the linear equations using Eqs. (45)–(48), the 
sampling weights of the 9-sample algorithm can be derived, 
and the target phase can be calculated as follows:

To evaluate the abilities of Hibino 7-sample algorithm 
[86] and Kim 9-sample algorithm [102], two algorithms are 
visualized in the frequency domain using Eqs. (13) and (14) 
explained in Sect. 5.2.

From Fig. 5a, amplitudes and gradients of Eqs. (13) and 
(14) at the fundamental frequency are same, indicating 
that the 7-sample algorithm can calculate the target phase 
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2
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while suppressing the linear phase-shift error. Moreover, the 
amplitudes and the first-order derivatives of Eqs. (13) and 
(14) are zero at the frequency of the second-order harmon-
ics, which means that this algorithm can compensate for the 
coupling error caused by the second-order harmonics and 
linear phase-shift error.

Figure 5b shows that the amplitudes and the second-order 
derivatives of Eqs. (13) and (14) are identical at the fun-
damental frequency, which means that this algorithm can 
suppress the linear and the first-order nonlinear phase-shift 
errors. The amplitudes of Eqs. (13) and (14) at the frequency 
of the second-order harmonics are zero, indicating that the 
9-sample algorithm can eliminate the second-order harmon-
ics. In addition, the configuration of Eqs. (13) and (14) at the 
fundamental frequency is flat, which means that DC error 
caused by the first-order nonlinear phase-shift error can be 
compensated by the 9-sample algorithm [102].

To assess the performance of the algorithms, Hibino ana-
lyzed the phase error and visualized the algorithms using 
the sampling functions of the sampling weights [86, 93], 
and Sun measured the glass plate surface shape and optical 
thickness using the Fizeau interferometer. In addition, Kim 
tested the optical thickness of the fused silica plate [102] and 
glass plate [104] using the Fizeau interferometer; Bae meas-
ured the optical thickness of the glass plate [105] and BK7 
[136] using the Fizeau interferometer; Kim measured the 
glass plate optical thickness using the Fizeau interferometer 
[106], and Choque performed a numerical simulation of the 
DC error [103]. Fang carried out a numerical simulation of 
the lateral shearing interference [72], and Zhu tested a glass 
plate using a lateral shearing interferometer [83].

5.4  Theory of Data‑Sampling Window

De Groot proposed a method for designing a phase-shift-
ing algorithm that can manage the phase error using a 
data-sampling window [85, 96]. de Groot explained the 
conditions for suppressing the phase error using the Fou-
rier transforms of the data-sampling window and derived 
the sampling weights using the data-sampling window.

The Fourier transform of the intensity defined in Eq. (3) 
is used to calculate the target phase with a data-sampling 
window as follows:

where W(ν) is the Fourier transform of the data-sam-
pling window and is defined as

To calculate the target phase at fundamental frequency 
ν1, the Fourier transform of the data-sampling window 
should satisfy the following conditions [85]:

Using the above conditions, the target phase is calcu-
lated as

(49)

J(�) =
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[
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(
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Fig. 5  Sampling functions iF1 and F2 of a Hibino 7-sample algorithm 
and [86] b Kim 9-sample algorithm [102]
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Moreover, the Fourier transform of the data-sampling 
window has minimal sidelobes between harmonic frequen-
cies to suppress the phase-shift error [85].

Using the data-sampling window with suppression of 
the phase error, the sampling weights of the phase-shifting 
algorithm can be derived as follows [85]:

where K is an approximation parameter and an integer.
Several authors have developed phase-shifting algo-

rithms using data sampling windows. de Groot proposed 
a 7-sample algorithm [85] and a 13-sample algorithm [96], 
Shi developed a 13-sample algorithm using the self-convo-
lution of the rectangular window [70], Kumagai developed 
the 13-sample algorithm using the averaged three-trian-
gle window [99], Yu developed the 13-sample algorithm 
using the least-squares method [75], and Jeon developed 
the 11-sample algorithm [92]. The process of deriving the 
phase-shifting algorithm using the data-sampling window 
is described by the de Groot 7-sample and Jeon 11-sample 
algorithms.

de Groot derived the 7-sample algorithm with the von-
Hann window that is defined as

where Nw is a periodic parameter for the data sampling 
window. Figure 6 shows the von-Hann window satisfies the 
conditions defined in Eq. (53) and has small sidelobes when 
N = 4, Nw = 8, and M = 7. The parameters were adjusted to 
derive the 7-sample algorithm as N = 4, Nw = 8, and K = 8. 
Then, the target phase can be calculated as follows:

Similarly, Jeon developed an 11-sample algorithm using 
the Blackman window. The Blackman window is defined as:

In Fig. 6, the Fourier transform of the Blackman win-
dow when N = 4, Nw = 12, and M = 11 satisfies Eq. (53) and 
has fewer sidelobes than the von Hann window. Using the 
parameters M = 11, N = 4, Nw = 12, and K = 28, the 11-sam-
ple algorithm can be derived, and the target phase is calcu-
lated as

(53)
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Kwr cos �0r

)
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Kwr sin �0r

)
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2
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(55)�1 = arctan
I1 − 7I3 + 7I5 − I7

−4I2 + 8I4 − 4I4

(56)wr = 0.42 − 0.5 cos

(
2�

Nw

r

)
+ 0.8 cos

(
4�
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The algorithms were visualized in the frequency domain 
using Eqs. (13) and (14), as discussed in Sect. 5.2, to esti-
mate the phase-shifting algorithm derived from the data-
sampling window. Figure 7 shows Eqs. (13) and (14) for 
the de Groot 7-sample [85] and Jeon 11-sample algorithms 
[92], respectively.

From Fig. 7a, the amplitudes and fourth-order deriva-
tives of Eqs. (13) and (14) at the fundamental frequency are 
identical, implying that this algorithm can compensate for 
the second-order nonlinear phase-shift error in the calculated 
phase. In addition, the amplitudes of Eqs. (13) and (14) at 
the second-order harmonic frequency are zero, indicating 
that the 7-sample algorithm can suppress the second-order 
harmonics.

From Fig. 7b, because the sampling functions have the 
same amplitude and first-order derivatives at the fundamental 
frequency, the 11-sample algorithm can compensate for the 
linear phase-shift error. Moreover, the amplitudes and first 
derivatives of Eqs. (13) and (14) at the second-order harmonic 
frequency are zero, implying that this algorithm can eliminate 
the second-order harmonics and coupling error between the 
second-order harmonics and the linear phase-shift error.

For performance assessment of the algorithms, de Groot 
estimated the phase error caused by the phase-shift error and 
measured the glass plate surface using a Fizeau interferome-
ter [85, 96]. Shi conducted a numerical simulation regarding 
the phase-shift error [70], and Kumagai tested the spherical 
surface using a Fizeau interferometer [99]. Furthermore, Yu 
conducted a numerical simulation of the phase-shift error 
[75], and Jeon measured the silicon wafer surface using a 
Fizeau interferometer [92].

(57)�1 = arctan
−I1 + 10I3 − 25I5 + 25I7 − 10I3 + I11

4I2 − 18I4 + 28I6 − I8 + 4I10

Fig. 6  Fourie transforms of the von-Hann and Blackman windows
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5.5  Theory of Characteristic Polynomial

Surrel proposed a design method for a phase-shifting algo-
rithm based on a characteristic polynomial [87]. In this 
method, the root position of the characteristic polynomial 
corresponds to the algorithm properties. The characteris-
tic polynomial of the M-sample phase-shifting algorithm is 
given as follows [87]:

where x = exp(2 mπi/N). The resistance of the algorithm 
to the phase error can be determined by the powers and 
locations of the roots of the characteristic polynomial.

Moreover, the characteristic diagram visualizes the 
roots of the characteristic polynomial in a complex plane. 

(58)P(x) =

M∑
r=1

(
Gr − iHr

)
xr−1

The characteristic diagram is a unit circle on the com-
plex plane divided by an equal angle of 2π/N rad, where 
each divided point corresponds to harmonics. Therefore, 
the characteristic polynomial of the algorithm can be 
expressed by factorization consisting of harmonics:

where k is the multiplicity of the roots, and ζ corresponds 
to the fundamental order of the harmonics on the charac-
teristic diagram, defined as ζ = exp(2πi/N).

The characteristic polynomial of the algorithm should 
satisfy the following root positioning conditions to com-
pensate for the phase error [82, 87, 138]:

− To suppress the jth-order harmonics, N is adjusted 
to j + 2 [86], and the single roots should be positioned 
on the divided point of the characteristic diagram, 
except at m = 1 [87]. In other words, the factoriza-
tion of the characteristic polynomial should have [x – 
exp(exp(2 mπi/N)] for m = 0, ± 2, ± 3, …, ± j.
− To eliminate the linear and qth-order nonlinear 
phase-shift errors in the calculated phase, (q + 2) 
multiple roots should be positioned at m = +1 on the 
characteristic diagram, implying that the factoriza-
tion of the characteristic polynomial should have [x – 
exp(exp( – 2πi/N)](q + 2) for q = 0, 1, 2, …, p.
− To suppress the coupling error between the jth-order 
harmonics and the linear and qth-order nonlinear phase-
shift errors, (q + 2) multiple roots should be positioned 
at m = 0, ± 2, ± 3, …, ± j on the characteristic diagram, 
indicating that the factorization of the characteristic 
polynomial should consist of [x—exp(exp(2 mπi/N)](q 

+ 2) for m = 0, ± 2, ± 3, …, ± j and q = 0, 1, 2, …, p.

Moreover, a conventional phase-shifting algorithm can 
be estimated using a characteristic diagram. Using Eqs. 
(9) and (58), the characteristic diagram of the Schwider 
and Hariharan 5-sample algorithm is shown in Fig. 8. As 
shown in Fig. 8, the single roots are positioned at m = 0, 2, 
and the double root is positioned at m =  – 1 on the charac-
teristic diagram. Based on the root positioning conditions 
of the characteristic polynomial, the 5-sample algorithm 
can suppress the second-order harmonics and linear phase-
shift error.

Several authors have developed phase-shifting algorithms 
using the characteristic polynomial. Surrel proposed the 2 N 
– 1 algorithm [87], and Hanayama developed a modified 2 N 
– 1 algorithm [90]. Kim developed the 3 N – 2 [98], 4 N – 3 
[139], 5 N – 4 [140], 6 N – 5 [141], 7 N – 6 [142] algorithms 

(59)P(x) ∝

j∏
m=−1
m≠1

(x − �m)
k

Fig. 7  Sampling functions iF1 and F2 of a de Groot 7-sample algo-
rithm and [85] b Jeon 11-sample algorithm [92]
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and 15-, 17-, and 19-sample algorithms [143–145]. The pro-
cedures for deriving the algorithms using the characteristic 
polynomial are discussed using the Surrel 2 N – 1 [87] and 
the Kim 3 N – 2 [98] algorithms.

Surrel located the double roots on all divided points of 
the characteristic diagram, except at m = 1, to compensate for 
the (N – 2) th-order harmonics and coupling error between 
harmonics and the linear phase-shift error. The characteristic 
polynomial of this algorithm is defined as follows:

Using Eqs. (45) and (46), Eq. (61) can be written using 
the triangular window function [wr]2 N – 1 as follows [87]:

To suppress the coupling error between the harmonics 
and first-order nonlinear phase-shift error, Kim located the 
triple roots on all divided points of the characteristic dia-
gram, except at m = 1. The characteristic polynomial of this 
algorithm is defined as follows:

where the window function of the 3  N – 2 algorithm 
[wr]3 N – 2 is given to [98]

 (i) 1 ≤ r ≤ N

(60)
P2N−1(x) =

(
x − �−1

)2(
x − �0

)2(
x − �2

)2
⋯

(
x − �N−2

)2

(61)P2N−1(x) =

M∑
r=1

[
wr

]
2N−1

exp
[
−i

2π

N
(r − N)

]
xr−1

(62)
[
wr

]
2N−1

= N − |N − r|, (1 ≤ r ≤ 2N − 1)

(63)

P3N−2(x) =

M∑
r=1

[
wr

]
3N−2

exp
[
−i

2π

N

(
r −

3N − 1

2

)]
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 (ii) N + 1 ≤ r ≤ 2 N – 2

 (iii) 2 N – 1 ≤ r ≤ 3 N – 2

Figure 9 shows the characteristic diagrams of the 2 N – 1 
and 3 N – 2 algorithms for N = 8 using Eqs. (60) and (63), 
respectively. From Fig. 9, it is confirmed that the 2 N – 1 
and 3 N – 2 algorithms have double and triple roots on the 
characteristic diagram, respectively.

To compensate for the DC error in the calculated phase, 
Kim proposed the noble roots positioning method in the 
characteristic polynomial [107, 146, 147]. The noble roots 
positioning method to eliminate DC error is described.

Using Eqs. (44) and (45), the DC error caused by the first-
order nonlinear phase-shift error is expressed as

where τ is given by τ = (M + 1)/2. Because the amplitudes of 
conventional window functions are generally positive [137], 
it is necessary to develop a new window function containing 
negative values to compensate for the DC error.

Applying the Hermitian form to the characteristic poly-
nomial defined in Eq. (58), the characteristic polynomial is 
given by

When the derivative operator D is defined as D = x∙d/dx, 
the second derivative of Eq. (68) is expressed as

Substituting the fundamental order of the harmonics 
ζ = exp(2πi/N) into x of the above polynomial and using Eqs. 
(44) and (45), Eq. (69) can be expressed as

(64)
[
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=
1

2
r(r + 1)
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2
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(66)
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1

2
(3N − r − 1)(3N − r)

(67)Y1 = −
2

N2

M∑
r=1
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(68)P(x) =
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Gr − iHr
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(69)D2P(x) =
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)
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(70)D2P(�) =
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2

Fig. 8  Characteristic diagram of Schwider and Hariharan 5-sample 
algorithm [80, 81]
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From Eq. (70), the second-order derivative of the char-
acteristic polynomial should have a zero value at the fun-
damental order of the harmonics to suppress the DC error.

A new characteristic polynomial Q(x) is given to derive 
the phase-shifting algorithm with the suppression of the DC 
error as follows:

where g and h are positive values, and 1/x is used for the 
Hermitian form of Q(x). Because the root should not be 

(71)Q(x) = P(x) ⋅
1

x
(x − g� )(x − h�)

located in the fundamental order of the harmonics of the 
characteristic diagram, the positive values of g and h should 
not become 1. By assuming gh = 1, Eq. (71) is given as

where Γ = g + h.
To suppress the DC error, the second-order derivative of 

Q(x) should have a zero value at x = ζ:

Therefore, Γ can be expressed as

From the new root positioning method for the character-
istic polynomial defined in Eqs. (72)–(74), Kim developed 
the 4 N – 1 [107] and 5 N – 2 algorithms [146], and Seo 
developed the 6 N – 3 algorithm [147]. The derivation of the 
algorithms that can compensate for the DC error is explained 
using the 4 N – 1 algorithm.

The 4 N – 1 algorithm is derived from the 4 N – 3 algorithm 
[107, 139]. The characteristic polynomial of the 4 N – 3 algo-
rithm is given by:

where the window function of the 4 N – 3 algorithm [wr]4 N – 3 
is given to [139]

 (i) 1 ≤ r ≤ N

 (ii) N + 1 ≤ r ≤ 3 N – 3

   where Λ = r – 2 N + 1.
 (iii) 3 N – 2 ≤ r ≤ 4 N – 3

Using Eqs. (76)–(78), Γ of the 4 N – 1 algorithm is calcu-
lated as
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(
x − Γ� +
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)

(73)D2Q(�) = 2� ⋅ P(�) + �(2 − Γ) ⋅ D2P(�) = 0
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+ 2
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N
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+
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2
|Λ|(|Λ|2 − 2N|Λ| − 1
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[
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]
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=
1

2
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Fig. 9  Characteristic diagrams of a the 2 N – 1 algorithm [87] and b 
the 3 N – 2 algorithm [98] for N = 8
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Therefore, the characteristic polynomial of the 4 N – 1 algo-
rithm can be defined using P4N – 3(x) and Γ4 N – 1:

By expanding Q4N – 1(x) and aligning the coefficients, the 
sampling weights of the 4 N – 1 algorithm are expressed using 
DFT terms and the window function of the 4 N – 1 algorithm:

where the window function of the 4 N – 1 algorithm [wr]4 N – 1 
is given to [107]

 (i) 1 ≤ r ≤ N

 (ii) N + 1 ≤ r ≤ 2 N

 (iii) 3 N + 1 ≤ r ≤ 3 N – 1

 (iv) 3 N ≤ r ≤ 4 N – 1

The window functions of the 4 N – 3 and 4 N – 1 algo-
rithms for N = 8 are depicted in Fig. 10. In contrast to the 4 N 
– 3, the 4 N – 1 algorithm has negative values in the window 
function, as shown in Fig. 10b. Figure 11 shows the char-
acteristic diagram of the 4 N – 1 algorithm for N = 8. From 
Fig. 11, the additional roots of polynomials gζ and hζ defined 
in Eq. (70) are located on the line of the fundamental order of 
the harmonics.

The 4 N – 3 [139] and 4 N – 1 algorithms [107] were visual-
ized in the frequency domain using Eqs. (13) and (14) to evalu-
ate the phase-shifting algorithms designed by the characteristic 
polynomial, as discussed in Sect. 5.2. Figure 11 depicts the 
sampling functions of the 4 N – 3 [139] and 4 N – 1 algorithms 
[107].

From Fig. 12, both algorithms can compensate for 
the coupling error between the harmonics and second-
order nonlinear phase-shift error because the third-order 
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= −(r − 3N)(r − 4N)(r − 5N) Fig. 10  Window functions of a the 4 N – 3 algorithm [139] and b the 
4 N – 1 algorithm [107] for N = 8

Fig. 11  Characteristic diagram of the 4  N – 1 algorithm for N = 8 
[107]
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derivatives of the sampling functions at the harmonic 
frequencies have a zero value. In addition, Fig.  12b 
shows that the 4 N – 1 algorithm has a flat configura-
tion at the fundamental frequency, indicating that the 
4 N – 1 algorithm has the suppression ability of the DC 
error [104].

For performance assessment of the algorithms, Surrel 
visualized the roots of the characteristic polynomial on a 
characteristic diagram [87], and Hanayama measured the 
glass plate surface using a Fizeau interferometer [90]. 
Moreover, Kim tested the glass plate and silicon wafer 
using a Fizeau interferometer [98, 139–145], and Seo pro-
filed the glass plate surface and thickness using a Fizeau 
interferometer [147].

6  Error Compensation Ability 
of Phase‑Shifting Algorithm

This section introduces the evaluation method of the phase-
shifting algorithm in terms of the error compensation ability 
for the phase error.

6.1  Visibility Maximum Analysis

In the interferometric measurement of the sample surface 
using the phase-shifting technique, it is necessary to maxi-
mize the visibility of the interferogram [98]. Although the 
phase-shift error affects the visibility, eliminating the phase-
shift error does not guarantee the visibility maximum. Using 
the sampling weights of the phase-shifting algorithm, Kim 
proposed the condition of the visibility maximum [98].

Equation (3) can be rewritten as follows, considering the 
visibility of the interferogram:

where V is the visibility of the interferogram, which can 
be defined by the reflectance of the reference and sample 
surfaces [133]. Furthermore, visibility can be defined using 
the sampling weights and intensity of the interferogram as 
follows:

where

To derive the condition of the visibility maximum, it is 
assumed that phase-shift error only consists of the linear 
phase-shift error ε0. By using logarithmic values and small 
variations for the linear phase-shift error, the visibility can 
be expressed as

In the equation above, δ() indicates a small variation. 
In Eq. (89), the first term on the right-hand side can be 

(86)
I
(
�r
)
= S0 + S1 cos

(
�r + �1

)
= S0

[
1 + V cos

(
�r + �1

)]

(87)V =
1

A

√√√√√
[

M∑
r=1

GrI
(
�r
)]2

+

[
M∑
r=1

HrI
(
�r
)]2

(88)A =
1

M

M∑
r=1

I
(
�r
)

(89)

�V

V
= −

�A

A
+

�

��∑M

r=1
GrI

�
�r
��2

+

�∑M

r=1
HrI

�
�r
��2�

2

��∑M

r=1
GrI

�
�r
��2

+

�∑M

r=1
HrI

�
�r
��2

Fig. 12  Sampling functions iF1 and F2 of a 4 N – 3 algorithm [139] b 
4 N – 1 algorithm [107]
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neglected because of the relationship between the coefficient 
A and the intensity I(αr) [98]. Under the assumption that the 
visibility maximum can be achieved at ε0 = 0, the visibility 
should satisfy the following equation:

Substituting Eq. (89) into Eq. (90) and using Eqs. (22) 
and (23), the condition of the visibility maximum can be 
defined as:

Thus, the condition of the visibility maximum can be 
derived using the sampling weights of the phase-shifting 
algorithm.

Moreover, Kim visualized the condition of the visibility 
maximum using the sampling functions defined in Eqs. (13) 
and (14) [98]. By substituting the fundamental frequency 
ν = 1 into the first-order derivatives of the sampling function, 
the following equations can be obtained:

From Eqs. (91)–(94), it is evident that the phase-shift 
algorithm satisfies the condition of the visibility maximum 
when the gradients of the sampling functions at the fun-
damental frequency are zero. From this relationship, the 
condition of the visibility maximum can be visualized in 
the frequency domain.

The condition of the visibility maximum is dis-
cussed using the Hibino 19-sample algorithm and the 
Jeon 11-sample algorithm. As shown in Fig.  13, both 
algorithms are insensitive to the linear phase-shift error 
because the first derivatives of the sampling functions at 
the fundamental frequency are identical. However, only 
the 11-sample algorithm satisfies the condition of the vis-
ibility maximum because the gradients of the sampling 
functions are zero. It is demonstrated that the algorithm 
that can compensate for the linear phase-shift error may 
not satisfy the condition of the visibility maximum.
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6.2  RMS Error Analysis

De Groot and Hibino analyzed the influence of the cou-
pling errors between harmonics and linear phase-shift 
errors [93, 126]. To visualize the influence of coupling 
errors, de Groot proposed the root mean square (RMS) 
phase error caused by linear phase-shift and coupling 
errors [126].

The RMS phase error resulting from the linear phase-
shift error is expressed as

(95)�lin =
1

2
√
2

����
iF1(�)

F2(�)
− 1

����

Fig. 13  Example of a gradient of the sampling functions at the fun-
damental frequency. a and b are the sampling functions of the Hibino 
19-sample algorithm [88] and the Jeon 11-sample algorithm [92], 
respectively
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where sampling functions F1 and F2 are defined in Eqs. (13) 
and (14), respectively. The RMS phase error resulting from 
the coupling error between the linear phase-shift error and 
mth-order harmonics is given by

where Vm is the visibility of the mth-order harmonics [133]. 
Using Eqs. (95) and (96), the net RMS error is defined as

Figure 14 represents the solutions of the net RMS error 
of the phase-shifting algorithms explained in Sect. 5. As 
shown in Fig. 14, the RMS error is a function of the linear 
phase-shift error.

As shown in Fig. 14, the RMS error of the de Groot 
7-sample algorithm is smaller than those of the other algo-
rithms, implying that the de Groot 7-sample algorithm has 
better compensation abilities for the coupling error com-
pared with other algorithms. Thus, the error compensation 
ability of the phase-shift and coupling errors can be esti-
mated using the RMS phase error.

6.3  DC and Nonuniform Errors Analysis

Kim proposed a numerical error analysis to estimate the 
influence of the DC and nonuniform errors resulting from 
phase-shift errors [104, 107, 146]. The phase error was eval-
uated by numerical error analysis, considering the linear and 
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2
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√
�2
lin

+ �2
cou

nonlinear phase-shift errors as a function of the target phase 
φ1.

Figure 15 shows the error curve of the Schwider and 
Hariharan 5-sample algorithm [80, 81] at a wavelength 
of 633 nm when the linear phase-shift error ε0 is 5%, and 
the nonlinear phase-shift error ε1 is 3%. In Fig. 15, the DC 
error is expressed as the distance between y = 0 and the error 
curve. In contrast, the amplitude of the error curve corre-
sponds to a nonuniform error.

Figure 16 shows the DC and nonuniform errors of 
the phase-shifting algorithms when ε0 = 0.05 (5%) and 
ε1 = 0.03 (3%). The Schwider and Hariharan 5-sample 

Fig. 14  RMS phase error of the phase-shifting algorithms: Schwider 
and Hariharan 5-sample algorithm [80, 81], Larkin and Oreb N + 1 
algorithm (N = 6) [82], de Groot 7-sample algorithm [85], Surrel 2 N 
– 1 algorithm (N = 4) [87], and Kim 9-sample algorithm [102]

Fig. 15  DC and nonuniform errors of the Schwider and Hariharan 
5-sample algorithm [80, 81]

Fig. 16  DC and nonuniform errors of phase-shifting algorithms: 
Schwider and Hariharan 5-sample algorithm [80, 81], Larkin and 
Oreb N + 1 algorithm (N = 6) [82], de Groot 7-sample algorithm [85], 
Surrel 2 N – 1 algorithm (N = 4) [87], and Kim 9-sample algorithm 
[102]
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algorithms [80, 81] have large DC and nonuniform 
errors. The de Groot 7-sample algorithm [85] has a small 
nonuniform error but exhibits a substantial DC error of 
approximately 1.5 nm. In contrast, the Kim 9-sample 
algorithm [102] has the smallest DC error compared 
with the other algorithms. Therefore, using the numeri-
cal error analysis for the phase error, the compensation 
ability of the algorithm for the DC and nonuniform errors 
can be visualized.

The imperfection of optical components and mechani-
cal parts of interferometer can be the more important 
factors when applying the interferometric measurement 
system to the industry. However, when using the com-
mercial Fizeau interferometer (ZYGO and Fuji Film), 
the performances of the phase-shifting algorithms can 
be observed.

7  Conclusions

AS the importance of the semiconductor industry is on the 
rise, the surface shape and optical thickness of wafers and 
glass plates should be managed with nanometer measure-
ment accuracy. To satisfy this accuracy, phase-shifting 
interferometry has been applied to surface and thickness 
measurements of wafers and glass plates. In phase-shifting 
interferometry, the measurement results are influenced by 
the performance of phase-shifting algorithms.

In this review, we discuss the design methods and per-
formance assessment of phase-shifting algorithms in Fizeau 
interferometers. First, the optical setup of the Fizeau inter-
ferometer with a phase-shifting technique used for surface 
and thickness measurements is explained. Subsequently, 
the phase extraction theory and phase errors occurring in 
phase-shifting interferometry are described. Moreover, the 
design methods of the phase-shifting algorithms for the 
suppression of phase errors are explained, and examples 
of the derivation process are introduced. In addition, we 
discuss the evaluation methods of the error compensation 
abilities of the designed algorithms and present examples 
of the evaluation methods using several phase-shifting algo-
rithms. Finally, we categorized the designed phase-shifting 
algorithms in terms of their error compensation abilities for 
phase errors.
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