論文

査読有り 責任著者 国際誌
2020年11月22日

Evaluation of Preosteoblast MC3T3-E1 Cells Cultured on a Microporous Titanium Membrane Fabricated Using a Precise Mechanical Punching Process.

Materials (Basel, Switzerland)
  • Jingyu Zhang
  • ,
  • Yukihiko Sakisaka
  • ,
  • Hiroshi Ishihata
  • ,
  • Kentaro Maruyama
  • ,
  • Eiji Nemoto
  • ,
  • Shigeki Chiba
  • ,
  • Masaru Nagamine
  • ,
  • Hiroshi Hasegawa
  • ,
  • Satoru Yamada

13
22
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.3390/ma13225288

The surface topography of Titanium (Ti) combined toughness and biocompatibility affects the attachment and migration of cells. Limited information of morphological characteristics, formed by precise machining in micron order, is currently available on the Ti that could promote osteoconduction. In the present study, a pure Ti membrane was pierced with precise 25 μm square holes at 75 μm intervals and appear burrs at the edge of aperture. We defined the surface without burrs as the "Head side" and that with burrs as the "Tail side". The effects of the machining microtopography on the proliferation and differentiation of the preosteoblasts (MC3T3-E1 cells) were investigated. The cells were more likely to migrate to, and accumulate in, the aperture of holes on the head side, but grew uniformly regardless of holes on the tail side. The topography on the both surfaces increased osteopontin gene expression levels. Osteocalcin expression levels were higher on the head side than one on the blank scaffold and tail side (p < 0.05). The osteocalcin protein expression levels were higher on the tail side than on the head side after 21 days of cultivation, and were comparable to the proportion of the calcified area (p < 0.05). These results demonstrate the capacity of a novel microporous Ti membrane fabricated using a precise mechanical punching process to promote cell proliferation and activity.

リンク情報
DOI
https://doi.org/10.3390/ma13225288
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/33266468
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700521
ID情報
  • DOI : 10.3390/ma13225288
  • PubMed ID : 33266468
  • PubMed Central 記事ID : PMC7700521

エクスポート
BibTeX RIS