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The review by Wiggins [1] offers a comprehensive theory of the brain’s mechanism in the framework of statistical 
learning (SL). The theory, referred to as Information Dynamics of Thinking (IDyOT) implements memory representa-
tion, consolidation, and categorization under entropy (uncertainty) encoding, aiming to be information-efficient. The 
work also sheds new light on the links between SL and creativity, and opens up interdisciplinary perspectives on 
computational and neurophysiological underpinnings of SL. Here, I discuss how the IDyOT theory links with neural 
function in SL.

1. Semantic and episodic representations

The brain is innately equipped with SL machinery that encodes transitional probabilities (TPs) and entropy (i.e., 
uncertainty) in sequential information such as language and music. Using the acquired TP distribution, the brain 
predicts the high-TP events, and chunks them as semantic units [2,3]. Recent literature identifies two interdependent 
processes as a hallmark of SL: [1] abstraction or chunking of statistically coherent events from the sequence to 
generate a semantic memory and [2] integration of those units to generate episodic representation [4]. This seems 
to agree with the IDyOT concepts in which the chunking of several events and the re-representation as a single unit 
trigger the shift of hierarchy from lower (lexical and semantic) to higher (syntactic and episodic) levels. A recent study 
suggests that lower-order statistical and semantic units have general characteristics shared among persons, whereas 
higher-order statistical and episodic representation provides individualities unique to each person [5]. Thus, it is 
believed that the abstraction into a semantic unit provides general memory, while integration of several units provides 
individual, creative, and episodic representation.

The IDyOT TP- and uncertainty-based consolidation may be partially explained by the connectivity between hip-
pocampal and neocortical functions. The hippocampus plays an important role in uncertainty encoding and episodic 
memory [6,7], whereas the neocortex contributes to online prediction and semantic memory [8]. The two distinct 
systems are not independent but are instead interdependent via the hippocampus-neocortex gateway [9]: short-term 
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memory representation in the hippocampus is consolidated, re-organized, and re-represented in the long-term space of 
the neocortex [10]. Thus, the consolidation process promotes quantitative and qualitative changes of memory repre-
sentations [11,12], giving rise to novel and creative information [13,14]. From information-theoretical perspectives, it 
is hypothesized that consolidation and creativity systems are associated with certain and uncertain formations, respec-
tively. The consolidation process allows information to be compressed as a single unit, resulting in the improvement of 
information efficiency (i.e., low uncertainty). The creativity, in contrast, gives rise to novel information not previously 
experienced, and therefore uncertain information. That is, precise evaluation of uncertainty in the hippocampus allows 
the brain to generate creative and uncertain information as well as consolidate certain memory. The neural findings 
also indicate that the hippocampus has a link to the default-mode network [15], which is important for creative and 
episodic future thinking [16,17]. Hence, the hippocampus-neocortex loop is likely to hold the key into IDyOT TP-
and uncertainty-based consolidation, and thus the emerging creativity.

2. Priming, coherence, and speech entrainment

In IDyOT, the sequential information is chunked into phonemes, morphemes, then semantic words, and an episodic 
phrase in a stepwise fashion. According to neurophysiological studies, low-frequency oscillations in the speech motor 
cortex track the envelope of the speech signal [18], while high-frequency oscillations dominate in tracking the fine 
structure of speech [19] and bottom-up processing [20]. Furthermore, in each frequency band, SL and the chunking 
function control the coupling and synchronisation between phase-locked neural oscillations and speech frequencies 
(e.g., ∼20 Hz: phoneme, ∼4 Hz: syllable, ∼1 Hz: word and phrase) [21,22]. This has also been suggested by simula-
tion and modelling based on cochlea function [23,24]. Another possible neurophysiological marker of IDyOT SL may 
be event-related potentials (ERP). Higher-order cortical representations predict plausible lower-order representations 
of a high-TP event in a top-down manner, and inhibit ERPs for the predictable event based on predictive coding. In 
the end, the SL effect manifests as the difference amplitudes of ERPs between predictable and unpredictable events 
[25]. Statistical abstraction to acquire semantic chunks and a statistical comparison between the acquired chunks to 
generate episodic syntax are both reflected in different ERPs [26]. Particularly, the N400 is known as a semantic 
component, and represents the SL effect [27,28]. Furthermore, the N400 and phase-locked coherence (∼1 Hz: word 
frequency) as semantic chunking effects can be detected in parallel [29]. Hence, the oscillations and ERPs may be 
candidates for unveiling IDyOT processes.

3. Categorization and non-adjacent prediction

A number of literatures indicate that SL is a domain-general and species-general learning principles, occurring 
for visual as well as auditory information including language and music, and in both primates and non-primates 
such as monkeys [30], songbirds [31,32], and rats [33]. The current SL theories, however, may not be sufficient to 
account for all levels of the music and linguistic knowledge acquired in the adult human brain that is likely to rely on 
domain-specific principles in each language and music [34,35]. The categorization [36], nonadjacent TPs [37], and 
the order of TPs [25] are considered the key insights into the advanced SL models in a form closer to that used for 
natural language and music. For example, humans learn TPs of word categories such as nouns and verbs [36]: when a 
verb of “drink” occurs, the brain predicts lots of subsequent words that can be drunken. The brain generalizes adjacent 
and non-adjacent statistical rules of that grammar and further applies those rules to novel vocabulary [38]. Hence, 
the brain does not have to code all received information, contributing to information efficiency, which is an important 
concept of the IDyOT’s categorizations. I’m expected that the IDyOT will implement SL systems in a form closer to 
natural language and music learning

4. Future prospects: what is optimal for creativity, but not efficiency?

The brain is generally motivated to optimize prediction and minimize uncertainty for information efficiency [39]. 
This uncertainty resolution results in rewards. On the other hand, a certain degree of uncertainty may be necessary 
to maintain curiosity towards the information and learning motivation because the uncertainty allows the brain to 
anticipate further rewards through the resolution. That is, for sustainable “curiosity” and “motivation”, humans may 
seek a slightly suboptimal solution if it is afforded at a significantly low uncertainty. Recent studies indicate that the 
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fluctuations of uncertainty may contribute to aesthetic appreciation of art and music [40,41], and encourage humans to 
create and learn new regularities [42]. The balance of uncertainty, that is, the “black box” optimization algorithm that 
maintains curiosity and facilitates not efficiency but creativity, will be a future prospect in SL studies. To understand 
it, it is important to investigate how and when the intrinsic curiosity is originated through SL. The IDyOT may 
imply a black box optimization by uncertainty-driven consolidation and data compression [43]. I hypothesize that this 
sudden improvement of information efficiency provides intrinsic rewards (i.e., the so-called “wow-effect”), triggers 
strong motivation to resolve highly uncertain information, and results in creative thinking possibly due to an extra 
capacity in memory and storage. In conclusion, the IDyOT theory proposed novel perspectives on the link between 
SL and creativity. I would also like to emphasize that this theory links with neural findings on SL. This suggests 
that the IDyOT processes can be verified by neurophysiological experiments such as phase coherence and ERP. An 
optimization algorithm not for efficiency but for creativity is a further key question for SL of language and music. To 
understand how/when creativity originates through SL processes, future study is needed to interdisciplinarily verify 
SL from computational and neuronal perspectives.
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