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Abstract
In Coalition Structure Generation (CSG), one seeks to form a partition of a given set of 
agents into coalitions such that the sum of the values of each coalition is maximized. This 
paper introduces a model for Probabilistic CSG (PCSG), which extends the standard CSG 
model to account for the stochastic nature of the environment, i.e., when some of the agents 
considered at start may be finally defective. In PCSG, the goal is to maximize the expected 
utility of a coalition structure. We show that the problem is ����-hard in the general case, 
but remains in �� for two natural subclasses of PCSG instances, when the characteristic 
function that gives the utility of every coalition is represented using a marginal contri-
bution network (MC-net). Two encoding schemes are presented for these subclasses and 
empirical results are reported, showing that computing a coalition structure with maximal 
expected utility can be done efficiently for PCSG instances of reasonable size. This is an 
extended and revised version of the paper entitled “Probabilistic Coalition Structure Gen-
eration” published in the proceedings of KR’18, pages 663–664 [33].

Keywords Coalition Structure Generation · Uncertainty · Computational complexity · 
Marginal contribution networks

1 Introduction

One of the most important challenges in multi-agent systems consists in dividing a set of 
agents into groups to create synergies and improve the overall performance. The Coali-
tion Structure Generation (CSG) framework is a well-known abstraction of this problem 
[27]. In a nutshell, we are given a Characteristic Function Game (CFG), i.e., a finite set of 
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agents where every subset, or coalition, is associated with a value (through a characteristic 
function) which represents some pay-off provided by the underlying task performed by the 
coalition. The CSG problem then consists in forming an optimal coalition structure, i.e., 
partitioning the set of agents so that the sum of coalition values is maximized.

There is a wide range of potential applications for the CSG problem, e.g., increasing the 
throughput of cognitive radio networks [13], optimizing the surveillance of certain areas 
by autonomous sensors [10], and improving communication networks [30] (see [4], Sec-
tion 7.5 for an extended list of applications in real-life settings).

Notably, a CFG assigns a value to a coalition as a whole but does not dictate how this 
value is distributed to its members. A number of solution concepts are available in the liter-
ature for this task, including the notions of core [9], Shapley value [34], and nucleolus [32]. 
However, the CSG setting does not consider this additional step: instead of focusing on the 
performance of individual agents within their coalition, one is only interested in maximiz-
ing the overall welfare of the system. Stated otherwise, the CSG setting assumes that the 
agents are fully cooperative; this is the case, for instance, when the system is “owned” by 
an implicit additional agent (e.g., the system’s designer) and the agents involved in the 
CFG are ready to commit to any task/coalition with no self-interest.

The CSG problem is known to be ��-hard [31] and many algorithms have been pro-
posed for solving it [21, 26, 29, 43]. In the case when the characteristic function is pro-
vided extensively (i.e., as a table with 2n entries, n being the number of agents), the main 
algorithms are based on dynamic programming (DP) [29, 43], tree-search (IP) [26] and 
hybrid approaches (ODP-IP) [21]. Such a representation of a characteristic function 
requires listing every coalition together with its value, and considering such an input for 
the CSG problem is impractical for most real-world scenarios unless the number of agents 
is very small [20]. To deal with this issue, a number of concise representation languages 
for characteristic functions have been proposed, including marginal contribution networks 
(MC-nets) [11], synergy coalition groups (SCGs) [5], skilled-based representations [22] 
and agent-type representations [36, 41]. Despite the fact that ��-hardness still holds for 
most of these representations (at least, for those universally expressive representations), 
constraint optimization programming techniques can be exploited and instances of larger 
size can be dealt with [17, 18, 23].

In the standard CSG setting, one assumes that once a coalition structure is formed, eve-
rything goes as planned: the agents are supposed to be fully reliable, the underlying task 
performed by each coalition is completed as expected and the pay-off is obtained from 
it. However, in realistic settings, this cannot be reasonably expected to hold. Some unex-
pected, exogenous events often occur: agents may malfunction for various reasons, and 
we may be uncertain about the actual capabilities or even the attendance of each agent. 
Then, once an optimal coalition structure is formed and some agents are found to be defec-
tive afterwards, it is not always possible to recompute an optimal coalition structure from 
scratch based on the remaining agents: this is the case for instance when the agents from 
each coalition of the initially computed structure are committed to work together on an 
underlying task, or simply when some contracts forbid any coalition rearrangement. To fill 
the gap, one could forsee the potential absence of some agents and assume that the attend-
ance of agents is of probabilistic nature: this assumption is reasonable when the probabili-
tys distribution can be obtained, e.g., from the past attendance record of the agents or the 
reliability of the system’s components.

One could directly model this problem as a Characteristic Function Game (CFG) where 
the value associated with each coalition represents some expected utility. Doing so, solving 
the CSG problem results in forming a coalition structure with a maximal expected utility. 
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However, this approach requires the characteristic function to be provided extensively (list-
ing every coalition with its expected value), so this prevents one to take advantage of the 
existing concise representations of CFGs which are not designed to be used with expected 
values.

Instead, one can consider a probabilistic extension of the standard CSG framework, by 
assuming that the uncertain nature of the agents’ attendance is provided as a probability 
distribution, separately from a standard CFG. Doing so additionally requires to enrich the 
definition of a CFG so as to make precise how the value of a coalition structure should 
evolve when some agents are missing. This is the approach adopted in this paper.

As a matter of illustration, let us consider the following scenario which will serve as a 
running example in the rest of this paper:

Example 1 A service company with three employees Alice, Bob and Charles has received 
customer orders requiring different skills:

• order #1 can be performed only by Alice, and the company gets 30€ for it;
• order #2 corresponds to Bob’s skills, and pays 40€;
• order #3 pays 90€ and needs Alice and Bob;
• order #4 pays 120€ and needs Alice and Charles;
• order #5 pays 100€ and needs Bob and Charles;
• order #6 requires the presence of all three employees, for a reward of 150€.

Employees cannot be assigned to more than one task. The manager of the company wants 
to assign employees to task(s) so as to immediately generate the maximum profit.

At a first glance, assigning Alice and Charles to order #4 and Bob to order #2 seems 
to be the best plan (named hereby as plan I): doing so, the company should get a total of 
160€. However, the schedule may not go as planned. Some of the workers could suddenly 
become unavailable due to illness and other unexpected matters. So assume in this example 
that the company manager has some information about the reliability of each worker. Bob 
is fully reliable: he will do the job he has been assigned to for sure; Alice is “somewhat” 
reliable: sometimes she fails to do the job; and Charles is not reliable: he cancels appoint-
ments almost all the time. With such a setting, is the “optimistic” plan I always the best 
choice? The answer to this question depends on what actually happens if some employees 
are lacking.

On the one hand, let us assume that each task requires a solid preparation, e.g., some 
appointments with the customers must be made ahead of time. Then the manager cannot 
revise the assignment if she suddenly discovers that some of the employees are missing 
once the plan is set up: in plan I, if Charles is missing for placing order #4 with Alice, no 
reward can be obtained from the remaining coalition with Alice alone. Thus it seems risky 
to involve Charles in any assignment, and assigning Alice and Bob to order #3 is a safer 
option (plan II). On the contrary, let us consider a context where it is possible to reassign 
the remaining workers to another available order right away. This happens when custom-
ers have a flexible schedule, and that no cost (in terms of time or budget) is involved in 
the transfer of a worker into another order. Then if Charles would happen to be missing in 
plan I, Alice could still place order #1 and the company would get 30€. So placing order 
#6 (plan III) may be a better option than the other two plans: since Bob will attend for sure 
and Alice is likely to do the job, in the lucky case where Charles is also here the company 
will get a reward of 150€; if Charles is absent (which is likely to be the case), then order 
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#3 is available for Alice and Bob, and if in addition Alice turns out to be absent, Bob can 
place order #2.

To model such situations, our first step is to extend the standard definition of a CFG. 
As mentioned earlier, a CFG is defined as a set of agents and a characteristic function 
associating each coalition with a value. A Probabilistic CFG (PCFG) considers a set of 
agents, and instead of a characteristic function it has two additional components. The first 
one is a probability distribution which provides the probability of any “scenario” to occur, 
i.e., a precise situation when some of the agents are actually present and the remaining 
agents are missing. The second component of a PCFG is a situational characteristic func-
tion, which associates each coalition and each such “scenario” with a value. This function, 
for instance, can be derived from a standard characteristic function by associating each 
coalition with the value it would obtain in the case where everything goes as planned (as 
specified by the standard characteristic function), and by making precise how the value of 
that coalition should be updated in any scenario. Based on a PCFG, the Probabilistic CSG 
(PCSG for short) problem consists in finding a coalition structure of maximal expected 
utility.

Some of the clear benefits of defining a PCFG as two separate components (a proba-
bilistic function and a situational characteristic function) are in terms of modularity. Since 
both components are independent from each other, the situational characteristic function 
can be provided in any representation language without affecting (or being affected by) the 
definition and representation of the probability distribution. As it will be illustrated in the 
following sections, this allows one to naturally derive a PCFG from an existing CFG and 
an additional probability distribution, without making any assumption on the representa-
tion language used to describe the CFG.

In the following, we first formalize PCFGs and the PCSG problem, and point out some 
basic properties. We then focus on two subclasses of PCFGs which are adapted to the two 
application contexts illustrated in Example 1 above: the cautious PCFGs and the flexible 
PCFGs. In a flexible PCFG, it is assumed that when some agents are finally found to be 
defective, the agents from the residual coalitions can always be re-assigned to other tasks 
and thus produce a reward. In a cautious PCFG, it is assumed that it is never the case, and 
so no reward can be obtained from a residual coalition.

This paper also aims to investigate the PCSG problem from a computational perspec-
tive. More precisely, we consider two decision problems: the first one is related to the com-
putation of the expected utility of a given coalition structure, and the second one is related 
to PCSG itself, i.e., the computation of a coalition structure of maximal expected utility. 
These problems are shown to be respectively, ��-hard and ����-hard in the general case, 
even when flexible PCFGs are considered. However, we show that computing the expected 
utility of a coalition structure can be done in polynomial time for cautious PCFGs, and 
for flexible PCFGs when the situational characteristic function takes advantage of an MC-
net representation. As a result, for these classes of PCFGs the decision problem related to 
PCSG falls in �� . Interestingly, this means that while the PCSG problem can be viewed 
as an “extension” of the CSG problem (this is made more precise in the next section), 
this does not lead to a computational shift for cautious PCFGs and MC-net based flexible 
PCFGs. We then point out and evaluate mixed integer linear programming (MILP) encod-
ings for both MC-net cautious and flexible PCFGs and show that cautious (resp. flexible) 
PCFGs can be solved within seconds for reasonable sized instances.

The proofs of propositions are given in an “Appendix”. The run-time codes of the 
PCFG generator and of the translator of PCFG instances into MILP instances used in our 
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experiments are available at https:// nicol as- schwi nd. github. io/ PCSG- gener ator- trans lator. 
zip [33].

2  Other related work

The idea of forming coalition structures under uncertainty is not new (see [4],  Sec-
tion  6.2.3 for an overview). Works in non-cooperative domains [1–3, 8, 12, 37] depart 
from our framework since in the (probabilistic) CSG setting, the agents forming the coali-
tions have no self-interest and the goal is to maximize the overall (expected) welfare of the 
system. Some notions of uncertainty have been considered in coalition formation when the 
agents are not assumed to be entirely selfish [14, 28, 35]. Yet the underlying frameworks 
are domain-specific or more complex than the CSG setting, since additional parameters 
such as (sub-)tasks and available resources are explicitly represented. These approaches are 
mainly validated through simulations, as agents are re-assigned to different tasks reactively 
in face of exogenous events.

Nevertheless, there are a few recent works more closely related to our CSG setting. In 
[24], the authors study how to form a coalition structure CS such that, if at most k agents 
were to be removed from their coalition in CS, the value of the coalition structure CS′ con-
sisting of the remaining agents should be kept above a certain threshold. Forming a robust 
coalition structure is a useful property: it provides one with a certain guarantee of coalition 
structure value (given k). However, a drawback of robustness is that the focus is given on 
the worst case scenario, and thus all agents are considered as equally (un)reliable. Instead, 
in this paper we assume that the attendance of agents is of stochastic nature, which sounds 
reasonable when the probability distribution can easily be estimated, e.g., from the attend-
ance record of the agents or the reliability of the system’s components.

To account for the stochastic nature of the environment, Doherty et. al [7] proposed to 
extend the definition of a CFG to a Contextual Coalitional Game (CCG). In addition to a 
standard characteristic function, a CCG considers a set of environmental states together 
with a probability distribution on states, which allows for a natural formulation of expected 
coalitional values. The focus in [7] was given on the computation of an agent’s expected 
Shapley value. This notion naturally extends the notion of Shapley value from the stand-
ard CFG setting which evaluates an agent’s potential marginal contribution to every other 
coalition. In the stochastic setting, an agent’s expected Shapley value is evaluated using 
expected coalitional values. This departs from our goal which is to form a coalition struc-
ture with a maximal expected utility.

Most closely related to our work is [19], in which a similar probabilistic CSG frame-
work is considered and empirically evaluated. However, our PCSG framework and results 
differ from those reported in [19] on many aspects. The model used in [19] is more restric-
tive than the PCSG framework introduced here, and no investigation was performed from a 
computational complexity viewpoint (a more detailed and technical discussion about how 
our framework relates to the one introduced in [19] can be found at the end of Sect. 9).

3  Coalition structure generation

Let us introduce some preliminaries and formalize the CSG problem.

https://nicolas-schwind.github.io/PCSG-generator-translator.zip
https://nicolas-schwind.github.io/PCSG-generator-translator.zip
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Definition 1 (Characteristic Function Game) A Characteristic Function Game (CFG for 
short) is a pair ⟨A, f ⟩ where A = {a1,… , an} is a set of agents and f ∶ 2A → ℝ is a function 
called characteristic function.

Given a CFG ⟨A, f ⟩ , a coalition is a non-empty subset of A. A coalition structure 
CS is a set of coalitions that forms a partition of A, i.e., CS = {C1,… ,Cm} , where for 
all Ci ∈ CS , Ci ≠ ∅ ; for all Ci,Cj ∈ CS such that i ≠ j , Ci ∩ Cj = � ; and 

⋃
Ci∈CS

Ci = A . 
The set �A denotes the set of all coalitions structures (over A). In a CFG, each coa-
lition C produces a reward f (C) corresponding to some implicit “task” to be per-
formed by C. f (C) is called the value of a coalition C, and F(CS) denotes the value 
of a coalition structure CS: it is defined as the sum of the values of all coalitions, i.e., 
F(CS) =

∑
Ci∈CS

f (Ci) . The CSG problem is to find an optimal coalition structure, i.e., a 
coalition structure CS ∈ �A such that for each CS� ∈ �A , F(CS�) ≤ F(CS).

Example 2 (continued) Let us formalize the example from the introduction. We con-
sider the CFG ⟨A, f ⟩ , where A = {a1, a2, a3} , where a1, a2, a3 respectively correspond to 
Alice, Bob and Charles; and f  is defined as f ({a1}) = 30 , f ({a2}) = 40 , f ({a3}) = 0 , 
f ({a1, a2}) = 90 , f ({a1, a3}) = 120 , f ({a2, a3}) = 100 , and f ({a1, a2, a3}) = 150 . 
There are five coalition structures in �A : CS1 = {{a1, a3}, {a2}} , CS2 = {{a1, a2}, {a3}} , 
CS3 = {{a1, a2, a3}} , CS4 = {{a2, a3}, {a1}} and CS5 = {{a1}, {a2}, {a3}} . Plans I, II and 
III described in the introduction respectively correspond to CS1 , CS2 and CS3 . We get that 
F(CS1) = f ({a1, a3}) + f ({a2}) = 120 + 40 = 160 . Similarly, F(CS2) = 90 , F(CS3) = 150 , 
F(CS4) = 130 and F(CS5) = 70 (the results are reported in Table 1.) Thus CS1 is optimal.

Computing an optimal coalition structure is an ��-hard problem in the general case 
[31]. However, there are properties on the characteristic function f  which, when sat-
isfied, makes the CSG problem a trivial one, computationally speaking. Thus, given 
a set E, a mapping v ∶ E → ℝ is said to be subadditive, i.e., if for every E1,E2 ⊆ E , 
v(E1) + v(E2) ≥ v(E1 ∪ E2) . Subadditive characteristic functions are used in domains 
where each agent would always do better if it were alone. This contrasts with widely 
cooperative environments such as the postmen problem [44], where the formation of a 
large coalition out of disjoint coalitions, guarantees at least the value that is obtained by 
the disjoint coalitions separately. In such a case, v ∶ E → ℝ is said to be superadditive, 
i.e., if for every E1,E2 ⊆ E , v(E1) + v(E2) ≤ v(E1 ∪ E2) . We obviously have that:

Proposition 1 (folklore) Let ⟨A, f ⟩ be a CFG. 

Table 1  Running example: the 
value F(CSi) and the expected 
utilities Ucau(CSi) and Ufle(CSi) 
corresponding respectively to 
the cautious and flexible PCSG 
settings.

For each case, the number in a bold font refers to the optimal coalition 
structure

�A F(CSi) Ucau(CSi) Ufle(CSi)

CS1 = {{a1, a3}, {a2}} 160 49.6 71.2
CS2 = {{a1, a2}, {a3}} 90 72 80
CS3 = {{a1, a2, a3}} 150 12 86
CS4 = {{a2, a3}, {a1}} 130 34 66.4
CS5 = {{a1}, {a2}, {a3}} 70 64 64
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 (i) If f  is subadditive, then the coalition structure CS = {{ai} ∣ ai ∈ A} is an optimal 
one.

 (ii) If f  is superadditive, then the coalition structure CS = {A} is an optimal one.

4  Probabilistic coalition structure generation

We now present a formal framework for Probabilistic Coalition Structure Generation 
(PCSG).

4.1  General setting

The PCSG framework is based on an extension of a CFG which we simply call Probabil-
istic Characteristic Function Game (PCFG). A PCFG consists of a set of agents, a prob-
ability distribution p on a set of outcomes characterized by binary events associated with 
each agent, and a refined definition of a standard characteristic function, called situational 
characteristic function and denoted by g.

4.1.1  The probability distribution of a PCFG

Our goal is to deal with the events which may occur after forming a coalition structure: 
each agent may be “fully functional” as it is always assumed in the standard CSG frame-
work, but it may also not fulfill its function as initially expected. This typically happens 
when an agent is found to be defective afterwards, or when an unexpected, exogenous 
event requires the agent to be removed from the coalition it has been assigned to. A PCFG 
thus considers a probability distribution p which associates every possible situation with a 
probability value.

Formally, let A be a finite set of agents. Given P ⊆ A , we denote P = A ⧵ P , and �P 
denotes an outcome, which identifies the situation where each agent from P is present and 
each agent from P is absent, after being assigned to a coalition. The set �A denotes the set of 
all outcomes. An event is a set of outcomes. Given Q,R ⊆ A such that Q ∩ R = � , we denote 
by ⟨Q,R⟩ the event which corresponds to the set of outcomes where all agents in Q are pre-
sent and all agents in R are absent. Formally, ⟨Q,R⟩ = {𝜔P ∈ 𝛺A ∣ Q ⊆ P,P ∩ R = �} . The 
set EA denotes the set of all such events ⟨Q,R⟩ . For instance, for any Q ⊆ A , we have that 
⟨Q,Q⟩ = {�Q} , i.e., the event ⟨Q,Q⟩ contains a single outcome which corresponds to the 
situation where each agent from Q is present and each remaining agent (i.e., each agent 
from Q ) is absent. As another example, the event ⟨Q, ∅⟩ contains 2|Q| outcomes, it corre-
sponds to the situation where each agent from Q is present and nothing is known about the 
remaining agents from Q . Now, let p ∶ �A ↦ [0, 1] be a probability distribution over the 
set of outcomes. The domain of p naturally extends to events from EA as follows, for each 
⟨Q,R⟩ ∈ EA:

Thus p(⟨Q,R⟩) represents the probability of the event ⟨Q,R⟩ to occur after a coalition struc-
ture is formed.

p(⟨Q,R⟩) = �
�P∈⟨Q,R⟩

p(�P).
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Example 1 (continued) Let us go back to the running example. For instance, consider the 
event ⟨{a1, a2}, {a3}⟩ from EA : it contains a single outcome from �A , which corresponds to 
the situation where a1 and a2 are present and a3 is absent. On the other hand, ⟨{a1}, {a3}⟩ ∈ EA 
is an event from EA which contains two outcomes from �A : it corresponds to the situation 
where a1 is present and a3 is absent, but nothing is known about a2 . Let us assume that 
a1 is present or functional 80% of the time, a2 100%, and a3 10%. So p(⟨{a1}, �⟩) = 0.8 , 
p(⟨{a2}, �⟩) = 1 , and p(⟨{a3}, �⟩) = 0.1 . We also assume that the situation of any agent 
does not affect the one of any other agent: the events ⟨{a1}, �⟩ , ⟨{a2}, �⟩ and ⟨{a3}, �⟩ are 
independent.1 Hence, the probability distribution p ∶ �A → [0, 1] can be fully derived, e.g., 
p(⟨{a1, a2}, {a3}⟩) = p(⟨{a1}, �⟩) ⋅ p(⟨{a2}, �⟩) ⋅ p(⟨�, {a3}⟩) = 0.8 ⋅ 1 ⋅ (1 − 0.1) = 0.72.

4.1.2  The situational characteristic function of a PCFG

A PCFG also considers an extension of the standard characteristic function f ∶ 2A → ℝ 
in a CFG (cf. Definition 3), which we call situational characteristic function. Denoted by 
g , this function maps each coalition and each outcome to a value. That is, g makes precise 
how some underlying value should be updated when some agents are found missing after 
the formation of a coalition structure. Now notably, in a CFG the value of a given coali-
tion depends only on its members.2 We naturally extend this assumption to outcomes in 
PCFGs, i.e., the value of a coalition in a given outcome should only depend on the pres-
ence/absence of the members of that coalition. Formally, g is a mapping g ∶ 2A ×�A → ℝ 
such that for each coalition C and each outcome �P ∈ �A,

This assumption plays a key role in most of our results in the following sections, includ-
ing how the expected utility of a coalition structure can be computed coalition-wise 
(cf. Sect. 4.2.3).

Then, the value of a coalition structure CS in any outcome �P , denoted by G(CS,�P) , is 
defined as the sum of the values g(C,�P) for each coalition C ∈ CS , i.e., G ∶ �A ×�A → ℝ 
is defined for each CS ∈ �A and each outcome �P ∈ �A as

There are a number of ways g can be defined. An interesting option is to derive g from an 
existing characteristic function f  of a given CFG, i.e., to define a PCFG as a particular 
“extension” of a given CFG. In Sect. 5, we point out two such derivations of g of practical 
interest illustrated using our running example.

4.1.3  Probabilistic characteristic function game

We are now ready to introduce the definition of a Probabilistic Characteristic Function 
Game (PCFG):

(1)g(C,�P) = g(C,�P∩C).

(2)G(CS,�P) =
∑
C∈CS

g(C,�P).

1 The independence assumption is not required in our subsequent results. It is made in the example for 
simplicity.
2 Characteristic functions for which the value of a coalition C depends on the entire coalition structure to 
which C belongs are called Partition Function Games [38], but are not considered in this paper.
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Definition 2 (Probabilistic Characteristic Function Game) A Probabilistic Characteris-
tic Function Game (PCFG for short) is a tuple ⟨A, g, p⟩ where A = {a1,… , an} is a set of 
agents; p ∶ �A → [0, 1] is a probability distribution; and g ∶ 2A ×�A → ℝ is a situational 
characteristic function.

In the standard CSG framework, the issue of interest is to find a coalition structure of 
maximal utility. In PCSG, one seeks to maximize the expected utility U(CS) of a coalition 
structure CS, which, given a PCFG ⟨A, g, p⟩ , is defined as follows:

Given a PCFG, a coalition structure CS is said to be optimal if for each CS� ∈ �A , 
U(CS�) ≤ U(CS) . The PCSG problem is then to find an optimal coalition structure.

4.2  Properties

4.2.1  PCFGs extend CFGs

Let us first emphasize that PCFGs are at least as expressive as CFGs, in the sense that 
every CFG ⟨A, f ⟩ can be “extended” to a PCFG ⟨A, g, p⟩ so that the value of any coalition 
structure in ⟨A, f ⟩ coincides with its expected utility in ⟨A, g, p⟩ . More formally, let us show 
how one can simply extend any CFG ⟨A, f ⟩ into a PCFG ⟨A, g, p⟩ that is equivalent to it, i.e., 
when for each coalition structure CS, F(CS) = U(CS) . Let us formalize the notion of “CFG 
extension”:

Definition 3 (CFG extension) Let ⟨A, f ⟩ be a CFG. A CFG extension of ⟨A, f ⟩ is any PCFG 
⟨A, g, p⟩ such that for each C ⊆ A , g(C,�C) = f (C).

Intuitively, in a CFG extension the value taken by each coalition C is characterized by 
an underlying CFG in the situation where all of the agents from that coalition remain pre-
sent, i.e., in the outcome �C and any outcome 𝜔P,C ⊆ P (cf. Equation 1). Notable CFG 
extensions are the most “optimistic” ones: an optimistic PCSG, denoted by ⟨A, g, p⊤⟩ , is 
such that for every outcome �P ∈ �A , p⊤(𝜔P) = 1 if P = A , and p⊤(𝜔P) = 0 otherwise. As 
expected:

Proposition 2 Let ⟨A, f ⟩ be a CFG. Then every optimistic CFG extension of ⟨A, f ⟩ is 
equivalent to ⟨A, f ⟩.

4.2.2  Subadditivity and superadditivity in PCSG

Interestingly, the counterparts of the results given in Proposition  1 in the standard CSG 
framework also hold in our PCSG framework. That is, when the situational characteris-
tic function g is “subadditive”, the coalition structure formed of singleton coalitions is an 
optimal one; and when g is “superadditive”, the grand coalition structure is an optimal one. 
This requires to make precise the notion of subadditivity and superadditivity for g , which 
simply extends the respective counterpart properties for f  as follows:

(3)U(CS) =
∑

�P∈�A

p(�P) ⋅ G(CS,�P).
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Definition 4 (Sub/superadditivity for g ) The function g ∶ 2A ×�A → ℝ is said to be sub-
additive if for all C1,C2 ⊆ A and every �P ∈ �A,

It is said to be superadditive if for all C1,C2 ⊆ A and every �P ∈ �A,

Proposition 3 Let ⟨A, g, p⟩ be a PCFG. 

 (i) If g is subadditive, then the coalition structure CS = {{ai} ∣ ai ∈ A} is an optimal 
one.

 (ii) If g is superadditive, then the coalition structure CS = {A} is an optimal one.

4.2.3  Coalition‑wise computation of the expected utility

Now, computing U(CS) for a given coalition structure CS a priori requires 2n computation 
steps, according to Equation 3, one for each outcome. However, Proposition 4 below shows 
that the computation of U(CS) can be characterized in a coalition-wise fashion. That is to 
say, computing the expected utility of a coalition structure CS boils down to computing the 
expected utilities of coalitions from CS and to sum them up, where the expected utility of 
each coalition C ⊆ A , denoted u(C) , is defined as:

Indeed, U(CS) can be characterized as follows:

Proposition 4 Given a PCFG ⟨A, g, p⟩ , for every coalition structure CS ⊆ 𝛱A , we have 
that

Interestingly, to compute the utility of a coalition u(C) , one does not need to enumerate 
all 2n outcomes from the set �A , but only the 2|C| events ⟨P,C ⧵ P⟩ from EA , for all P ⊆ C . 
Indeed, as a consequence of Equation 1, the expected utility of C does not depend on the 
events involving agents outside of C:

Proposition 5 Given a PCFG ⟨A, g, p⟩ , for every coalition C ⊆ A , we have that

To summarize, from Propositions 4 and 5, we get that:

Corollary 1 Given a PCFG ⟨A, g, p⟩ , for every coalition structure CS ⊆ 𝛱A , we have that

g(C1,�P) + g(C2,�P) ≥ g(C1 ∪ C2,�P).

g(C1,�P) + g(C2,�P) ≤ g(C1 ∪ C2,�P).

(4)u(C) =
∑

�P∈�A

p(�P) ⋅ g(C,�P).

U(CS) =
∑
C∈CS

u(C).

u(C) =
�
P⊆C

p(⟨P,C ⧵ P⟩) ⋅ g(C,𝜔P).

U(CS) =
�
C∈CS

�
P⊆C

p(⟨P,C ⧵ P⟩) ⋅ g(C,𝜔P).
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5  Two subclasses of PCFG

Let us recall that in a CFG, the characteristic function f  associates a value with each 
coalition C ⊆ A ; and in contrast, in a PCFG the situational characteristic function g must 
associate a value with each coalition C ⊆ A and each outcome �P ∈ �A , where P ⊆ C 
(cf. Definition 2 and Eq.  1). That is, the domain of g is exponentially larger than the 
one of f  . However, there is a number of elegant ways g can be defined to make it as 
succinct as f  . One of them is to start with a given CFG ⟨A, f ⟩ (assuming it is available), 
and to consider one of its CFG extensions ⟨A, g, p⟩ (cf. Definition 3). That is, one first 
sets g(C,�C) = f (C) for each coalition C ⊆ A . Doing so, the value of a coalition C in the 
resulting PCFG corresponds to the value of C using f  in the case where all agents from 
C remain present in their coalition. In addition, one needs a policy which makes precise 
how the value g(C,�P) is characterized in the remaining cases when C ⊈ P , i.e., how the 
value f (C) must be “updated” in the event when some agents initially assigned to C are 
missing after the formation of the coalition structure.

Indeed, in both the CSG and PCSG frameworks, each coalition C is implicitly 
assigned to some “task” and in the case when no agent from C appears missing after the 
formation of the coalition structure, C should produce the reward corresponding to the 
task to be performed, as expected. When not all agents are present in the coalition they 
have been assigned to, different situations may arise depending on the context, which 
leads one to consider different such policies. This general scheme allows one to define 
a PCFG directly from a given CFG, given an additional probability distribution and a 
policy.

In this section we consider and formalize two natural policies corresponding to the 
situations illustrated in our running example: the flexible policy and the cautious policy. 
The flexible policy considers the scenario where any residual coalition can be assigned 
to another task and still produce a reward in the case where some agents appear missing. 
In contrast, the cautious policy considers the opposite case, i.e., that it is not possible 
for an updated coalition to be assigned to another task; in such a case, no reward can be 
obtained from it. In the following, we show that the choice of the policy may easily lead 
to select distinct optimal coalition structures.

5.1  Flexible PCFG

A first option is to assume that if an unexpected event deprives a given coalition of some 
of its agents, then the residual coalition can be assigned to another task. More precisely, 
the residual coalition can still produce the reward it has been associated with through the 
characteristic function f  . This assumption is reasonable in the case where one considers, 
for instance, a set of wireless sensor networks whose goal is to optimize some global con-
nectivity in a utilitarian fashion. In our running example, this corresponds to the scenario 
when the workers can be transferred right away to another task without any further cost.

Definition 5 (Flexible PCFG) A flexible PCFG is a CFG extension ⟨A, gf
fle
, p⟩ , where 

g
f

fle
∶ 2A ×�A → ℝ is such that for each coalition C ⊆ A and each outcome �P ∈ �A,

g
f

fle
(C,�P) = f (C ∩ P).
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The utility of a coalition C ⊆ A and a coalition structure CS ∈ �A in a flexible PCFG 
are respectively denoted by ufle(C) and Ufle(CS).

Example 1 (continued) Let us illustrate the computation of some expected utilities from our 
running example. We detail only the computation of the utility of CS1 = {{a1, a3}, {a2}} . 
From Corollary 1, we get that:

Similarly, it can be checked that Ufle(CS2) = 80 , Ufle(CS3) = 86 , Ufle(CS4) = 66.4 and 
Ufle(CS5) = 64 (cf. Table  1). Here, CS3 (plan III) is the best choice among all coalition 
structures. Compared to CS2 , in CS3 the agent a3 is in the grand coalition, together with a1 
and a2 . This is harmless since in the flexible PCFG case, the absence of a3 will not result 
in a breakdown of the whole coalition. And in the case when a3 is absent, as the remaining 
coalition {a1, a2} is relatively “reliable” and f ({a1, a2}) > f ({a1}) + f ({a2}) , we get that 
ufle({a1, a2}) > ufle({a1}) + ufle({a2}) , so that Ufle({{a1, a2}}) > Ufle({{a1}, {a2}}) . Thus 
CS3 is also preferred to CS1.

We have shown in Proposition 3 that when gf
fle

 is subadditive or superadditive, solving 
the PCSG problem is a trivial task. Obviously enough, when f  is subadditive (resp. super-
additive), then gf

fle
 is subadditive (resp. superadditive). So as a consequence of Proposition 

3, we get that:

Corollary 2 Let ⟨A, gf
fle
, p⟩ be a flexible PCFG. 

 (i) If f  is subadditive, then the coalition structure CS = {{ai} ∣ ai ∈ A} is an optimal 
one.

 (ii) If f  is superadditive, then the coalition structure CS = {A} is an optimal one.

5.2  Cautious PCFG

Another option is to assume that every coalition C in a coalition structure is implicitly 
assigned to a task and that the agents from C commit themselves to perform this task and 
no other. Thus the underlying task can be achieved only if all agents from C are present, 
and no other task can be assigned to the updated coalition in case of agent loss. That is to 
say, the value of the coalition C is equal to 0 in any outcome �P ∈ �A where C ⊈ P . In our 
running example, this option corresponds to the scenario where an appointment with the 
customers must be made ahead of time.

Definition 6 (Cautious PCFG) A cautious PCFG is a CFG extension ⟨A, gfcau, p⟩ , where 
g
f
cau ∶ 2A ×�A → ℝ is such that for each coalition C ⊆ A and each outcome �P ∈ �A,

Ufle(CS1) =
∑

C∈CS1

∑
P⊆C p(⟨P,C ⧵ P⟩) ⋅ gf

fle
(C,𝜔P)

= p(⟨{a1, a3}, �⟩) ⋅ gffle({a1, a3},𝜔{a1,a3}
)

+ p(⟨{a1}, {a3}⟩) ⋅ gffle({a1, a3},𝜔{a1}
)

+ p(⟨{a3}, {a1}⟩) ⋅ gffle({a1, a3},𝜔{a3}
)

+ p(⟨�, {a1, a3}⟩) ⋅ gffle({a1, a3},𝜔�)

+ p(⟨{a2}, �⟩) ⋅ gffle({a2},𝜔{a2}
) + p(⟨�, {a2}⟩) ⋅ gffle({a2},𝜔�)

= 0.8 ⋅ 0.1 ⋅ 120 + 0.8 ⋅ (1 − 0.1) ⋅ 30 + 1 ⋅ 40 = 71.2.
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Note that a cautious PCSG is fully characterized given a CFG ⟨A, f ⟩ , since 
g
f
cau(C,�P) = f (C) when C ⊆ P (cf. Definition 3 and Equation 1).

The utility of a coalition C ⊆ A and a coalition structure CS ∈ �A in a cautious PCFG 
are respectively denoted by ucau(C) and Ucau(CS).

For any CS ∈ �A , computing Ucau(CS) can be done coalition-wise, as shown by Propo-
sition 4. Yet from Proposition 5, for any coalition C ⊆ A , computing ucau(C) may require 
summing up 2|C| values in the general case, i.e., one for each outcome �P ∈ �A with 
P ⊆ C . However, here one only needs to consider the single event where no agent in the 
coalition breaks down:

Proposition 6 Let ⟨A, gfcau, p⟩ be a cautious PCFG. For any coalition C ⊆ A , we have that

Example 1 (continued) Let us illustrate the computation of the expected utilities of the 
coalition structures from our running example. We detail only the computation of the util-
ity of CS1 = {{a1, a3}, {a2}} . From Proposition 6, we get that:

Similarly, it can be checked that Ucau(CS2) = 72 , Ucau(CS3) = 12 , Ucau(CS4) = 34 and 
Ucau(CS5) = 64 . These results are reported in Table 1. One can remark that although CS1 
is optimal for the CFG and CS3 is optimal for its flexible CFG extension, these coalition 
structures are clearly not the best choice for its cautious CFG extension. Intuitively, as the 
probability of attendance of a3 is quite low ( p(⟨{a3}, �⟩) = 0.1 ), it is risky to assign a3 to a 
coalition with some other agents: the utilities of these coalitions are low. Indeed, it can be 
checked that ucau({a1, a3}) = 9.6 , ucau({a2, a3}) = 10 and ucau({a1, a2, a3}) = 12 . Instead, 
CS2 is the best choice. In CS2 , a3 is left alone in its coalition: even if its coalition produces 
no reward in any case ( ucau({a3}) = 0 ), the coalition {a1, a2} is formed of reliable agents: 
it will produce a value of 90 with a probability of p(⟨{a1}, �⟩) ⋅ p(⟨{a2}, �⟩) = 0.8 , so that 
ucau({a1, a2}) = 72.

Now, it can easily be seen that gfcau is subadditive when the function f  is subadditive. 
Hence, from Proposition 3 we get that:

Corollary 3 Let ⟨A, gfcau, p⟩ be a cautious PCFG. If f  is subadditive, then the coalition 
structure CS = {{ai} ∣ ai ∈ A} is an optimal one.

However, even if f  is superadditive the grand coalition CS = {A} is not necessarily opti-
mal: in general gfcau is not superadditive even if f  is. This can be viewed using the simple 
following example of the cautious PCFG ⟨A, gfcau, p⟩ , where A = {a1, a2} , f ({a1}) = 20 , 
f ({a2}) = 20 , f ({a1, a2}) = 60 , p(⟨{a1}, �⟩) = p(⟨{a2}, �⟩) = 0.5 : it can be easily veri-
fied that f  is superadditive, Ucau({{a1}, {a2}}) = 20 and Ucau({{a1, a2}}) = 15 , so 
Ucau({{a1, a2}}) < Ucau({{a1}, {a2}}).

if C ⊈ P then gf
cau

(C,𝜔P) = 0.

ucau(C) = p(⟨C, �⟩) ⋅ gf
cau

(C,�C).

Ucau(CS1) =
∑

C∈CS1
p(⟨C, �⟩) ⋅ gfcau(C,�C)

= p(⟨{a1, a3}, �⟩) ⋅ gfcau({a1, a3},�{a1,a3}
)

+ p(⟨{a2}, �⟩) ⋅ gfcau({a2},�{a2}
)

= 0.8 ⋅ 0.1 ⋅ 120 + 1 ⋅ 40 = 49.6.
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6  The computational complexity of PCSG

In this section, we investigate the complexity of PCSG, more precisely we focus on the two 
following decision problems:

Definition 7 (Decision Problem DP-CS) 

• Input: A PCFG⟨A, g, p⟩ such that g and p are computable in polynomial time,3 a coali-
tion structure CS, and a non-negative rational number k.

• Question: Does U(CS) ≥ k hold?

Definition 8 (Decision Problem DP-∃CS) 

• Input: A PCFG⟨A, g, p⟩ such that g and p are computable in polynomial time, and a 
non-negative rational number k.

• Question: Does there exist a coalition structure CS such that  U(CS) ≥ k?

The rest of this paper will focus on such inputs, i.e., where g and p are computable in 
polynomial time.

We assume that the reader is familiar with the complexity class �� . The class �� is the 
set of problems that can be solved by a nondeterministic Turing machine in polynomial 
time where the acceptance condition is that a majority (more than half) of computation 
paths accept (see [25] for more details). Higher complexity classes are defined using ora-
cles: ���� corresponds to the class of decision problems that are solved in polynomial time 
by non-deterministic Turing machines using an oracle for �� . An indication of the high dif-
ficulty of solving �� (and thus, ���� ) -hard problems is reflected by Toda’s theorem, stating 
that a Turing machine with a �� oracle can solve in polynomial time every problem in the 
polynomial hierarchy [39]. It turns out that both problems ��-�� and ��-∃�� are hard for 
�� and ���� , respectively:

Proposition 7 ��-�� is ��-hard and ��-∃�� is ����-hard. Hardness results hold 
for flexible PCFGs, and even when the set of events {⟨{ai}, �⟩ ∣ ai ∈ A} are pairwise 
independent.

When considering cautious PCFGs, a significant drop in computational complexity 
can be obtained. Indeed, in the previous section Proposition 6 told us that computing the 
expected utility of any given coalition requires to consider only a single event, i.e., the 
event where no agent is missing. Thus computing ucau(C) for any coalition is not a hard 
task, and as a consequence:

Proposition 8 ��-�� is in � and ��-∃�� is ��-complete for cautious PCFGs.

3 In Definitions 7 and 8, one does not make any assumption about the way g and p are represented. How-
ever, one assumes that the corresponding mappings can be computed in polynomial time.
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7  MC‑net based cautious/flexible PCFGs

In this section, we identify some interesting subclasses of cautious and flexible PCFGs, 
i.e., those represented as marginal contribution networks (MC-nets) [11].

MC-nets are a simple, rule-based formalim, in which each rule takes the form 
condition → number , where “condition” is a Boolean condition over agents. To compute 
the value of a coalition given an MC-net, one checks for each rule whether the corre-
sponding condition is satisfied by the coalition, and in such a case one adds the associ-
ated “number” to the value of the coalition. MC-nets are useful to represent in a suc-
cinct and natural way a characteristic function whose size would be lower bounded by 2n 
if represented extensively as a table, n being the number of agents. In the general case, 
one can consider characteristic functions which cannot be represented through an MC-
net in a succinct way, i.e., the size of an MC-net for a “realistic” characteristic function 
depends on the application. But MC-nets are fully expressive: they permit the computa-
tion of solution concepts such as the Shapley value [11] and weighted goals [40], and 
include some useful classes of representation languages such as weighted graphs [6]. 
They are particularly appropriate when the value associated with a coalition results in 
the combination of natural patterns identified in the coalition: it is indeed fair to assume 
that some agents are fit to work together, while others are not. For instance, consider the 
case when two agents contribute to a certain reward in an underlying task when they 
work together on it, provided that a third agent is not with them. Such a pattern can be 
represented thanks to an MC-net through a single rule, irrespective of the total number 
of agents involved. In contrast, representing the characteristic function explicitly would 
require to consider this pattern in the computation of the value of all 2n − 1 coalitions, 
which is not feasible in practice. Note that there exist a number of representation lan-
guages for representing a characteristic function f  in a CFG, e.g., Synergy Coalition 
Group (SCG) representation [5], skilled-based representation [22] and agent-type repre-
sentation [36, 41]. Considering all of them at once is out of the scope of this paper, and 
we focus on the language of MC-nets in the following.

Now, we have seen in Proposition 7 that computing the expected utility of a coali-
tion structure in the flexible case is a ��-hard task. Interestingly, we will show in this 
section that when flexible PCFGs are represented by an MC-net, this task can be done 
in polynomial time. We actually consider MC-net based flexible and MC-net based cau-
tious PCFGs. This allows us to provide encodings for each of them, and thus tackle the 
problem of computing an optimal coalition structure experimentally in each case, which 
will be done in the next section.

By definition, cautious and flexible PCFGs are CFG extensions, so they are induced 
by a CFG ⟨A, f ⟩ . From now on, we assume f  to be represented by an MC-net [11]:

Definition 9 (MC-net) Given a finite set of agents A, a marginal contribution network 
(MC-net) is a finite set R = {r1,… , rm} of rules ri = (�i,wi) ( i ∈ {1,… ,m} ), where:

• �i is the condition of ri , denoted by a consistent conjunction of literals over A (where 
each element of A is viewed as a Boolean variable), i.e., 
�i = ai1 ∧… ∧ aij ∧ aij+1 ∧… ∧ aik  , 0 ≤ j ≤ k , and for all literals ail , ais ∈ �i , we have 
that ail ∈ A and ais ∈ A;

• wi is a real number (the weight of ri).
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Given a condition �i = ai1 ∧… ∧ aij ∧ aij+1 ∧… ∧ aik  , we note �+
i
= {ail ∣ l ≤ j} the 

positive part of �i and 𝛾−
i
= {ail ∣ l > j} the negative part of �i . We say that a rule 

ri = (�i,wi) is partially activated by a coalition C ⊆ A when 𝛾+
i
⊆ C ; and ri is activated 

by C when it is partially activated by C and moreover �−
i
∩ C = � . Given an MC-net R , 

f  is characterized for each C ⊆ A as f (C) =
∑

ri∈R
∗
C
wi , where R∗

C
 is the set of rules from 

R that are activated by C.

Example 1 (continued) The characteristic function f  used in the running example can be 
encoded (for instance) as R = {r1, r2, r3, r4, r5} , where:

For instance, the coalition {a1, a2, a3} partially activates all five rules, and activates pre-
cisely the first four rules.

As another example, let us detail the computation of F(CS1) , where 
CS1 = {{a1, a3}, {a2}} (cf. Table  1). The coalition {a1, a3} activates precisely the 
rules r1 and r5 , so f ({a1, a3}) = w1 + w5 = 30 + 90 = 120 . And the coalition {a2} 
activates precisely the rule r2 , so f ({a2}) = w2 = 40 . Accordingly, we get that 
f ({a1, a3}, {a2}) = 120 + 40 = 160 , thus F(CS1) = 160 , which corresponds to the value of 
F(CS1) given in Table 1.

Obviously enough, f  is computable in polynomial time when it is characterized by an 
MC-net, and thus both gfcau and gf

fle
 are also computed in polynomial time.

Now without loss of generality, one assumes that each �i contains at least one posi-
tive literal. This assumption does not lead to an exponential blow-up: for instance, if 
a rule has the form ({a1},w) , then it can equivalently be replaced by the set of rules 
{({a1, a2},w), ({a1, a2, a3},w),… , ({a1,… , an−1, an},w)} (see [17, 18]). Under this 
assumption, each ri of R can be partially activated by at most one coalition, denoted by 
CS(i) when it exists, of the coalition structure CS under consideration: indeed, the agent 
corresponding to this positive literal cannot belong to several coalitions.

Interestingly, Propositions 9 and 10 below show that the expected utility of any given 
coalition structure CS can be computed on a rule-by-rule basis, for both cautious and 
flexible PCFGs:

Proposition 9 For any CS ∈ �A,

where R∗ is the set of rules ri activated by a coalition CS(i) ∈ CS.

Example 1 (continued) Let us detail how Ucau(CS1) can be computed on a rule-by-rule 
basis according to Proposition 9, where CS1 = {{a1, a3}, {a2}} (cf. Table 1). Recall that 
in our example, we have that p(⟨{a1}, �⟩) = 0.8 , p(⟨{a2}, �⟩) = 1 , and p(⟨{a3}, �⟩) = 0.1 , 
that the coalition {a1, a3} activates precisely the rules r1 and r5 , and that the coalition {a2} 
activates precisely the rule r2 . Thus:

r1 = ({a1}, 30) r2 = ({a2}, 40) r3 = ({a1, a2}, 20)

r4 = ({a2, a3}, 60) r5 = ({a1, a2, a3}, 90).

Ucau(CS) =
�
ri∈R

∗

wi ⋅ p(⟨CS(i), �⟩),
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which corresponds to the value of Ucau(CS1) given in Table 1.

Proposition 10 For any CS ∈ �A,

where R+ is the set of rules ri partially activated by a coalition CS(i) ∈ CS.

Example 1 (continued) Similarly, we detail the computation of Ufle(CS1) on the rule-by-
rule basis as given by Proposition 10. Since the coalition {a1, a3} partially activates pre-
cisely the rules r1 and r5 , and that the coalition {a2} partially activates precisely the rule r2 , 
we get that:

which corresponds to the value of Ufle(CS1) given in Table 1.

We already know from Proposition 8 that the expected utility of a given coalition struc-
ture can be computed in polynomial time for any cautious PCFG. Furthermore, we showed 
in Proposition 7 that the problem remains ��-hard for flexible PCFGs. Interestingly, Propo-
sition 10 tells us that for MC-net based flexible PCFGs, computing the expected utility of a 
coalition structure can be done in polynomial time. As a consequence:

Proposition 11 ��-�� is in � and ��-∃�� is ��-complete for MC-net based flexible 
PCFGs.

8  Computing optimal coalition structures for MC‑net based PCFGs

We now tackle the problem of practically computing a coalition structure of maximal 
expected utility, for both MC-net based cautious and flexible PCFGs. In both cases, we 
reduce the corresponding problem to a mixed integer linear programming (MILP) prob-
lem. Then we can take advantage of the IBM ILOG CPLEX Optimizer4 for generating 
an optimal solution of the latter, which can easily be interpreted as an optimal solution 
of the former, i.e., a coalition structure of maximal expected utility. For simplicity, the 

Ucau(CS1) =
∑

ri∈R
∗ wi ⋅ p(⟨CS(i), �⟩)

= w1 ⋅ p(⟨{a1, a3}, �⟩) + w5 ⋅ p(⟨{a1, a3}, �⟩) + w2 ⋅ p(⟨{a2}, �⟩)
= w1 ⋅ (0.8 ⋅ 0.1) + w5 ⋅ (0.8 ⋅ 0.1) + w2 ⋅ 1

= 40 ⋅ 0.08 + 90 ⋅ 0.08 + 40 ⋅ 1

= 2.4 + 7.2 + 40 = 49.6,

Ufle(CS) =
�
ri∈R

+

wi ⋅ p(⟨�+i ,CS(i) ∩ �−
i
⟩),

Ufle(CS1) =
∑

ri∈R
+ wi ⋅ p(⟨�+i ,CS(i) ∩ �−

i
⟩)

= w1 ⋅ p(⟨{a1}, �⟩) + w5 ⋅ p(⟨{a1, a3}, �⟩) + w2 ⋅ p(⟨{a2}, �⟩)
= w1 ⋅ 0.8 + w5 ⋅ (0.8 ⋅ 0.1) + w2 ⋅ 1

= 40 ⋅ 0.8 + 90 ⋅ 0.08 + 40 ⋅ 1

= 24 + 7.2 + 40 = 71.2,

4 https:// www- 01. ibm. com/ softw are/ comme rce/ optim izati on/ cplex- optim izer/.

https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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encodings provided in this section are designed to the situation where the set of events 
{⟨{ai}, �⟩ ∣ ai ∈ A} are pairwise independent. Nevertheless, Propositions 9 and 10 tell us 
that the general case can be dealt with, as far as for any event ⟨Q,R⟩ ∈ EA , p(⟨Q,R⟩) is 
computed in polynomial time.

Obviously enough, coalitions structures can be represented by means of equivalence 
relations. So we consider n ⋅ (n − 1)∕2 binary variables li,j, 1 ≤ i < j ≤ n , where li,j is 
true (1) if and only if agents ai and aj belong to the same coalition within the coalition 
structure (“l” stands for “linked”). We set a cubic (in n) number of constraints of the form 
li,j + lj,k − li,k ≤ 1 for establishing the transitivity of the “linked” relation. The assignments 
of the li,j variables satisfying the constraints correspond precisely to the feasible coalition 
structures from �A.

We now need to consider variables and constraints which will be used to compute the 
expected utility of each coalition structure. Yet the conditions under which each rule ri ∈ R 
contributes to the global expected utility of a coalition structure differ between a cautious 
and a flexible PCFG (see Propositions 9 and 10). As a consequence, we need to introduce 
an encoding for each case.

8.1  A MILP encoding scheme for cautious PCFGs

First, a binary variable ri is introduced for each rule ri = (�i,wi) of R. Then for a rule ri 
of R , let us consider a positive literal ak occurring in �i . We generate a set of inequalities 
equivalent to the constraint

The two indexes k, j of each lk,j are switched if k > j . This set contains as many inequali-
ties as literals in �i , leading to a total number of inequalities which is upper bounded by the 
number m of rules of R multiplied by the size d of the largest rule ri (i.e., the number of 
literals in �i ) plus one. On our running example, the rule r5 = ({a1, a2, a3}, 90) gives rise 
to the three inequalities l1,3 − l1,2 − r5 ≤ 0 , −l1,3 + r5 ≤ 0 , and l1,2 + r5 ≤ 1 . This means 
that r5 must be set to 1 precisely when the rule r5 is activated by a coalition CS(5) where 
a1, a3 ∈ CS(5) and a3 ∉ CS(5).

We need some further notations at this step. Let Lk be the list with a head equal to k and 
a tail which consists of all the integers from {1,… , n} ⧵ {k} ordered in ascending way. For 
every j in the tail of Lk , pred(j)k denotes the index of the agent which is the predecessor of 
j in Lk . And last(k) denotes the last element of Lk . Then we iterate the following process. 
Initially no rule of R is marked. Let rank(j) ( j ∈ {1,… , n} ) be the number of rules ri of 
R which are not marked and are such that �i contains aj as a positive literal. We consider 
one of the agents ak such that ak maximizes rank(.) and we mark all the rules ri such that 
�i contains ak as a positive literal. We introduce a variable pk,k and we set the constraint 
pk,k = p(ak) . Then, for each agent aj except ak , we consider a variable pk,j and set two con-
ditional rules:

and

ri ⇔

⎛
⎜⎜⎝

�
aj∈�i ,j≠k

lk,j ∧
�
aj∈�i

¬lk,j

⎞
⎟⎟⎠
.

lk,j = 1 → pk,j = pk,pred(j)k ⋅ p(⟨{aj}, �⟩)
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By construction, ak ∈ CS(i) in the current coalition structure CS and pk,last(k) is equal to the 
probability p(⟨CS(i), �⟩) . For each rule ri which has been marked at this step, it remains to 
introduce a variable ui and the following two conditional rules: ri = 1 → ui = wi ⋅ pk,last(k) , 
and ri = 0 → ui = 0 . This means that the rule ri is activated precisely when its contribution 
to the expected utility of CS is equal to wi ⋅ p(⟨CS(i), �⟩) , as required (cf. Proposition 9). 
We resume at the step where the ranks of the agents are computed, until all rules are 
marked. At the end of the process, for every rule ri of R , there is at least one pk,last(k) which 
has been computed such that ak is a positive literal of ri . The objective function 

∑m

i=1
ui is to 

be maximized. For our running example, the following program has been obtained:

maximize u1 + u2 + u3 + u4 + u5
subject to
l1,2 + l2,3 − l1,3 ≤ 1 , l1,3 + l2,3 − l1,2 ≤ 1,
l1,2 + l1,3 − l2,3 ≤ 1 , l2,3 + l1,3 − l1,2 ≤ 1,
l1,3 + l1,2 − l2,3 ≤ 1 , l2,3 + l1,2 − l1,3 ≤ 1,
r1 = 1 , r2 = 1 , l1,2 − r3 ≤ 0 , −l1,2 + r3 ≤ 0,
l2,3 − r4 ≤ 0 , −l2,3 + r4 ≤ 0,
l1,3 − l1,2 − r5 ≤ 0 , −l1,3 + r5 ≤ 0 , l1,2 + r5 ≤ 1,
p1,1 = 0.8 , l1,2 = 1 → p1,2 = p1,1 ⋅ 1 , l1,2 = 0 → p1,2 = p1,1,
l1,3 = 1 → p1,3 = p1,2 ⋅ 0.1 , l1,3 = 0 → p1,3 = p1,2,
r1 = 1 → u1 = 30 ⋅ p1,3 , r1 = 0 → u1 = 0,
r3 = 1 → u3 = 20 ⋅ p1,3 , r3 = 0 → u3 = 0,
r5 = 1 → u5 = 90 ⋅ p1,3 , r5 = 0 → u5 = 0,
p2,2 = 1,
l1,2 = 1 → p2,1 = p2,2 ⋅ 0.8 , l1,2 = 0 → p2,1 = p2,2,
l2,3 = 1 → p2,3 = p2,1 ⋅ 0.1 , l2,3 = 0 → p2,3 = p2,1,
r2 = 1 → u2 = 40 ⋅ p2,3 , r2 = 0 → u2 = 0,
r4 = 1 → u4 = 60 ⋅ p2,3 , r4 = 0 → u4 = 0,
0 ≤ p1,1, p1,2, p1,3, p2,2, p2,1, p2,3 ≤ 1,
Binary l1,2, l1,3, l2,3, r1, r2, r3, r4, r5

This encoding scheme when applied to a PCFG instance for n agents and m rules bearing on 
at most d agents generates a MILP instance containing a number of constraints upper bounded 
by n3 + 4 ⋅ n2 + m ⋅ (d + 3) , over 3

2
⋅ n2 −

n

2
+ 2 ⋅ m variables (including n

2

2
−

n

2
+ m binary 

variables), and a linear objective function over m variables.

8.2  A MILP encoding scheme for flexible PCFGs

As to the case of cautious PCFGs, a binary variable ri is introduced for each rule ri = (�i,wi) 
of R . Then for each rule ri of R , let us consider the index plus(i) of a positive literal occurring 
in �i . We generate a set of inequalities equivalent to the constraint

lk,j = 0 → pk,j = pk,pred(j)k .

ri ⇔

⎛
⎜⎜⎝

�
aj∈�i ,j≠plus(i)

lplus(i),j

⎞
⎟⎟⎠
.
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Again, the two indexes plus(i), j of each lplus(i),j are switched if plus(i) > j . This set contains 
as many inequalities as positive literals in �i , leading to a total number of inequalities upper 
bounded by the number m of rules of R multiplied by the size d+ of the rule ri with a larg-
est “positive part” (i.e., the largest number of positive literals in �i ) plus one. On the run-
ning example, the rule r5 = ({a1, a2, a3}, 90) gives rise to the two inequalities l1,3 − r5 ≤ 0 
and −l1,3 + r5 ≤ 0 . This means that r5 must be set to 1 precisely when the rule r5 is partially 
activated by a coalition CS(5) where a1, a3 ∈ CS(5).

This time again, we need some further notations at this step. For every rule ri of R , let 
L−
i
 be the list with head plus(i) and tail the indexes of the negative literals of �i ordered 

in ascending way. For every j in the tail of L−
k
 , pred−(j)k denotes the index of the agent 

which is the predecessor of j in L−
k
 . And last−(k) denotes the last element of L−

k
 . For every 

rule ri of R , we introduce a variable pi,plus(i) and set pi,plus(i) = �ak∈pos(ri)
p(⟨{ak}, �⟩) . For 

each index j in the tail of L−
i
 , we introduce a variable pi,j and generate the following 

conditional rules:

and

By construction, aplus(i) ∈ CS(i) in the current coalition structure CS and pi,last−(i) is equal 
to the probability p(⟨�+

i
,CS(i) ∩ �−

i
⟩) . As in the cautious case, it remains to introduce one 

variable ui and two conditional constraints per rule ri of R:

This means that the rule ri is partially activated precisely when its contribution to the 
expected utility of CS is equal to wi ⋅ p(⟨�+i ,CS(i) ∩ �−

i
⟩) , as required (cf. Proposition 10). 

The objective function 
∑m

i=1
ui is to be maximized. For our running example, the following 

program has been obtained:

maximize u1 + u2 + u3 + u4 + u5
subject to
l1,2 + l2,3 − l1,3 ≤ 1 , l1,3 + l2,3 − l1,2 ≤ 1,
l1,2 + l1,3 − l2,3 ≤ 1 , l2,3 + l1,3 − l1,2 ≤ 1,
l1,3 + l1,2 − l2,3 ≤ 1 , l2,3 + l1,2 − l1,3 ≤ 1,
r1 = 1 , r2 = 1 , l1,2 − r3 ≤ 0 , −l1,2 + r3 ≤ 0,
l2,3 − r4 ≤ 0 , −l2,3 + r4 ≤ 0,
l1,3 − r5 ≤ 0 , −l1,3 + r5 ≤ 0,
p1,1 = 0.8 , r1 = 1 → u1 = p1,1 ⋅ 30 , r1 = 0 → u1 = 0,
p2,2 = 1 , r2 = 1 → u2 = p2,2 ⋅ 40 , r2 = 0 → u2 = 0,
p3,1 = 0.8 ⋅ 1 , r3 = 1 → u3 = p3,1 ⋅ 20 , r3 = 0 → u3 = 0,
p4,2 = 1 ⋅ 0.1 , r4 = 1 → u4 = p4,2 ⋅ 60 , r4 = 0 → u4 = 0,
p5,1 = 0.8 ⋅ 0.1 , l1,2 = 1 → p5,2 = p5,1 ⋅ (1 − 1) , l1,2 = 0 → p5,2 = p5,1,
r5 = 1 → u5 = p5,2 ⋅ 90 , r5 = 0 → u5 = 0,
0 ≤ p1,1, p2,2, p3,1, p4,2, p5,1, p5,2 ≤ 1,
Binary l1,2, l1,3, l2,3, r1, r2, r3, r4, r5

lplus(i),j = 1 → pi,j = pi,pred−(j)i × p(⟨�, {aj}⟩)

lplus(i),j = 0 → pi,j = pi,pred−(j)i .

ri = 1 → ui = wi ⋅ pi,last−(i) and ri = 0 → ui = 0.
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This encoding scheme when applied to a PCFG instance for n agents and m rules bearing 
on at most d agents generates a MILP instance containing a number of constraints upper 
bounded by n3 + 3 ⋅ m ⋅ d + 5 ⋅ m , over at most n

2

2
−

n

2
+ m ⋅ (d + 3) variables (including 

n2

2
−

n

2
+ m binary variables), and a linear objective function over m variables.

9  Experiments

9.1  Empirical setting

In order to evaluate our approach empirically, we generated benchmarks following a proto-
col similar to the one considered in [16–18, 42]. Namely, in order to generate a rule ri , one 
first generates a set �i containing one agent picked up at random under a uniform distribu-
tion, then we repeatedly add a new agent picked up with probability � to the set �i , until an 
agent is not added or �i includes half of the total number of agents. Then we proceed in the 
same way with the remaining agents a but add a to �i with probability � until an agent is 
not added or �i contains all the agents. When �+

i
 contains more than one agent, one switches 

an agent of �+
i

 (picked up uniformly at random) from positive to negative, with some prob-
ability � . The weight wi of ri is then chosen between 1 and the number of agents in the rule, 
uniformly at random. Lastly, this weight wi is turned into its opposite −wi with probability 
� . We took � = 0.55 , � = 0.15 , � = 0.2 , � = 0.2 , and as many rules as agents ranging from 
10 to 120. In each case, 100 instances have been generated. Finally, each p(⟨{aj}, �⟩) is 
a random value between 0 and 1 with a step of 0.01. The version of CPLEX used was 
IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 12.6.0.0 with the option set parallel 1. 
Our experiments were conducted on Intel Xeon E5-2643 (3.30 GHz) processors with 32 
GiB RAM on Linux CentOS. A time-out of 900s and a memory-out of 7.6 GiB have been 
considered for each instance.

9.2  Results

Table 2 gives the empirical results that have been obtained for the MC-net cautious and 
flexible PCFG benchmarks we considered. The leftmost column indicates the numbers m 
of rules (equal to the number n of agents5), the second and third (resp. fourth and fifth) col-
umns give the numbers of instances solved in the time limit and the average computation 
times for the instances solved when the cautious (resp. flexible) policy is considered.

The table shows that when the cautious policy (resp. the flexible policy) is considered, 
all the PCFG instances with up to 20 agents (resp. 60 agents) can be easily solved in a few 
seconds (less than a minute in the first case and approximately two minutes in the second 
case). The discrepancy between the two cases can be explained by the fact that, in the flex-
ible case, for each rule ri ∈ R the computation of the probability of Ci (if it exists) is based 
only on the negative literals occurring in ri and there are only few negative literals in the 
rules considered in the experiments ( � = 0.2).

To test this assumption, we performed additional experiments in the flexible case. 
For � = 0 , all the PCFG instances with up to 70 agents have been easily solved in 

5 As in the protocol used in [16–18, 42], here the number of rules generated is equal to the number of 
agents for simplicity, but this does not impact scalability.
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around two minutes, while when � = 0.8 , the limit where some instances are unsolved 
was reached for 35 agents.

Obviously enough, we cannot compare our approach with previous ones for solving 
PCFG instances since such approaches do not exist. So the best we can do is to make 
some comparisons with existing works for solving MC-net based CFG instances. In 
[23] the MILP encoding relies on a graph where each vertex is a rule from the MC-net, 
and each edge is a relationship between rules. Then in [17, 18], the authors exploit the 
same idea and present a specific Boolean encoding of CFG instances into MAX-SAT 
instances. They take advantage of these encodings and of state-of-the-art MAX-SAT 
solvers for solving those CFG instances. Both SAT-based MAX-SAT solvers and MAX-
SAT solvers based on a branch and bound technique are considered, and the former 
class of solvers prove to be much more efficient than the latter one (solvers from the 
first class succeeded in solving instances based on 300 agents/rules in less than 10  s, 
while solvers from the second class succeeded in solving instances based on at most 
10 agents/rules). Unfortunately, one cannot take advantage of SAT-based MAX-SAT 
solvers for the PCSG problem because of the computation of the probabilities (roughly, 
computing products). Indeed, in MAX-SAT solvers based on a branch and bound tech-
nique, weights are considered as such: they do not need to be encoded into the con-
straints but participate in the control of the search. Incorporating weights into SAT-
based MAX-SAT solvers would require instead to encode them using Boolean variables 
and to encode using Boolean circuits all the products required by the computation. 
Clearly enough, the resulting encoding would be very heavy and inefficient.

Table 2  Results with � = 0.55 , 
� = 0.15 , � = 0.2 , � = 0.2 , on 
an average of 100 instances per 
number of rules

Instance Cautious PCFG Flexible PCFG

#rules #solved Avg. time (in s) #solved Avg. time (in s)

5 100 0.6352 100 0.5583
10 100 0.5719 100 0.5901
15 100 1.9259 100 0.6861
20 99 43.3949 100 0.6913
25 79 91.6741 100 0.6587
30 21 321.564 100 1.1141
35 12 148.655 100 2.3204
40 4 268.385 100 6.2978
45 1 432.92 100 14.9835
50 2 169.8 99 44.5536
55 0 – 99 68.2371
60 0 – 100 123.965
65 0 – 95 159.822
70 0 – 84 241.943
75 0 – 64 211.608
80 0 – 49 201.161
85 0 – 35 247.294
90 0 – 31 272.593
95 0 – 26 265.485
100 0 – 19 313.278
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Since cautious and flexible PCFG instances are CFG extensions (cf. Proposition 2), it 
is not surprising that solving them proves to be harder in practice; especially, drawing any 
sound conclusion about the performance of our approach compared to the one reported in 
[17, 18, 23] would not really make sense. That mentioned, our results show that the branch 
and bound (actually, branch and cut) approach used by CPLEX Optimizer to solve PCFG 
instances performs well compared to the branch and bound approach used by some MAX-
SAT solvers for solving CFG instances.

Before concluding this section, let us mention another closely related work [19]. In their 
paper, a similar probabilistic CSG framework is considered and empirically evaluated. 
Our PCSG framework and results differs from those reported in [19] on many aspects. 
The model used in [19] is more restrictive than our PCSG model, and no investigation 
was performed from a computational complexity viewpoint. Indeed, the model from [19] 
requires all the events associated with agents to be mutually independent. In comparison, 
all of our results hold without making this assumption, including the computational com-
plexity results from Sect. 6, and the ability to compute the expected utility of any coali-
tion structure in polynomial time on a rule-by-rule basis for MC-net based flexible and 
cautious PCFGs (cf. Sect.  7). The other way around, the authors of [19] considered an 
additional parameter k in their model corresponding to the number of agents which, when 
found defective and removed from a coalition, still allowing the residual coalition to pro-
duce a certain reward. So k = 0 corresponds to our cautious policy and k = |A| corresponds 
to our flexible policy. The authors of [19] implemented some approximation algorithms 
and considered benchmarks where the value of each coalition through the characteristic 
function is generated randomly according to some probability distributions commonly used 
in the literature. They tested their algorithms on instances up to 14 agents and for a value 
for k varying between 0 and 5. They showed that a suboptimal solution for instances based 
on 14 agents can be found in about 10 s in the cautious case (i.e., k = 0 ), and in about 1000 
s when k = 5 . In comparison, we showed that (i) an optimal solution on MC-net based cau-
tious PCFG instances (i.e., k = 0 ) can be found within 2 s for instances based on 15 agents, 
and (ii) an optimal solution on MC-net based flexible PCFG instances (i.e., k = n ) can be 
found within 15 s for instances based on 45 agents. This clearly shows the benefits of MC-
net based representations in the PCSG framework, and indicates that our encodings are 
quite efficient.

10  Conclusion

We have introduced the Probabilistic Coalition Structure Generation (PCSG) problem, 
which can be viewed as a natural stochastic extension of the CSG problem. In CSG, the 
system is characterized by a Characteristic Function Game (CFG), i.e., a characteristic 
function which associates with each coalition a value representing the pay-off obtained 
by the coalition after performing an underlying task; the CSG problem consists in form-
ing a coalition structure such that the sum of all coalitional values is maximized. In 
PCSG, one considers an extension of a CFG, simply called Probabilistic CFG (PCFG). 
A PCFG considers a situational characteristic function, i.e., an extension of the standard 
characteristic function which associates with each coalition and each possible outcome 
a value, where an outcome identifies the situation where each agent is either present 
or absent from the coalition it has been assigned. The uncertain nature of the agents’ 
functionality is represented as an additional probability distribution on the set of all 
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outcomes. While in CSG one seeks to form a coalition structure of maximal value, the 
PCSG problem consists in forming a coalition structure of maximal expected utility.

We have shown that the PCSG problem is ����-hard in the general case. Then, we 
have considered two specific PCFG classes, the cautious PCFGs and the flexible PCFGs, 
corresponding to two policies of interest, and where the situational characteristic func-
tion can naturally be derived from the one of a standard CFG. We have shown that for 
both cautious and flexible PCFGs, a significant drop in computational complexity can 
be obtained when the utility of every coalition is represented by an MC-net; more pre-
cisely, we have shown that for these two classes the PCSG problem is ��-complete, and 
thus it is theoretically not harder than the standard CSG problem.

We have also provided an encoding scheme for computing a coalition structure of 
maximal expected utility by associating with each PCFG a MILP (Mixed Integer Linear 
Programming) instance. We have empirically evaluated the efficiency of these encod-
ings, and showed that cautious (resp. flexible) PCFGs with up to 20 (resp. 40) agents 
could be solved within a few seconds.

A first perspective for further research consists in studying how to design encodings 
and algorithms which would be more scalable. In this respect, we plan to investigate 
how one could take advantage of the SMT-based optimization algorithm reported in 
[15]. Another perspective consists in generalizing the PCSG model to deal with more 
complex scenarios than those considered in the paper, considering different representa-
tion languages than MC-nets for the characteristic function [5, 22, 36, 41], and to evalu-
ate the corresponding expressiveness/efficiency trade-off.

Appendix: Proofs of propositions

Proposition 2 Let ⟨A, f ⟩ be a CFG. Then every optimistic CFG extension of ⟨A, f ⟩ is 
equivalent to ⟨A, f ⟩.

Proof Let ⟨A, f ⟩ be a CFG and let ⟨A, g, p⊤⟩ be any optimistic CFG extension of ⟨A, f ⟩ . 
By definition of a CFG extension (cf.  Definition  3), we have that g(C,�A) = f (C) for 
each coalition C ⊆ A . So by Eq.  2, for each coalition structure CS ∈ �A , we get that 
G(CS,�A) =

∑
C∈CS g(C,�A) =

∑
C∈CS f (C) = F(CS) . Hence, by definition of p⊤ and 

U(CS) , we get that U(CS) =
∑

�P∈�A
p(�P) ⋅ G(CS,�P) = G(CS,�A) = F(CS) . This con-

cludes the proof.   ◻

Proposition 3 Let ⟨A, g, p⟩ be a PCFG. 

 (i) If g is subadditive, then the coalition structure CS = {{ai} ∣ ai ∈ A} is an optimal 
one.

 (ii) If g is superadditive, then the coalition structure CS = {A} is an optimal one.

Proof We provide the proof only for (i), as (ii) can be proved in a similar manner. Let 
⟨A, g, p⟩ be a PCFG, and assume that g is subadditive. Let CS = {{ai} ∣ ai ∈ A} and 
CS� ∈ �A , and let us prove that U(CS�) ≤ U(CS) . By definition of U(CS) and U(CS�) (cf. 
Equation 3), we have that
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and

So we just need to show that 
∑

C∈CS g(C,�P) ≤
∑

a∈A g({a},�P) . Yet g is subadditive, so

from which we can conclude that

  ◻

Proposition 4 Given a PCFG ⟨A, g, p⟩ , for every coalition structure CS ⊆ 𝛱A , we have 
that

Proof We have that:

This concludes the proof.   ◻

Proposition 5 Given a PCFG ⟨A, g, p⟩ , for every coalition C ⊆ A , we have that

The proof uses the following lemma:

Lemma 1 Let ⟨A, g, p⟩ be a PCFG, let ⟨Q,R⟩ be an event from EA and C ⊆ A such that 
C ∩ (Q ∪ R) = � . We have that ⟨Q,R⟩ = ⋃

P⊆C ⟨Q ∪ P,R ∪ (C ⧵ P)⟩.

Proof We prove it by induction on the size of C. The result trivially holds if |C| = 0 , i.e., if 
C = � . Assume the result holds for |C| = k , for some k such that 0 ≤ k ≤ n − 1 − |Q ∪ R| . 
So:

Let ai ∈ A ⧵ (Q ∪ R) . We know that ⟨{ai}, �⟩ ∪ ⟨�, {ai}⟩ = �A . Thus:

U(CS�) =
∑

�P∈�A

p(�P) ⋅
∑
C∈CS

g(C,�P)

U(CS) =
∑

�P∈�A

p(�P) ⋅
∑
a∈A

g({a},�P).

∑
C∈CS

g(C,�P) ≤
∑
a∈A

g({a},�P),

U(CS�) ≤ U(CS).

U(CS) =
∑
C∈CS

u(C).

U(CS) =
∑

P⊆A p(𝜔P) ⋅ G(CS,𝜔P)

=
∑

P⊆A p(𝜔P) ⋅
∑

C∈CS g(C,𝜔P)

=
∑

C∈CS

∑
P⊆A p(𝜔P) ⋅ g(C,𝜔P)

=
∑

C∈CS u(C).

u(C) =
�
P⊆C

p(⟨P,C ⧵ P⟩) ⋅ g(C,𝜔P).

⟨Q,R⟩ = �
P⊆C

⟨Q ∪ P,R ∪ (C ⧵ P)⟩.
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We have just proved that the result holds for any C, |C| = k + 1 , which concludes the 
proof.   ◻

We can now prove Proposition 5:

Proof of Proposition 5 By definition (cf. Eq. 4), we have that:

For any subset C of A, every subset P of A is by construction the union of a subset PC of C 
with a subset P

C
 of C , such that PC ∩ P

C
= � . Accordingly,

Yet from Equation 1, we know that g(C,�PC∪PC
) = g(C,�PC

) . So we can rewrite u(C) as:

Yet for any PC ⊆ C and any P
C
⊆ C , we have that PC ∪ P

C
= (C ⧵ PC) ∪ (C ⧵ P

C
) , so the 

event ⟨PC ∪ P
C
,PC ∪ P

C
⟩ corresponds to the event ⟨PC ∪ P

C
, (C ⧵ PC) ∪ (C ⧵ P

C
)⟩ . And by 

Lemma  1, for any PC ⊆ C , we have that ⋃
P
C
⊆C

⟨PC ∪ P
C
, (C ⧵ PC) ∪ (C ⧵ P

C
)⟩ = ⟨PC,C ⧵ PC⟩ . That is to say, for any PC ⊆ C , we 

get that 
⋃

P
C
⊆C

⟨PC ∪ P
C
,PC ∪ P

C
⟩ = ⟨PC,C ⧵ PC⟩ . Hence, ∑

P
C
⊆C

p(⟨PC ∪ P
C
,PC ∪ P

C
⟩) = p(⟨PC,C ⧵ PC⟩) . Therefore, we can rewrite u(C) as 

follows:

which, using Equation 1 again, can be written equivalently as:

This concludes the proof.   ◻

Proposition 6 Let ⟨A, gfcau, p⟩ be a cautious PCFG. For any coalition C ⊆ A , we have that

⟨Q,R⟩ =
⋃

P⊆C ⟨Q ∪ P,R ∪ (C ⧵ P)⟩
=
⋃

P⊆C ⟨Q ∪ P,R ∪ (C ⧵ P)⟩ ∩ (⟨{ai}, �⟩ ∪ ⟨�, {ai}⟩)
= (

⋃
P⊆C ⟨Q ∪ P,R ∪ (C ⧵ P)⟩ ∩ ⟨{ai}, �⟩)∪

(
⋃

P⊆C ⟨Q ∪ P,R ∪ (C ⧵ P)⟩ ∩ ⟨�, {ai}⟩)
= (

⋃
P⊆C ⟨Q ∪ P ∪ {ai},R ∪ (C ⧵ P)⟩)∪

(
⋃

P⊆C ⟨Q ∪ P,R ∪ (C ⧵ P) ∪ {ai}⟩)
=
⋃

P⊆C∪{ai}
⟨Q ∪ P,R ∪ (C ⧵ P)⟩.

u(C) =
∑
P⊆A

p(𝜔P) ⋅ g(C,𝜔P).

u(C) =
�

PC⊆C,PC
⊆C

p(⟨PC ∪ P
C
,PC ∪ P

C
⟩)⋅g(C,𝜔PC∪PC

).

u(C) =
�
PC⊆C

g(C,𝜔PC
) ⋅

�
P
C
⊆C

p(⟨PC ∪ P
C
,PC ∪ P

C
⟩).

u(C) =
�
PC⊆C

p(⟨PC,C ⧵ PC⟩) ⋅ g(C,𝜔PC
),

u(C) =
�
P⊆C

p(⟨P,C ⧵ P⟩) ⋅ g(C,𝜔P).

ucau(C) = p(⟨C, �⟩) ⋅ gf
cau

(C,�C).
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Proof According to Corollary 1, for any coalition structure CS ∈ �A , we have that:

Yet by definition of gfcau , for any given coalition C ⊆ A and any P ⊆ C , we have that 
g
f
cau(C,�P) = 0 whenever C ⊈ P . Hence, in the equation, for any coalition C one can 

restrict ourselves to events ⟨P,C ⧵ P⟩ where P = C , that corresponds to the single event 
⟨C, ∅⟩ . Therefore, Ucau(CS) is simplified as Ucau(CS) =

∑
C∈CS p(⟨C, �⟩) ⋅ gfcau(C,�C) . This 

concludes the proof.   ◻

Proposition 7 ��-�� is ��-hard and ��-∃�� is ����-hard. Hardness results hold 
for flexible PCFGs, and even when the set of events {⟨{ai}, �⟩ ∣ ai ∈ A} are pairwise 
independent.

Proof 1. We prove that ��-�� is ��-hard for flexible PCFGs and when all events from 
{⟨{ai}, �⟩ ∣ ai ∈ A} are pairwise independent by considering a reduction in polynomial 
time from the ��-complete problem MAJSAT  : given a propositional formula � in Conjunc-
tive Normal Form (CNF), does the majority of assignments satisfy � ? Consider such a for-
mula � defined over the set of propositional variables X = {x1,… , xn} . Since � is in CNF, 
it can be viewed as a set of clauses {cli ∣ cli ∈ �} interpreted conjunctively, where each 
clause is a disjunction of literals over X. Now, let us associate with � the flexible PCFG 
⟨A, gf

fle
, p⟩ and the coalition structure CS, where A = {a1,… , an} , CS∗ = {A} , all events 

from {⟨{ai}, �⟩ ∣ ai ∈ A} are pairwise independent, p(⟨{ai}, �⟩) = 0.5 for each ai ∈ A , and 
g
f

fle
 be characterized by a function f ∶ 2A ↦ ℕ defined for each coalition C ⊆ A as
f (C) = 1 if for every clause cli ∈ � , there is a literal lj ∈ cli such that ( aj ∈ C if and only 

if lj is a positive literal); and f (C) = 0 in the remaining cases.
Note that each value f (C) is not explicitely represented for each coalition C ⊆ A and 

each outcome �P ∈ �A in a table of exponential size, since each such value is completely 
characterized in polynomial time by � given C. Then we recall that gf

fle
 is characterized for 

each coalition C ⊆ A and each outcome �P ∈ �A as gf
fle
(C,�P) = f (C ∩ P).

Let us show that the majority of propositional assignments satisfies � if and only if 
U(CS∗) ≥ 0.5 (i.e., k = 0.5 ). Consider the one-to-one correspondence between the set 
of all outcomes �A and the set of all propositional assignments associating each out-
come �P ∈ �A with the propositional assignment IP defined for every variable xi ∈ X as 
IP(xi) = 1 if and only if ai ∈ P . Then it can be seen by definition of f  that for each outcome 
�P ∈ �A , f (P) = 1 if IP satisfies � (denoted by IP ⊧ 𝜑 ), otherwise f (P) = 0 . Now, by defi-
nition of p , for each outcome �P ∈ �A , we have that p(�P) = 0.5n . Hence,

The majority of propositional assignments satisfies � if and only if |{IP ∣ IP ⊧ 𝜑}| ≥ 2n−1 if 
and only if Ufle(CS∗) ≥ 0.5n ⋅ 2n−1 = 0.5 . Hence, ��-�� is ��-hard.

Ucau(CS) =
�
C∈CS

�
P⊆C

p(⟨P,C ⧵ P⟩) ⋅ gf
cau

(C,𝜔P).

Ufle(CS∗) =
∑

𝜔P∈𝛺A
p(𝜔P) ⋅ Gfle(CS∗,𝜔P)

=
∑

𝜔P∈𝛺A
p(𝜔P) ⋅ Gfle({A},𝜔P)

=
∑

𝜔P∈𝛺A
p(𝜔P) ⋅ g

f

fle
(A,𝜔P)

=
∑

𝜔P∈𝛺A
0.5n ⋅ f (P)

= 0.5n ⋅
∑

𝜔P∈𝛺A
f (P)

= 0.5n ⋅ �{IP ∣ IP ⊧ 𝜑}�.
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2. We prove that ��-∃�� is ����-hard for flexible PCFGs and when all events from 
{⟨{ai}, �⟩ ∣ ai ∈ A} are pairwise independent by considering a reduction in polynomial 
time from the ����-complete problem E-MAJSAT  : given a propositional formula � in 
Conjunctive Normal Form (CNF), defined over X ∪ Y  where X and Y are two disjoint sets 
of propositional variables, does there exist an assignment �X over X such that the major-
ity of assignments over Y satisfies �∣�X

 (i.e., � conditioned on �X )? Consider such a for-
mula � defined over the set of propositional variables X ∪ Y  , where X = {x1,… , xn} and 
Y = {y1,… , yn} . Without loss of generality, we assume that n ≥ 2 , for technical reasons 
that will be of use in the latter part of the proof. Since � is in CNF, it can be viewed as a 
set of clauses {cli ∣ cli ∈ �} interpreted conjunctively, where each clause is a disjunction of 
literals over X ∪ Y .

Now, let us associate with � the flexible PCFG ⟨A, gf
fle
, p⟩ , where 

A = {new, a1, a
�
1
, b1, b

�
1
,… , an, a

�
n
, bn, b

�
n
} , all events from {⟨{new}, �⟩}∪ 

⋃
{⟨{ai}, �⟩, 

⟨{a�
i
}, �⟩, ⟨{bi}, �⟩, ⟨{b�i}, �⟩ ∣ i ∈ {1,… , n}} are pairwise independent, p(⟨{new}, �⟩) = 1 , 

and p(⟨{ai}, �⟩) = p(⟨{a�
i
}, �⟩) = p(⟨{bi}, �⟩) = p(⟨{b�

i
}, �⟩) = 0.5 for each i ∈ {1,… , n} . 

The function gf
fle

 is characterized by a function f ∶ 2A ↦ ℕ ; yet before describing how f  is 
defined, let us introduce some preliminary notions on coalitions from A that will be useful 
in the proof.

A set C ⊆ A is said to be canonical if the following conditions are jointly satisfied: 

1. new ∈ C;
2. for each i ∈ {1,… , n} , {ai, a�i} ⊆ C or {bi, b�i} ⊆ C;
3. for each i ∈ {1,… , n} , {ai, a�i} ∩ C = � or {bi, b�i} ∩ C = �.

For instance, for n = 4 , C1 = {new, a1, a
�
1
, b2, b

�
2
, b3, b

�
3
, a4, a�4} is a canonical coalition. 

Note that a canonical coalition always contains 2n + 1 elements, and that there are exactly 
2n canonical coalitions.

A set C ⊆ A is said to be sub-canonical if the following conditions are jointly satisfied: 

1. C is a proper subset of a canonical coalition;
2. new ∈ C;
3. for each i ∈ {1,… , n} , ai ∈ C if and only if a�

i
∉ C;

4. for each i ∈ {1,… , n} , bi ∈ C if and only if b�
i
∉ C.

Note that when C is sub-canonical, there is exactly one canonical coalition C′ such that 
C ⊆ C , and we also say that C is a sub-canonical set w.r.t. C′ . For instance, for n = 4 , 
C2 = {new, a1, b

�
2
, b3, a4} is a sub-canonical coalition of C1 . Additionally, one can remark 

that a sub-canonical coalition C always contains n + 1 elements, that for each i ∈ {1,… , n} , 
exactly one element from {ai, a�i , bi, b

�
i
} belongs to a sub-canonical coalition C, and that for 

any given canonical coalition C′ , there are exactly 2n sub-canonical coalitions w.r.t. C′.
Lastly, let us define the function � associating any literal li over X ∪ Y  with a pair of 

agents from A, defined as:

We are now ready to define f  , for each coalition C ⊆ A , as:

�(li) =

⎧
⎪⎨⎪⎩

{ai, a
�
i
} if li is a positive literal overX,

{bi, b
�
i
} if li is a negative literal overX,

{ai, bi} if li is a positive literal over Y ,

{a�
i
, b�

i
} if li is a negative literal over Y .
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Then we recall that gf
fle

 is characterized for each coalition C ⊆ A and each outcome �P ∈ �A 
as gf

fle
(C,�P) = f (C ∩ P).

We intend now to prove that there is an assignment �X over X such that the majority of 
assignments over Y satisfies �∣�X

 if and only if there exists a coalition structure CS such that 
Ufle(CS) ≥ 23n + 1 according to the flexible PCFG ⟨A, gf

fle
, p⟩.

(Only if part) Assume that there is an assignment �X over X such that the major-
ity of assignments over Y satisfies �∣�X

 . We associate with �X the coalition structure 
CS�X = {C�X

,A ⧵ C�X
} , where C�X

 is the canonical coalition defined as:

Let us show that Ufle(CS�X ) ≥ 23n + 1 . From Proposition 4 we know that

So it is enough to prove that ufle(C�X
) ≥ 23n + 1 . Let us first recall that according to Propo-

sition 5, ufle(C�X
) is defined as:

Equivalently,

Yet we know by definition of f  that f (P) = 25n when P is canonical, that is – under 
the condition that P ⊆ C𝛾X

 – exactly the case when P = C�X
 . On the other hand, since 

p(⟨{new}, �⟩) = 1 , since p(⟨{ai}, �⟩) = p(⟨{a�
i
}, �⟩) = p(⟨{bi}, �⟩) = p(⟨{b�

i
}, �⟩) = 0.5 

for each i ∈ {1,… , n} , since all these events are pairwise independent and 
since C�X

 contains 2n + 1 elements, we have that p(⟨C�X
, �⟩) = 0.52n . Thus 

p(⟨C�X
, �⟩) ⋅ f (C�X

) = 0.52n ⋅ 25n = 23n . Hence,

where 𝛿 =
∑

P⊊C𝛾X

p(⟨P,C𝛾X
⧵ P⟩) ⋅ f (P) . Since we need to show that ufle(C�X

) ≥ 23n + 1 , 
what remains to be shown is that � ≥ 1.

Now, let us consider the set E
C𝛾X

A
⊆ EA defined as the set of events ⟨Q,R⟩ satisfying the 

following set of conditions: 

 (i) Q is a sub-canonical set w.r.t. C�X
;

 (ii) R = C�X
⧵ Q.

f (C) =

⎧
⎪⎨⎪⎩

25n if C is canonical,

2n+1 if C is sub-canonical and for each clause cli ∈ �,

there is a literal lj ∈ cli such that �(lj) ∩ C ≠ �,

0 in the remaining cases.

C�X
=
⋃
{{ai, a

�
i
} ∣ �X(xi) = 1, i ∈ {1,… , n}}

∪
⋃
{{bi, b

�
i
} ∣ �X(xi) = 0, i ∈ {1,… , n}}

∪{new}.

Ufle(CS�X ) = ufle(C�X
) + ufle(A ⧵ C�X

).

ufle(C𝛾X
) =

�
P⊆C𝛾X

p(⟨P,C𝛾X
⧵ P⟩) ⋅ gf

fle
(C𝛾X

,𝜔P).

ufle(C𝛾X
) =

�
P⊆C𝛾X

p(⟨P,C𝛾X
⧵ P⟩) ⋅ f (P).

ufle(C�X
) = 23n + �,
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Note that for each ⟨Q,R⟩ ∈ E
C�X

A
 , Q ∪ R = C�X

 , |Q| = n + 1 and |R| = n , and that |EC�X

A
| = 2n.

By construction of E
C�X

A
 , we have that E

C𝛾X

A
⊆ {⟨Q,C𝛾X

⧵ Q⟩ ∣ Q ⊊ C𝛾X
} . Thus:

Now, since p(⟨{new}, �⟩) = 1 , since 
p(⟨{ai}, �⟩) = p(⟨{a�

i
}, �⟩) = p(⟨{bi}, �⟩) = p(⟨{b�

i
}, �⟩) = 0.5 for each i ∈ {1,… , n} , and 

since all these events are pairwise independent, we get for each ⟨Q,R⟩ ∈ E
C�X

A
 that:

So we get that

Equivalently,

Now, let us build a one-to-one correspondence � between the set E
C�X

A
 and the set of propo-

sitional assignments over Y as follows. For each event ⟨Q,R⟩ ∈ E
C�X

A
 , we set �(⟨Q,R⟩) to be 

the propositional assignment �Y over Y defined for each yi ∈ Y  as �Y (yi) = 1 if and only if 
{ai, bi} ∩ Q ≠ � (i.e., �Y (yi) = 0 when {a�

i
, b�

i
} ∩ Q ≠ �).

It can be easily verified by construction of C�X
 and E

C�X

A
 that for every propositional 

assignment �Y over Y that satisfies �∣�X
 , the event ⟨Q,R⟩ ∈ E

C�X

A
 defined as ⟨Q,R⟩ = �−1(�Y ) 

meets the conditions given in the definition of f  to satisfy f (Q) = 2n+1 . Since a majority of 
propositional assignments over Y satisfies �∣�X

 , this means that f (Q) = 2n+1 for a majority 
of events ⟨Q,R⟩ from E

C�X

A
 . Yet we know that |EC�X

A
| = 2n , so this means that f (Q) = 2n+1 for 

at least 2n−1 events ⟨Q,R⟩ from E
C�X

A
 . Hence,

We got that � ≥ 0.52n ⋅ 22n , i.e., � ≥ 1 , thus ufle(C�X
) ≥ 23n + 1 , so Ufle(CS�X ) ≥ 23n + 1 . This 

concludes the (only if) part of the proof.
(If part) Assume that there exists a coalition structure CS such that Ufle(CS) ≥ 23n + 1 

according to the flexible PCFG ⟨A, gf
fle
, p⟩ . From Proposition 4, we know that Ufle(CS) is 

defined as:

where

� ≥
�

⟨Q,R⟩∈EC�X
A

p(⟨Q,R⟩) ⋅ f (Q).

p(⟨Q,R⟩) =
∏

a∈Q p(⟨{a}, �⟩) ⋅∏a∈R p(⟨�, {a}⟩)
= 1 ⋅ 0.5n ⋅ (1 − 0.5)n

= 0.52n.

� ≥
�

⟨Q,R⟩∈EC�X
A

0.52n ⋅ f (Q).

� ≥ 0.52n ⋅
�

⟨Q,R⟩∈EC�X
A

f (Q).

�

⟨Q,R⟩∈EC�X
A

f (Q) ≥ 2n−1 ⋅ 2n+1 = 22n.

Ufle(CS) =
∑
C∈CS

ufle(C),
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or equivalently, where

Yet for every coalition C such that new ∉ C , we know from the definition of f  that 
f (C ∩ P) = 0 for every �P ∈ �A ; and thus for each such coalition C, ufle(C) = 0 . This 
means that CS contains a coalition C∗ such that ufle(C∗) ≥ 23n + 1.

Let us show that such coalition C∗ is canonical. Let us recall from Proposition 5 that 
ufle(C

∗) is characterized as follows:

Equivalently,

Toward a contradiction, assume that C∗ is not canonical. We fall into two cases:

• Case 1: C∗ is a strict superset of a canonical coalition C. Then ufle(C∗) can be written 
as ufle(C∗) = �1 + �2 , where 

 and 

 We first compute �1 . On the one hand, p(⟨{new}, �⟩) = 1 , 
p(⟨{ai}, �⟩) = p(⟨{a�

i
}, �⟩) = p(⟨{bi}, �⟩) = p(⟨{b�

i
}, �⟩) = 0.5 for each 

i ∈ {1,… , n} , and all these events are pairwise independent, so we have that 
p(⟨C,C∗ ⧵ C⟩) = 0.5�C∗�−1 . On the other hand, according to the definition of f  , we have 
that f (C) = 25n since C is canonical. Hence, �1 = 0.5|C∗|−1

⋅ 25n , that is, �1 = 25n−|C∗|+1.
  Let us now provide an upper bound for �2 . On the one hand, we know that for each 

P ⊆ C∗ such that P ≠ C , p(⟨P,C∗ ⧵ P⟩) = 0.5�C∗�−1 ; and P = C∗ ∩ P is not canoni-
cal, so according to the definition of f  , f (P) ≤ 2n+1 . Thus for each P ⊆ C∗ such that 
P ≠ C , 

 Hence, 

 so 

ufle(C) =
∑

�P∈�A

p(�P) ⋅ g
f

fle
(C,�P),

ufle(C) =
∑

�P∈�A

p(�P) ⋅ f (C ∩ P),

ufle(C
∗) =

�
P⊆C∗

p(⟨P,C∗ ⧵ P⟩) ⋅ g(C∗,𝜔P).

ufle(C
∗) =

�
P⊆C∗

p(⟨P,C∗ ⧵ P⟩) ⋅ f (P).

�1 = p(⟨C,C∗ ⧵ C⟩) ⋅ f (C),

𝛿2 =
�

P⊆C∗,P≠C

p(⟨P,C∗ ⧵ P⟩) ⋅ f (P).

p(⟨P,C∗ ⧵ P⟩) ⋅ f (P) ≤ 0.5�C∗�−1
⋅ 2n+1.

𝛿2 ≤
∑

P⊆C∗,P≠C

0.5|C∗|−1
⋅ 2n+1,
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 that is, 𝛿2 < 2n+2.
  We got that 𝛿1 + 𝛿2 < 25n−|C∗|+1 + 2n+2 . Yet since C is canonical, |C| = 2n + 1 . 

Since C∗ is a strict superset of C, we get that |C∗| ≥ 2n + 2 . So 𝛿1 + 𝛿2 < 23n−1 + 2n+2 . 
As we initially assumed at the beginning of this proof and without loss of generality 
that n ≥ 2 , we get that 2n+2 < 23n−1 , so 𝛿1 + 𝛿2 < 23n−1 ⋅ 23n−1 , thus 𝛿1 + 𝛿2 < 23n , and 
so ufle(C∗) < 23n . This contradicts ufle(C∗) ≥ 23n + 1.

• Case 2: C∗ is not a strict superset of a canonical coalition C. Since C∗ is assumed not to 
be canonical, we know that no subset of C∗ is canonical. So for each P ⊆ C∗ , accord-
ing to the definition of f  , f (P) ≤ 2n+1 ; and we know that p(⟨P,C∗ ⧵ P⟩) = 0.5�C∗�−1 . 
Thus 

 that is, 

 or equivalently, 

 This contradicts ufle(C∗) ≥ 23n + 1.
Both cases lead to a contradiction, so we know that C∗ is canonical.

Now, since C∗ is canonical, we have that f (C∗) = 25n by definition of f  . And since 
|C∗| = 2n + 1 , we have that p(⟨C∗, �⟩) = 0.52n . Thus

This means that ufle(C∗) can be written as

where

Since we know that ufle(C∗) ≥ 23n + 1 , we get that �3 ≥ 1.
Now, obviously enough, �3 can be written as �3 = �1

3
+ �2

3
 , where

and

𝛿2 < 2|C∗|
⋅ 0.5|C∗|−1

⋅ 2n+1,

ufle(C
∗) ≤

∑
P⊆C∗

0.5|C∗|−1
⋅ 2n+1,

ufle(C
∗) ≤ 2|C∗|

⋅ 0.5|C∗|−1
⋅ 2n+1,

ufle(C
∗) ≤ 2n.

p(⟨C∗, �⟩) ⋅ f (C∗) = 0.52n ⋅ 25n = 23n.

ufle(C
∗) = 23n + �3,

𝛿3 =
�

P⊆C∗ ,P≠C∗

p(⟨P,C∗ ⧵ P⟩) ⋅ f (P).

𝛿1
3
=
∑

P ⊆ C∗,P ≠ C∗,

⟨P,C∗ ⧵ P⟩ ∈ E
C∗

A

p(⟨P,C∗ ⧵ P⟩) ⋅ f (P)

=
∑

⟨P,C∗⧵P⟩∈EC∗
A
p(⟨P,C∗ ⧵ P⟩) ⋅ f (P),
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where the set EC
∗

A
⊆ EA is defined as the set of events ⟨Q,R⟩ satisfying the following set of 

conditions: 

 (i) Q is a sub-canonical set w.r.t. C∗;
 (ii) R = C∗ ⧵ P.

Yet one can see that for every P ⊆ C∗ such that P ≠ C∗ , if ⟨P,C∗ ⧵ P⟩ ∉ E
C∗

A
 then the set 

P = C∗ ∩ P is neither canonical nor sub-canonical, which means that f (P) = 0 according 
to the definition of f  . Hence, �2

3
= 0 . Since we know that �3 ≥ 1 and �3 = �1

3
+ �2

3
 , we get 

that �1
3
≥ 1 . Yet for each event ⟨P,C∗ ⧵ P⟩ ∈ E

C∗

A
 , p(⟨P,C∗ ⧵ P⟩) = 0.52n ( C∗ is canonical, 

so |C∗| = 2n + 1 ). Thus

Let us prove that there is a majority of events ⟨P,C∗ ⧵ P⟩ from EC
∗

A
 such that f (P) = 2n+1.

We know that for each ⟨P,C∗ ⧵ P⟩ ∈ E
C∗

A
 , P = C∗ ∩ P is not canonical, so by definition 

of f  , we know that f (P) ≤ 2n+1 . So what we want to show is that there is a majority of 
events ⟨P,C∗ ⧵ P⟩ from EC

∗

A
 that satisfy f (P) ≥ 2n+1 . Assume toward a contradiction that 

this is not the case.
According to the definition of f  , this means that there is a strict majority of events 

⟨P,C∗ ⧵ P⟩ from EC
∗

A
 that satisfy f (P) = 0 . Since |EC∗

A
| = 2n ( C∗ is canonical and thus it 

admits 2n sub-canonical subsets), this means that:

We get that 𝛿1
3
< 1 . This contradicts �1

3
≥ 1 . Therefore, there is a majority of events 

⟨P,C∗ ⧵ P⟩ from EC
∗

A
 such that f (P) = 2n+1.

Now, let us associate with C∗ the propositional assignment �C∗

X
 over X defined for every 

xi ∈ X as �C∗

X
(xi) = 1 if and only if {ai, a�i} ⊆ C∗ (recall that since C∗ is canonical, we set 

�C
∗

X
(xi) = 0 when {ai, a�i} ∩ C∗ = � and {bi, b�i} ⊆ C∗ ). And let us build a one-to-one cor-

respondence � between the set of events EC
∗

A
 and the set of propositional assignments over 

Y as follows. For each event ⟨P,C∗ ⧵ P⟩ ∈ E
C∗

A
 , we set �(⟨P,C∗ ⧵ P⟩) to be the propositional 

assignment �Y over Y defined for each yi ∈ Y  as �Y (yi) = 1 if and only if {ai, bi} ∩ P ≠ � 
(i.e., �Y (yi) = 0 when {a�

i
, b�

i
} ∩ P ≠ �).

Now, consider any event ⟨P,C∗ ⧵ P⟩ from EC
∗

A
 such that f (P) = 2n+1 . By definition of f  , 

this means that for each clause cli ∈ � , there is a literal lj ∈ cli such that �(lj) ∩ P ≠ � . 
Then it can be directly verified by construction of �C∗

X
 and �(⟨P,C∗ ⧵ P⟩) that the interpreta-

tion �C∗

X
∪ �(⟨P,C∗ ⧵ P⟩) satisfies each clause cli ∈ � . Since we have proved that there is a 

majority of events ⟨P,C∗ ⧵ P⟩ from EC
∗

A
 such that f (P) = 2n+1 , this means that there is a 

majority of assignments over Y that satisfies �∣�C
∗

X
 . So we have shown that there is an assign-

ment �X over X such that the majority of assignments over Y satisfies �∣�C
∗

X
 . This concludes 

the (if) part of the proof.

𝛿2
3
=

�
P ⊆ C∗,P ≠ C∗,

⟨P,C∗ ⧵ P⟩ ∉ E
C∗

A

p(⟨P,C∗ ⧵ P⟩) ⋅ f (P),

�1
3
=

�
⟨P,C∗⧵P⟩∈EC∗

A

0.52n ⋅ f (P).

𝛿1
3
< 0.5 ⋅ 2n ⋅ 0.52n ⋅ 2n+1.
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We have proved that there is an assignment �X over X such that the majority of assign-
ments over Y satisfies �∣�X

 if and only if there exists a coalition structure CS such that 
Ufle(CS) ≥ 23n + 1 according to the PCFG ⟨A, gf

fle
, p⟩ Therefore, ��-∃�� is ����-hard.  

 ◻

Proposition 8 ��-�� is in � and ��-∃�� is ��-complete for cautious PCFGs.

Proof 1. Let us first prove that ��-�� is in � for cautious PCFGs. From Proposition 6, we 
have for any coalition C ⊆ A that

yet p(⟨C, �⟩) and gfcau(C,�P) are computed in polynomial time, so ucau(C) is computed in 
polynomial time. Yet from Proposition 4, for every coalition structure CS ∈ �A,

which is then be computed in polynomial time. Therefore, ��-�� is in � for cautious 
PCFGs.

2. Let us now prove that ��-∃�� is ��-complete for cautious PCFGs. ��-∃�� is in �� 
for cautious PCFGs, since the fact that a (polynomial-size) coalition structure CS ∈ �A can 
be guessed in polynomial time and checked in � according to point 1 of this proof.

To show that ��-∃�� is ��-hard for cautious PCFGs, it is enough to remark that the 
standard CSG problem is ��-hard, and that from Proposition 2, any CFG ⟨A, f ⟩ is equiv-
alent to its optimistic cautious CFG extension ⟨A, gfcau, p⊤⟩ , i.e., where for each outcome 
�P ∈ �A , p⊤(𝜔P) = 1 if P = A , and p⊤(𝜔P) = 0 otherwise.

Therefore, ��-∃�� is ��-complete for cautious PCFGs.   ◻

Proposition 9 For any CS ∈ �A,

where R∗ is the set of rules ri activated by a coalition CS(i) ∈ CS.

Proof We know from Proposition 4 that for each CS ∈ �A,

and from Proposition 6 that for each C ∈ CS,

Yet gfcau is characterized by f  , which itself is represented by an MC-net R. So by definition 
of f  and gfcau , we get that

where R∗
C
 is the set of rules from R that are activated by C.

ucau(C) = p(⟨C, �⟩) ⋅ gf
cau

(C,�C),

Ucau(CS) =
∑
C∈CS

ucau(C),

Ucau(CS) =
�
ri∈R

∗

wi ⋅ p(⟨CS(i), �⟩),

Ucau(CS) =
∑
C∈CS

ucau(C),

ucau(C) = p(⟨C, �⟩) ⋅ gf
cau

(C,�C).

gf
cau

(C, ⟨C, �⟩) = f (C) =
�
ri∈R

∗
C

wi,



Autonomous Agents and Multi-Agent Systems           (2021) 35:14  

1 3

Page 35 of 38    14 

Hence,

And since p(⟨C, �⟩) is independent of ri in the above equation, we get that

Hence, for any CS ∈ �A,

Yet we know that each rule ri from R is activated by at most one coalition from CS. This 
means that for all coalitions C,C′ , C ≠ C′ , we have that R∗

C
∩R

∗
C� = � . Therefore,

where R∗ is the set of rules ri activated by a coalition CS(i) ∈ CS.
This concludes the proof.   ◻

Proposition 10 For any CS ∈ �A,

where R+ is the set of rules ri partially activated by a coalition CS(i) ∈ CS.

Proof We know from Proposition 4 that for each CS ∈ �A,

and that for each C ∈ CS,

Yet gf
fle

 is characterized by f  , which itself is represented by an MC-net R. So by definition 
of f  and gf

fle
 , we get for each P ⊆ C that

where R∗
P
 is the set of rules from R that are activated by P. Hence,

And since p(⟨P,C ⧵ P⟩) is independent of ri in the above equation, we get that

ucau(C) = p(⟨C, �⟩) ⋅ �
ri∈R

∗
C

wi.

ucau(C) =
�
ri∈R

∗
C

wi ⋅ p(⟨C, �⟩).

Ucau(CS) =
�
C∈CS

�
ri∈R

∗
C

wi ⋅ p(⟨C, �⟩).

Ucau(CS) =
�
ri∈R

∗

wi ⋅ p(⟨CS(i), �⟩),

Ufle(CS) =
�
ri∈R

+

wi ⋅ p(⟨�+i ,CS(i) ∩ �−
i
⟩),

Ufle(CS) =
∑
C∈CS

ufle(C),

ufle(C) =
�
P⊆C

p(⟨P,C ⧵ P⟩) ⋅ gf
fle
(C,𝜔P).

g
f

fle
(C, ⟨P,C ⧵ P⟩) = f (C ∩ P) = f (P) =

�
ri∈R

∗
P

wi,

ufle(C) =
�
P⊆C

p(⟨P,C ⧵ P⟩) ⋅ �
ri∈R

∗
P

wi.
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Equivalently, we can write

where wi(P) = wi if ri ∈ R
∗
P
 , otherwise wi(P) = 0.

Yet for all P ⊆ C , we have that ri ∈ R
∗
P
 precisely for those events ⟨P,C ⧵ P⟩ where 

𝛾+
i
⊆ P and 𝛾−

i
∩ C ⊆ C ⧵ P , i.e., wi(P) = wi when 𝛾+

i
⊆ P and 𝛾−

i
∩ C ⊆ C ⧵ P , otherwise 

wi(P) = 0 . Hence,

Equivalently,

where R+
C
 is the set of rules ri partially activated by C. Hence, for any CS ∈ �A,

Yet we know that each rule ri from R is partially activated by at most one coalition from 
CS. This means that for all coalitions C,C′ , C ≠ C′ , we have that R+

C
∩R

+
C� = � . Therefore, 

for any CS ∈ �A,

where R+ is the set of rules ri partially activated by a coalition CS(i) ∈ CS.
This concludes the proof.   ◻

Proposition 11 ��-�� is in � and ��-∃�� is ��-complete for MC-net based flexible 
PCFGs.

Proof 1. From Proposition 6, we have for any CS ∈ �A that

where R+ is the set of rules ri partially activated by a coalition CS(i) ∈ CS.
Yet p(⟨Q,R⟩) is computed in polynomial time for any event ⟨Q,R⟩ , so ⟨�+

i
,CS(i) ∩ �−

i
⟩ is 

computed in polynomial time for any rule ri ∈ R and the coalition CS(i) that partially acti-
vated ri in any CS ∈ �A . Hence, for any CS ∈ �A , Ufle(CS) is computed in polynomial time 
in the size of |R| . Therefore, ��-�� is in � for MC-net based flexible PCFGs.

2. ��-∃�� is in �� , since the fact that a (polynomial-size) coalition structure CS ∈ �A 
can be guessed in polynomial time and checked in � according to point 1 of this proof.

ufle(C) =
�
P⊆C

�
ri∈R

∗
P

wi ⋅ p(⟨P,C ⧵ P⟩).

ufle(C) =
�
ri∈R

�
P⊆C

wi(P) ⋅ p(⟨P,C ⧵ P⟩),

ufle(C) =
�

ri∈R,𝛾+
i
⊆C

wi ⋅ p(⟨𝛾+i , 𝛾−i ∩ C⟩).

ufle(C) =
�
ri∈R

+
C

wi ⋅ p(⟨�+i , �−i ∩ C⟩),

Ufle(CS) =
�
C∈CS

�
ri∈R

+
C

wi ⋅ p(⟨�+i , �−i ∩ C⟩).

Ufle(CS) =
�
ri∈R

+

wi ⋅ p(⟨�+i ,CS(i) ∩ �−
i
⟩),

Ufle(CS) =
�
ri∈R

+

wi ⋅ p(⟨�+i ,CS(i) ∩ �−
i
⟩),
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To show that ��-∃�� is ��-hard for cautious PCFGs, it is enough to remark that the 
standard CSG problem is ��-hard even when f is represented as an MC-net [23], and 
that from Proposition 2, any MC-net based CFG ⟨A, f ⟩ is equivalent to its optimistic flex-
ible MC-net based CFG extension ⟨A, gf

fle
, p⊤⟩ , i.e., where for each outcome �P ∈ �A , 

p⊤(𝜔P) = 1 if P = A , and p⊤(𝜔P) = 0 otherwise.
Therefore, ��-∃�� is ��-complete for MC-net based flexible PCFGs.   ◻
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