Papers

Peer-reviewed
Aug, 2008

Percolative core formation in planetesimals

EARTH AND PLANETARY SCIENCE LETTERS
  • Hidenori Terasaki
  • ,
  • Daniel J. Frost
  • ,
  • David C. Rubie
  • ,
  • Falko Langenhorst

Volume
273
Number
1-2
First page
132
Last page
137
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.1016/j.epsl.2008.06.019
Publisher
ELSEVIER SCIENCE BV

The percolation of liquid iron alloy through crystalline silicates potentially played an important role during core formation in small bodies of the early solar system, such as asteroids and planetesimals. This is because heat production by radioactive decay of Al-26 and Fe-60. which is believed to be the main heat source in early-formed small planetary bodies, will initially cause Fe-S melts to form, well before the silicates start to melt. In order to test the feasibility of percolation, the effect of pressure on the dihedral angle between Fe-O-S liquid and olivine has been investigated from 1.5 to 5.0 GPa, a pressure range that is relevant for the interiors of large asteroids. Texturally-equilibrated dihedral angles increase from 54 degrees to 98 degrees over this pressure range. The dihedral angle reaches the critical value of 60 degrees at 2-3 GPa depending on the olivine composition (Fe#). This change in dihedral angle is related to the oxygen content of Fe-O-S phase, which decreases with increasing pressure, because oxygen dissolved in the melt reduces the Fe-S melt/olivine interfacial energy. These results show that Fe-O-S liquid can form an interconnected network and percolate through silicate aggregates under conditions of high oxygen fugacity and low pressure, even when the melt fraction is small. Therefore, percolation is likely to have been the dominant core formation mechanism in small relatively-oxidised planetary bodies with a radius less than about 1300 km. (C) 2008 Elsevier B.V. All rights reserved.

Link information
DOI
https://doi.org/10.1016/j.epsl.2008.06.019
CiNii Articles
http://ci.nii.ac.jp/naid/10024023460
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000259729000013&DestApp=WOS_CPL
ID information
  • DOI : 10.1016/j.epsl.2008.06.019
  • ISSN : 0012-821X
  • CiNii Articles ID : 10024023460
  • Web of Science ID : WOS:000259729000013

Export
BibTeX RIS