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Abstract—In this study, we investigate and present a deep 
residual learning for modulation and system classification. 
The simulation results show the degradation problem that 
was exposed due to an increase in network depth and the 
saturation of accuracy in the conventional CNN; however, the 
proposed CNN has no such degradation. Therefore, the 
processing burden of the conventional CNN is much larger 
than the proposed CNN. In the simulation results, the 
proposed CNN framework achieves better system (5G, LTE, 
and WLAN) classification accuracy as the conventional CNN 
framework when reducing the processing burden in the 
proposed one. The better simulation results are shown by 
adjustment of the parameters using the proposed method in 
the case of 5G, LTE, and WLAN systems. 

Keywords—CNN，cognitive radio，deep residual learning，
modulation  & system classification 

I. INTRODUCTION  

Recently, advanced development of mobile 
communication systems has been increasing in cognitive 
radio (CR) techniques [1] based on software defined radio 
(SDR) technology. To perform effectively utilizing 
frequencies, CR users should recognize the surrounding 
radio environment, take the required measurements, and 
make adequate decisions in order to use frequency resources. 
On the other hand, spectrum sensing must be able to identify 
and distinguish between the primary user (PU) and other 
secondary users (SUs) using only energy detection; 
however, it is not easy to distinguish difference among the 
systems. For example, modulation classification (MC) 
[2][3][4][5] is a fascinating method to solve this problem in 
terms of accuracy of sensing.  

Moreover, the Fifth-Generation Mobile 
communications system (5G) has become the focus of the 
new generation of communication all over world as an 
extensive advancement of the existing mobile 
communication systems based on intensive requirements of 
market trends to the mobile communication systems in 
recent years. However, because of the shortage of 
frequencies for 5G, 6G, and other conventional systems, 
developments for frequency sharing with a wireless 
resource secured dynamically have actively been improving. 

To avoid interfering from SUs to PU, SUs have to recognize 
surrounding radio environments.  

Because of this, sensing and radio environment map 
(REM) are useful as shown in Fig.1. Creating REM needs 
electric field strengths measurement, received power 
detection, and presence of PU's because it is easy to detect. 
However, it needs the information what wireless systems 
and modulation types are PU's. Therefore, their modulation 
and system (5G, LTE (Long Term Evolution), and WLAN 
(Wireless Local Area Network), etc.) classification is 
needed. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Modulation & systems classification and Radio Environment map 
(REM) 

  

Machine learning [2] is a method of implementing the 
identification of different types of MC and mobile 
communication systems by learning from training data. 
Deep Neural Networks (DNN) have played a significant 
role in radio communication area in the past, as well as in 
video, speech, and image (picture) processing. Moreover, 
the Convolutional Neural Network (CNN) [5] [6] has been 
one of the useful methods in deep learning for image 
processing as a powerful tool; however, it is not easy to 
stack more layers in spite of using the CNN. Usually, deeper 
networks are required to have the ability to be convergent; 
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however, a degradation problem may occur as the network 
depth increases and with a saturation of accuracy of sensing. 
The activation functions are differentiated in every layer to 
calculate the gradient. First, the differential operations are 
useful because the differences of accuracy between inputs 
and outputs (one layer) in the shallow layers near the input 
layer are large. The characteristics of propagation of layer 
to layer are multiplying, so the decreasing characteristics are 
exponential; that is to  say, the gradient disappears by 
increasing of the layers. To solve the above problem, we 
introduce a deep residual learning method [6]. It features 
underlying mapping with a nonlinear H(x) function from 
input to output. Instead of H(x) using a nonlinear function 
F(x), which is defined as H(x)-x, the method arithmetically 
adds x to F(x) at the output of the second weight layer, as 
shown in Fig. 2. The novelty of the method in the past. We 
compared the characteristics of a normal CNN and our 
proposed CNN using a deep residual learning (ResNet) 
method. The performance evaluation revealed a significant 
accuracy advantage and a reduction in processing 
complexity.  

 

 

 

 

 

 

 

Fig. 2. A CNN using a deep residual learning block diagram. 

II. ARCHITECTURE OF CNNS USING DEEP RESIDUAL     

LEARNING 

Fig. 3 shows a conventional (normal) CNN block 
diagram for the purpose of comparing the proposed CNN 
using deep residual learning framework. In Fig. 3, the seven 
combinations (in turn and serially cascaded) of the 
convolutional layer, the batch-normalization layer, the 
activation layers whose function is ReLu (if the magnitude 
of the input signal is larger than zero, the output signal is 
the same as the input one; otherwise, the input signals are 
replaced with zero), and the pooling layer that extracts the 
maximum value in the feature maps are serially cascaded. 
The filter size is 8 and the numbers of filters are 16 (first 
stage), 24, 32, 48, 64, 96, and 256 (last stage) in turn. Fig. 
6 shows the proposed CNN using deep residual learning. In 
Fig. 6, the combination (in turn and serially cascaded) of 
the convolutional layer, the batch-normalization layer, and 
the activation layers whose function is ReLu; however, 
there are only these three combinations and each 16 filters 
to reduce the processing burden. 

In addition, the proposed CNN is a combination of a 
normal CNN and a ResNet (CNN using deep residual 
learning) as shown in Fig. 2. A normal (conventional) CNN 
in Fig. 3 has the advantage of faster convergence of 
learning compared to that of a ResNet; however, a normal 
CNN has saturation of accuracy, but a ResNet has no 
saturation of accuracy. Considering these drawbacks and 
merits, the proposed CNN is the combination of both types 

of CNN and the block diagram is shown in Fig. 6. In Fig. 
6, we add some CNN combinations in Fig. 2 (Res Net), as 
mentioned above, to the combinations of normal CNN 
(convolutional layer, batch-normalization layer, activation 
layer whose function is ReLu, and pool layer) whose filter 
size equals eight, and the numbers of filters are 16 (first 
stage) to 256 (last stage), respectively. On the whole, the 
combination of the conventional CNN and ResNet using 
CNN has the advantage of the number of layers (less than 
the architecture to take the same characteristics) and the 
faster convergence time to take the required validation 
accuracy. 

 
 

 
 
 
 
 
 
            
 
 
 
  

               
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. Block diagram of normal (conventional) CNN 

 

III. SIMULATION RESULTS AND DISCUSSIONS  

A. Modulation classifiction 

Table 1 (A) shows the simulation parameters (the 
modulation types are 64QAM, 16QAM, 8PSK, QPSK and 
BPSK, AWGN channel (S/N=20dB)). Table 1 (B) contains 
the results to enable a comparison of the use of the 
conventional CNN and the proposed CNN using deep 
residual learning. 

Fig. 4 shows the block diagram of CNN using only 
Res Net (11 stages). The simulation results using this block 
diagram show in Fig. 5. In Fig. 5, the training accuracy 
(CNN using only Res Net) is approximately 20 % (not 
shown in) and the validation accuracy is less than 20%. The 
more ResNet is being used, the more characteristics of the 
validation accuracy is higher than when using less ResNet 
characteristics. It is possible to achieve 90% validation 
accuracy using only ResNet. However, using only ResNet 
has lower convergence speed than that of in the case of not 
using ResNet. To achieve high validation accuracy, the 
machine learning unit need a lot of processing burden in the 

†The authors are with National Institute of Technology, Kagoshima 
College, 1460-1 Shinkou Hayato-cho, Kirishima-shi, Kagoshima 899-
5193, Japan. 
††The authors are with Universiti Teknologi Malaysia, 1310 Johor 
Bahru, Johor, Malaysia. 
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case of using ResNet. To achieve better performance such 
as more than 70% of training and validation accuracy, it is 
supposed that the number of ResNet is larger than that of  
ResNet stages (for example: ten times) in Fig. 4. 

The simulation results using the conventional CNN 
shown in Fig. 3 show in Fig, 5. A better performance of the 
training accuracy (almost 100%, not shown) can be 
achievable by increasing of CNN; however, the validation 
accuracy remains approximately 60% due to over fitting. 
On the other hand, a normal (conventional) CNN has the 
advantage of faster convergence of learning as shown in 
Fig. 5. This means that an over-fitting in this machine 
learning occurs. Considering these drawbacks and merits, 
the proposed CNN is the combination of both types of CNN 
and the block diagram is shown in Fig. 6. The simulation 
results of characteristics of the block diagram in Fig.6 are 
show in Fig. 5. The simulation results in Fig5 show the 
better performance of a faster convergence and 
approximately 70 to 80% of a validation accuracy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. ResNet only CNN 

Fig. 5. Validation accuracy 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Block diagram of the proposed method (Table Ⅲ: adding one 

layer (number of filter 64) between the fifth and sixth layer and 

changing the number of filters of 96 to 128 for the last layer). 

TABLE I.  SIMULATION PARAMETERS AND RESULTS  

(A) PARAMETERS 

Modulation 
Type 

64QAM, 16QAM, 8PSK  

QPSK, BPSK 

Channel AWGN (S/N=20dB) 

Data Training:80%, Validation:10%, Test:10% 

 

(B) RESULTS 

Modulation 
Type 

Accuracy (Probability) 

Proposed 
CNN  

Conventional 
CNN 

ResNet 
only CNN 

64QAM 63.6% 61.5% 0% 

16QAM 64.3% 54.4% 0% 

8PSK 79.1% 48.4% 0% 

QPSK 69.2% 45.6% 0% 

BPSK 96.2% 100% 100% 
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The simulation results of proposed method in Fig.7 (the 
block diagram shows in Fig.6) is different from the above 
(conventional CNN). In Fig.7, the converged final training 
and validation values are almost the same; that is to say, the 
value is approximately 70 to 80 %. It is supposed that the 
difference in Fig. 5 is caused by the problem of “Vanishing 
Gradient.” 

 

Fig. 7. Validation accuracy (proposed method) 

Fig,8 shows the results of confusion matrix compared 
among these five modulations in the block diagram of Fig. 
6 (the simulation results (validation accuracy) are shown in 
Fig. 7). In Fig. 8, the lowest row shows the ratio of the 
expected data (CNN outputs: modulation types) to the true 
values (test data: modulation types), and the right side 
column shows the ratio of the true values to the expected 
data. 

Fig. 8. Confusion matrix (proposed method) 

 

Fig.9 shows the results of the validation (training) 
accuracy (convergence) characteristics for different dropout 
rates using the proposed method.  In Fig. 9, the results show 
that the adequate dropout rate is 0.1 to 0.3 when using the 
proposed method. Because of the results, there is no 
influence of overfitting using the proposed method. In this 
simulation, the dropout operation is applied to not only 
"Fully Connected Layer" but also the all CNN layers. 

 
Fig. 9. Characteristics for the proposed method (different dropout   
parameters) 

 

Fig. 10. Characteristics for the proposed method (different SNR 
parameters) 

 

In Fig,10, analyses show that the proposed method 
yields a classification accuracy higher than 70% at varying 
SNR conditions ranging from 10dB to 30dB. Compared 
with the conventional method in Table Ⅰ, the proposed 
method effectively improves the problem of poor 
classification performance for the above range of SNRs and 
possesses better robustness. Comparing Fig. 3  and Fig. 6, 
the processing burden of the conventional CNN is much 
larger than that even though the results of the probability 
classification for the modulation types are almost the same. 
As for the results of using the conventional CNN, the 
probability classifications of the modulation types are 
“64QAM, 16QAM, 8PSK, QPSK, and BPSK” and “61.5%, 
54.4%, 48.4%, 45.6%, and 100%,” respectively. On the 
other hand, as for the results of using the proposed CNN 
using deep residual learning, the probability classifications 
of the modulation types are “64QAM, 16QAM, 8PSK, 
QPSK, and BPSK” and “63.6%, 64.3%, 79.1%, 69.2%, and 
96.2%,” respectively. 

 The Simulation results of ResNet only are not better 
than the others as shown in Table Ⅰ. It is supposed that 
ResNet requires a lot of CNN layers for a better 
performance.  In this simulation (not used for GPU), 700 
data are repeated and the training, validation, and testing 
data are 80%, 10%, and 10%, respectively. The total 
training time is approximately three hours (in the case of 
ResNet [5], it took 20 hours). 

In the proposed method, the results using the number of 
filter (ResNet) of 64 (validation accuracy is approximately 
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85%) is better than that of the  filter number 16 (validation 
accuracy is approximately  80%). They are adequate 
simulation results; however, the former case has to require 
a processing burden compared with the latter one. 
Considering the simulation results, a degradation problem 
was exposed with the increased network depth, wherein 
accuracy becomes saturated in the conventional CNN; 
however, the proposed CNN suffers no such degradation. 
As for the proposed CNN and the conventional CNN, 
judging from the results of each modulation classification, a 
small portion of the 8PSK data are misclassified as QPSK, 
and 16QAM and 64QAM tend to be misclassified as each 
other.  In this simulation in the proposed CNN, 16 filters are 
used of size eight only; however, validation is needed as to 
whether or not there will be a saturation of accuracy when 
varying the number of filters and their size. In addition, 
validation will be needed for an increase in the probability 
(accuracy) when increasing the ResNet and normal CNN 
blocks in the proposed CNN. The proposed CNN method 
achieved an overall validated of classification accuracy of 
70 to 80% at a range of 20 to 30 dB SNR and the dropout 
rate of 0.0 (no dropout) or 0.1 over a class of 5 digital 
modulation schemes compared with the conventional 
method which achieves an accuracy of approximately 60%. 

B. System (5G, LTE, WLANs) classifiction 

Table Ⅱ (B) shows the results of these four systems (LTE 
and WLAN) classification using the block diagrams of Figs. 
3(conventional) and 6(proposed) in the case that these SNR 
are 30dB to -20dB. In the case where SNR is 0dB, all the 
results of system classifications when using the proposed 
method are 100%). On the other hand, the results of 
proposed method are better than the conventional one in 
the case of poor SNR values in the case of -20dB as shown 
in Table 1 (B). Compared with the conventional method, 
the proposed methods improve  the problem of  
poor classification performance for the above range of 
SNRs and possesses better robustness. Fig.11 shows the 
results of the validation (training) accuracy (convergence) 
characteristics for different dropout rates using the proposed 
method.  In Fig. 11, the results show that the adequate dropout 
rate is 0 (or no need to have the dropout operation) or 0.1 when 
using the proposed method (the final validation result reaches 
100%, not shown in Fig. 11). Because of the results, there is 
no influence of overfitting using the proposed method. In 
this simulation, the dropout operation is applied to not only the 
"Fully Connected Layer" but also the all CNN layers. In these 
simulation results, as shown in Fig. 11, it is assumed that there is 
no inference of overfitting.  

Fig. 11. Characteristics (dropout) for the proposed method 
(LTE&WLAN) (SNR:10dB) 

Table Ⅲ(A) shows the simulation parameters (the 

systems are WLAN (ax) (downlink), WLAN(ax)(uplink), 
WLAN(ah)(downlink), LTE(downlink), and 5G (downlin- 
k) AWGN channel(SNR=-20 to 30dB)).  

Table Ⅲ (B) shows the results of classification 
probability compared among these five systems in the block 
diagram of Fig. 6 (the parameters are shown in Table Ⅲ). 

In Table Ⅲ in the case of SNR is 10dB to 30dB, all the 
results of system classifications are 100% (and more, the 
same results are obtained in the case where of these SNR are 
higher than that). On the other hand, the results of the 
proposed method are  better than the conventional one in the 
case of poor SNR values in the case of -20dB (the results 

are shown in  Table Ⅲ (B)). Compared with the 
conventional method, the proposed method improves the 
problem of poor classification performance for the above 
range of SNRs and possesses better robustness. In LTE 
systems, the subcarrier spacing is fixed (15kHz). On the 
other hand, the subcarrier spacings are not fixed (15kHz 
times n-th power of 2, n equals 0 to 4, 15kHz to 240kHz) 
and the number of slots equals 1 to 16 in 5G systems. As a 
whole, the classification of 5G and LTE is very difficult. To 
distinguish between LTE and 5G, we have added one layer 
(number of filter 64) between the fifth and sixth layer and 
changed the number of filters of 96 to 128 for the last layer; 
in addition, we have changed the number of ResNet units of 
11 to 17 in Fig. 6. In the proposed method, it is supposed 
that the combination of conventional CNN and ResNet units 
should adjust together. 

 

TABLE II.  SIMULATION PARAMETERS AND RESULTS  

(A) PARAMETERS 

Classification 
System 

LTE(E-UTRA test models(E-TM 1.1) (QPSK) 

802.11ax(downlink, BPSK,16QAM) 

802.11ax (uplink, BPSK,16QAM) 

802.11ah(downlink,BPSK,16QAM) 

Channel AWGN(SNR= -20～30dB) 

Data Training:80%, Validation:10%, Test:10% 

 

(B) RESULTS  

System Type Accuracy (Probability) 

Proposed CNN Conventional CNN 

LTE(downlink) 100%(SNR:0～30dB) 

33.1%(SNR:-20dB) 

100%(SNR:10～30dB) 

35.5%(SNR:-20dB) 

WLAN(802.11ah) 

(downlink) 

100%(SNR:0～30dB) 

40.1%(SNR:-20dB) 

100%(SNR:10～30dB) 

29.8%(SNR:-20dB) 

WLAN(802.11ax) 

(downlink) 

100%(SNR:0～30dB) 

100%(SNR:-20dB) 

100%(SNR:10～30dB) 

100%(SNR:-20dB) 

WLAN(802.11ax)
(uplink) 

100%(SNR:0～30dB) 

40.2%(SNR:-20dB) 

100%(SNR:10～30dB) 

36.8%(SNR:-20dB) 

 



TABLE III.  SIMULATION PARAMETERS AND RESULTS  

(A) PARAMETERS 

Classification 
System 

(1)LTE(E-UTRA test model(E-TM 1.1) ) (QPSK) 

(2)5G(ETSI TS 138 141-1 V15.5.0) 

test model 3.1a (NR-FR1-TM3.1a) (256QAM) 

(3)802.11ax (downlink, 16QAM) 

(4)802.11ax (uplink, 16QAM) 

(5)802.11ah (downlink, 16QAM) 

Channel AWGN(SNR= -20～30dB) 

Data Training:80%, Validation:10%, Test:10% 

(B) RESULTS  

System Type Accuracy (Probability) 

Proposed CNN) Conventional CNN 

5G(down link) 100%(SNR:10～30dB) 

30.1%(SNR:-20dB) 

100%(SNR:10～30dB) 

100%(SNR:-20dＢ) 

LTE(down link) 100%(SNR:10～30dB) 

16.7%(SNR:-20dＢ) 

100%(SNR:10～30dB) 

0.0%(SNR:-20dＢ) 

WLAN(802.11ah) 

(down link) 

100%(SNR:10～30dB) 

26.3%(SNR:-20dＢ) 

100%(SNR:10～30dＢ) 

0.0%(SNR:-20dB) 

WLAN(802.11ax) 

(down link) 

100%(SNR:10～30dB) 

100%(SNR:-20dB) 

100%(SNR:10～30dB) 

0.0%(SNR:-20dB) 

WLAN(802.11ax)
(up link) 

100%(SNR:10～30dB) 

29.4%(SNR:-20dB) 

100%(SNR:10～30dB) 

0.0%(SNR:-20dB) 

 

Fig. 12. Characteristics for the conventional method (SNR=10dB) 
(training and validation accuracy) 

 

Fig. 12 shows the simulation results of the proposed method 
in Fig. 6. The training accuracy reaches approximately 
100% when the value is converged  when comparing 
among systems (5G(downlink) (256QAM), LTE 
(downlink)(QPSK), WLAN ah(downlink)(16QAM), WLA 
N ax(downlink)(16QAM), and WLAN ax(uplink)(16QA 
M)) using the proposed method in Table Ⅲ . In these 
simulation results, the training and validation accuracy 
reaches 100% when the value is converged in the case that 
SNR equals 10dB. The proposed method validates good 
performance in Fig. 12 (block diagram shows in Fig. 6). In 

Fig.12, the converged final training and validation values 
are almost the same; that is to say, the value is 
approximately 100% in the case that SNR equals 10dB. It is 
supposed that it is not caused by the problem of “Vanishing 
Gradient” because the proposed method is used. On the 
other hand, it causes deterioration of characteristics 
(training and validation accuracy) when selecting dropout in 
the dropout simulation (not shown in the figure of results in 
this paper); that is to say, the proposed method does not 
cause the overfitting as well as the results of the simulation 
of Table I and Table Ⅱ. 

 

CONCLUSIONS  

We have presented and evaluated the proposed CNN 
using a deep residual learning method. As for the evaluation 
of the proposed method, the different dropout rates and SNR 
values are examined and the effectiveness of the proposed 
method has been ensured in this paper. As increasing the 
data patterns per one epoch, the validation accuracy for the 
proposed method can be increased. The simulation results 
are that the figure of validation accuracy reaches 
approximately 80% (modulation classification) and 100% 
(system classification). Using the proposed method, it is 
supposed that it is not caused by the problem of “Vanishing 
Gradient.” In the case using the conventional method, the 
accuracy does not increase by a significant value. To ensure 
better performance, as the ResNet and the conventional 
CNN blocks are increased in the proposed CNN, an 
adjustment of the parameters in the CNN will be needed. In 
addition, a combination of long short-term memory 
(LSTM)[5] and the proposed CNN will be able to be used 
for learning long-term dependencies data. 
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